
A Further Discussions
Motivating Examples Below, we give a thorough discussion, through four examples of how off-
policy function estimation used in downstream learning algorithms. We highlight the discrepancies
between what these algorithms assume about the function estimates and what existing work is able to
achieve, and demonstrate how our work closes these gaps.

Batch Learning: [LSAB19] design an off-policy policy gradient algorithm that requires estimating
the density-ratio w

⇡ to correct the offline data distribution to the on-policy distribution. In their
convergence analysis, they assume access to a blackbox w

⇡ estimator that is accurate under dD, and
refer to [LSAB19] as a possible method. However, as per Proposition 1, [LLTZ18] and existing
works do not provide desirable guarantees for such a task.

Online Reinforcement Learning: The seminal paper of [KL02] designs the CPI algorithm for on-
policy policy improvement, which inspired popular empirical algorithms such as TRPO and PPO.
CPI requires an oracle for estimating the advantage function (⇡ value function up to offset) accurately
under the on-policy distribution, i.e., distribution induced by the current policy (see their Sec 7.1).
While this is easy to do by simple squared-loss regression onto on-policy trajectories, it can be
sample-inefficient as it fails to leverage off-policy data collected by previous policies. On the other
hand running something like TD on all data considers a distribution different from the on-policy one.
Our method offers a direct solution: use all data in the Bellman error part of the objective, and only
use on-policy trajectories in the regularizer.

Online Reinforcement Learning: [AYBBLSW19] designs a no-regret policy optimization algorithm
assuming access to value-function estimation oracles. In their Theorem 5.1, they assume that the
oracle outputs an estimate of q⇡ that is accurate under ⌫ = d

⇡⇤
. While d⇡

⇤
is obviously not accessible

to us and our method does not apply as-is, one might use our theoretical insights to design heuristics,
such as up-weighting high-reward states in the offline distribution, as a way to mimic d

⇡⇤
.

Model selection in Offline Return Estimation: Model selection in offline return estimation: Hyperpa-
rameter tuning is a huge practical hurdle in offline return estimation [Pai+20], i.e., all OPE estimators
for return estimation (except for importance sampling which has exponential variance) require some
form of function approximation, and it is hard to choose the right function class with offline data
alone. To address this issue, [ZJ21] proposes a model selection process over candidate function
estimates of q⇡ , which must be provided by base algorithms that perform function estimation.

Function Estimation & Downstream Tasks Online algorithms using off-policy function estimation
as a subroutine, such as [KL02; AYBBLSW19], may require the estimates to be accurate on unknown
distributions such as d

⇡ or d⇡
⇤

(where ⇡
⇤ is the optimal policy), which may not be immediately

accessible to the user. The user may be able to use domain knowledge to “guess" a distribution ⌫ close
to or covering the unknown distribution of interest. Then our guarantees for function estimation over
⌫ could similarly, with a change of distribution, be converted to guarantees on the true distribution of
interest. To this end, an important avenue of future work involves a thorough investigation of how
our off-policy function estimation method interacts with such downstream learning algorithms, their
assumptions, and their guarantees, as well as how our method can tailored to improve downstream
tasks.

Faster rate One weakness of our result is the O(n�1/4) slow rate of estimation. While O(n�1/2)
generalization error bounds for related stochastic saddle point exist [ZHWZ21], they only apply to
strongly-convex-strongly-concave problems, whereas our problem is strongly-convex-non-strongly-
concave (Lq

f is affine in w and L
w
f is affine in q), making the result not directly applicable. One

immediate idea is to introduce dual regularization to make our objectives also strongly concave
in the discriminator. However, while primal regularization does not change the feasible space and
guarantees that the learned function will be q

⇡ (or w⇡ , respectively), dual regularization does change
the optimal solution, introducing a bias. This leads to a trade-off between the improvement in error
bounds due to strong concavity and the additional bias, and our preliminary investigation shows that
an optimal trade-off between the two sources of errors still leads to an O(n�1/4) rate. Therefore,
improving the rate (if it is possible at all) will require novel technical tools for the generalization
analyses of strongly-convex-non-strongly-concave stochastic saddle point problems, which will be an
interesting future direction.
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On a related note, while the rate for estimating q
⇡ and w

⇡ is only O(n�1/4), we can combine them in
a doubly robust form to get O(n�1/2) rate for return estimation by careful choices of the regularizing
distributions ⌫ and ⌘; see Appendix F for details.

Comparison to off-policy learning As mentioned earlier, our results are enabled by technical
tools adapted from [ZHHJL22], whose work focuses on off-policy policy learning and learns w⇡

for a near-optimal ⇡ that is accurate under dD as an intermediate step. While most of our surprising
observations are in the value-function learning scenario (Section 4), comparing our guarantee for
learning w

⇡ (Section 5) to that of [ZHHJL22] still yields interesting observations about the difference
between off-policy evaluation and learning. Most notably, we do not need to control the strength
of regularization in Eq.(3), since the feasible space is a singleton and there is no objective before
we introduce E⌫ [f(q)]. In contrast, the feasible space is not a singleton in [ZHHJL22] (it is the
space of all possible occupancies) and there is already a return optimization objective, so [ZHHJL22]
need to carefully control the strength of their regularization. As a consequence, [ZHHJL22] obtain
O(n�1/6) rate, showing how off-policy learning is potentially more difficult than off-policy function
estimation. Another interesting difference is related to our exact characterization of w⇤

f and q
⇤
f :

[ZHHJL22] do not have a closed-form expression for their optimal dual solution. Such a lack of
direct characterization leads to requiring additional assumptions to guarantee the boundedness of
such variables (see their Assumptions 11 and 12), which is not a problem in our setting. Finally,
our analyses lead to novel algorithmic ideas such as using state-action-dependent regularizers and
incorporating approximate models in the regularizers, which are potentially also useful for policy
learning.

B Proofs for Section 4
B.1 Proof of Theorem 2
From Assumption 1 and Lemma 7, we know that the regularization function E⌫ [fs,a(q(s, a))] is an
M -strongly convex function in q on the k · k2,⌫ norm. Now consider Lq

f (q, w
⇤
f ), the Lagrangian

function (4) at the optimal discriminator w⇤
f . Since L

q
f (q, w

⇤
f ) is composed of the regularization

function plus terms that are linear in q, Lq
f (q, w

⇤
f ) is also an M -strongly convex function in q.

As (q⇡, w⇤
f ) is the saddle point solution of Lq

f , we know q
⇡ = argminq L

q
f (q, w

⇤
f ). Then from the

strong convexity of Lq
f ,

||bq � q
⇡||2,⌫ 

vuut2
⇣
L
q
f (bq, w⇤

f )� L
q
f (q

⇡, w⇤
f )
⌘

Mq


r

4✏qstat
Mq

, (Lemma 9)

where ✏
q
stat is given in Lemma 8.

We provide the helper lemmas and their proofs below:

Lemma 7. Suppose fs,a : R ! R is M -strongly convex. Then E⌫ [fs,a(q(s, a))] : R|SA| ! R is

M -strongly convex on k · k⌫ .

Proof. From the strong convexity of fs,a, for any x, y 2 R,

fs,a(x)� fs,a(y)  f
0
s,a(x)(x� y)� M

2
(x� y)2

Then for q, q0 2 R|SA|,
E⌫ [fs,a(q(s, a))]� E⌫ [fs,a(q

0(s, a))]

 E⌫ [f
0
s,a(q(s, a))(q(s, a)� q

0(s, a))]� E⌫ [
M

2
(q(s, a)� q

0(s, a))2]

 E⌫ [f
0
s,a(q(s, a))(q(s, a)� q

0(s, a))]�
✓
min
s,a

M

2

◆
E⌫ [(q(s, a)� q

0(s, a))2]

= hrqE⌫ [fs,a(q(s, a))], q � q
0i � M

2
E⌫ [(q(s, a)� q

0(s, a))2]
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since rqE⌫ [fs,a(q(s, a))] = ⌫ � f 0
s,a(q), which gives our result.

Lemma 8. Suppose Assumption 3 holds. Then for all (q, w) 2 Q⇥W , w.p. � 1� �,

|bLq
f (q, w)� L

q
f (q, w)|  ✏

q
stat,

where ✏
q
stat =

�
C

q
W + (1 + �)Cq

WC
q
Q
�q 2 log 2|W||Q|

�
n .

Proof. From the linearity of the expectation, it is clear that L
q
f (q, w) = E[bLq

f ]. Let li =
w(si, ai) (r(si, ai) + �q(s0i,⇡)� q(si, ai)). From Assumption 3,

|li|  kwk1 + (1 + �)kwk1kqk1
 C

q
W + (1 + �)Cq

WC
q
Q

Then using Hoeffding’s inequality with union bound, for all q, w 2 Q⇥W , w.p. � 1� �,
�����
1

n

nX

i=1

li � EdD [li]

����� 
�
C

q
W + (1 + �)Cq

WC
q
Q
�
s

2 log 2|W||Q|
�

n
= ✏

q
stat

Lemma 9. Under Assumptions 1, 2, 3, w.p. � 1� �,

L
q
f (bq, w

⇤
f )� L

q
f (q

⇡
, w

⇤
f )  2✏qstat.

where ✏
q
stat is given in Lemma 8.

Proof. Let bw(q) := argmaxw2W
bLq
f (q, w). We decompose the error as follows:

L
q
f (q

⇡
, w

⇤
f )� L

q
f (bq, w

⇤
f ) = L

q
f (q

⇡
, w

⇤
f )� L

q
f (q

⇡
, bw(q⇡)) (1) � 0

+ L
q
f (q

⇡
, bw(q⇡))� bLq

f (q
⇡
, bw(q⇡)) (2) � �✏

q
stat

+ bLq
f (q

⇡
, bw(q⇡))� bLq

f (bq, bw(bq)) (3) � 0

+ bLq
f (bq, bw(bq))� bL

q
f (bq, w

⇤
f ) (4) � 0

+ bLq
f (bq, w

⇤
f )� L

q
f (bq, w

⇤
f ) (5) � �✏

q
stat

Combining the terms gives the result, and we provide a brief justification for each inequality below.
Terms (2) and (5) follow from Lemma 8.

Term (1) � 0 since (q⇡, w⇤
f ) is the saddlepoint solution.

Term (3) � 0, since bq = argminq2Q
bLq
f (q, bw(q)), and q

⇡ 2 Q.

Term (4) � 0 because w
⇤
f 2 W .

B.2 Proof of Lemma 3
Since strong duality holds, the saddle point (q⇡, w⇤

f ) satisfies the KKT conditions. Then from
stationarity, for all (s, a),

0 = ⌫(s, a)f 0
s,a(q

⇡(s, a)) + �

X

s0,a0

P
⇡(s, a|s0, a0)dD(s0, a0)w⇤

f (s
0
, a

0)� d
D(s, a)w⇤

f (s, a).

Writing this in matrix form, letting f
0(q⇡) be shorthand for [f 0

s,a(q
⇡(s, a))]s,a 2 RS⇥A, w⇤

f must
satisfy the equality:

(I � � eP⇡)(dD � w⇤
f ) = ⌫ � f 0(q⇡) =) d

D � w⇤
f = (I � � eP⇡)�1 (⌫ � f 0(q⇡)) .
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B.3 Proof of Proposition 4
Rearranging the closed form of w⇤

f from Lemma 3 and taking the absolute value of both sides,

d
D � |w⇤

f | = |(I � � eP⇡)�1 (⌫ � f 0(q⇡)) |

 kf 0(q⇡)k1|(I � � eP⇡)�1
⌫|

=
1

1� �
kf 0(q⇡)k1 · d⇡⌫

Then dividing both sides by d
D element-wise, this implies

|w⇤
f | 

1

1� �
kf 0(q⇡)k1 · (d⇡⌫/dD)

 1

1� �
kf 0(q⇡)k1 · kd⇡⌫/dDk1

As the above inequality holds for all (s, a),

||w⇤
f ||1  1

1� �
kf 0(q⇡)k1 · kd⇡⌫/dDk1.

C Proofs for Section 5
C.1 Proof of Lemma 5
From the KKT stationarity conditions:

0 = d
D(s, a)

�
�Es0⇠P (·|s,a)

⇥
q
⇤
f (s

0
,⇡)
⇤
� q

⇤
f (s, a)

�
� ⌫(s, a)f 0

s,a(w
⇡(s, a))

or in matrix form, letting f
0(w⇡) be shorthand for [f 0

s,a(w
⇡(s, a))]s,a 2 RS⇥A,

⌘ � f 0(w⇡) = d
D � (I � �P

⇡)q⇤f

Then q
⇤
f must satisfy

(I � �P
⇡)q⇤f = f

0(w⇡) � ⌘/dD =) q
⇤
f = (I � �P

⇡)�1(f 0(w⇡) � ⌘/dD)

C.2 Proof of Theorem 6
The proof is of a similar nature as the proof of Theorem 2 (Appendix B.1). From Assumption 4 and
Lemma 7, we know that that Lw

f (w, q
⇤
f ) is an M -strongly convex function in w on the || · ||2,⌘ norm.

Since (w⇡
, q

⇤
f ) is the saddle point solution of Lw

f , from strong convexity we know that the error of bw
is bounded as

|| bw � w
⇡||2,dD 

vuut2
⇣
Lw
f (w

⇡, q⇤f )� Lw
f ( bw, q⇤f )

⌘

Mw


r

4✏wstat
Mw

(Lemma 11),

where ✏
w
stat is given in Lemma 10.

Remark 5. In Theorem 6 of the main text, there is an additional O(Cw
f /

p
n) term in the statistical error

✏
w
stat, which would arise if the regularization function E⌘[fs,a(w(s, a))] were to be estimated from

samples. However, we state early on in the paper that we assume the regularizer can be calculated
exactly, as sampling is a trivial extension. Correspondingly, the correct expression for the statistical
error is:

✏
w
stat = (1 + �)Cw

WC
w
Q

q
2 log 4|Q||W|

� /n + (1� �)Cw
Q

q
2 log 4|Q|

� /n0,

and, to remain consistent with the rest of the paper, we provide the proof and lemma for this ✏wstat
below.
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Lemma 10. Suppose Assumption 6 holds. Then for all (w, q) 2 W ⇥Q, w.p. � 1� �,

|bLw
f (w, q)� L

w
f (w, q)|  ✏

w
stat,

where ✏
w
stat = (1 + �)Cw

WC
w
Q

q
2 log 4|Q||W|

�
n + (1� �)Cw

Q

r
2 log 4|Q|

�
n0

.

Proof. Let li = w(si, ai)(�q(s0i,⇡)� q(si, ai)). Using Assumption 6,

|li|  (1 + �)||w||1||q||1
 (1 + �)Cw

WC
w
Q

Then using Hoeffding’s inequality with union bound, w.p. � 1 � �/2 we have that for all w, q 2
W ⇥Q,

�����
1

n

nX

i=1

li � EdD [li]

�����  (1 + �)Cw
WC

w
Q

s
2 log 4|W||Q|

�

n

Similarly, for all q 2 Q, w.p. � 1� �/2,

�����
1

n0

n0X

i=1

q(s0,i,⇡)� Eµ0 [q(s0,i,⇡)]

�����  C
w
Q

s
2 log 4|Q|

�

n0

Since L
w
f (w, q) = E⌘[fs,a(w(s, a))] + EdD [li] + Eµ0 [q(s0,⇡)], but the first term can be calculated

exactly, taking a union bound over the above two inequalities, we have that w.p. � 1� �,

|bLw
f (w, q)� L

w
f (w, q)|  (1 + �)Cw

WC
w
Q

s
2 log 4|Q||W|

�

n
+ (1� �)Cw

Q

s
2 log 4|Q|

�

n0

Lemma 11. Under Assumptions 4, 5, 6, w.p. � 1� �,

L
w
f (w

⇤
f , q

⇤
f )� L

w
f ( bw, q⇤f )  2✏wstat

Proof of Lemma 11 Letting bq(w) = argmaxq2Q
bLw
f (w, q), we decompose the error as follows:

L
w
f ( bw, q⇤f )� L

w
f (w

⇡
, q

⇤
f ) = L

w
f ( bw, q⇤f )� bLf ( bw, q⇤f ) (1) � �✏

w
stat

+ bLw
f ( bw, q⇤f )� bLw

f ( bw, bq( bw)) (2) � 0

+ bLw
f ( bw, bq( bw))� bLw

f (w
⇡
, bq(w⇡)) (3) � 0

+ bLw
f (w

⇡
, bq(w⇡))� L

w
f (w

⇡
, bq(w⇡) (4) � �✏

w
stat

+ L
w
f (w

⇡
, bq(w⇡))� L

w
f (w

⇡
, q

⇤
f ) (5) � 0

Combining the inequalities gives the result. We give a brief justification for each term below. Terms
(1) and (4) follow from Lemma 10.

Term (2) � 0, since q
⇤
f 2 Q.

Term (3) � 0 since w
⇡ 2 W and bw = argmaxw2W

bLw
f (w, bq(w)).

Term (5) � 0 since (w⇡
, q

⇤
f ) is a saddle point solution.
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D Additional Details of the Experiments
D.1 Derivation
We now derive the system of equations for our value function estimation experiments in Section 6.
Letting the regularization function be fs,a(x) =

1
2x

2 for all (s, a), the objective is

min
q

max
w

L
q
f (q, w) =

1

2
E⌫ [q

2(s, a)] + EdD [w(s, a) (r(s, a) + �q(s0,⇡)� q(s, a))] , (10)

Letting En denote the empirical average over D for clarity, with empirical samples and the linear
classes Q,W , the objective becomes:

min
q2Q

max
w2W

bLq
f (q, w) =

1

2
E⌫ [↵

>
�(s, a)�(s, a)>↵] + �

>
⇣
En [�(s, a)r(s, a)]

+ En

⇥
��(s, a)�(s0,⇡)> � �(s, a)�(s, a)>

⇤
↵

⌘

Since � 2 Rd, maxw2W bLq
f (q, w) = +1 for any q, unless ↵ sets the the second term to 0. This is

satisfied by ↵ such that

En

⇥
�(s, a)�(s, a)> � ��(s, a)�(s0,⇡)>

⇤
↵ = En [�(s, a)r(s, a)] .

However, there may in general be infinite feasible ↵ depending on the linear features and samples.
For our specific linear parameterization of Q,W , the constraints form an underdetermined d ⇥ k

system of equations, which has infinite solutions.

This is where the regularization term E⌫ [↵>
�(s, a)�(s, a)>↵] comes into play. For any regularizing

distribution ⌫, our method will output a solution that minimizes this term, i.e. that minimizes the
norm of q = �>

↵ on ⌫. If ⌫ = 0, for example, the algorithm will output any feasible point; if
⌫ = 1/|SA|, the algorithm will output q with smallest L2 norm.

Connection to LSTDQ When using the same linear class for W and Q, the solution to the
constraints in Eq.(3) (i.e., ignoring the regularization objective)—if the solution is unique given
matrix invertibility—coincides with LSTDQ [UHJ20]. As mentioned in Section 2, LSTDQ enjoys
function-estimation guarantees under matrix invertibility. In fact, we believe it is possible to extend
the analysis even when Q and W use different features of dimensions d and k, respectively; as long
as k � d and the matrix in Eq.(3) has full row-rank9 (i.e., overdetermined), similar guarantees for
LSTDQ should still hold, though we are not aware of an explicit documentation of this fact. In
contrast, our setup is more challenging as we are in the regime of k < d, and the constraints in Eq.(3)
is underdetermined, nullifying the guarantees of LSTDQ. In such cases, the use of regularization is
important for guaranteeing function estimation, as also shown in our experiments.

D.2 Experimental Setup
Feature Design In total, the tabular environment has 400 state-action values, and we design � to
aggregate states that correspond to unique entries (within 3 decimal places) of q⇡. In Figure 1, e� is
composed of the set of features given by

{(I � � eP⇡)�1(⌫ � q⇡)/dD, (I � � eP⇡)�1(⌫ � q⇡)}⌫2V .

The first of these two entries is the closed-form solution of w⇤
f given in Lemma 3, and satisfies the

realizability requirements of all methods; the second is included for optimization stability.

In Figure 2, we use a model with constant value equal to the average value of q⇡ on the support of p,
i.e. q = 1/|SA|

P
s,a q

⇡(s, a) · {p>0}. To maintain realizability when the model is included in the
regularization function, e� is composed of the set
n
(I � � eP⇡)�1(⌫ � q⇡), (I � � eP⇡)�1(⌫ � q⇡ � I(eq > 0)), (I � � eP⇡)�1(⌫ � I(eq > 0))

o

⌫2V

9In the finite-sample regime, one needs to lower-bound the smallest singular value of such matrices instead
of imposing full-rankness [PKBK22].
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The reason why this preserves realizability is as follows. When ⌫ is the regularization distribution,
and the input model is eq = (mq

⇡ + (1 �m)q) � (p > 0)) for some constant q, the closed-form
solution w

⇤
f can be expanded as

w
⇤
f = (I � � eP⇡)�1(⌫ � (q⇡ � eq))

= (I � � eP⇡)�1(⌫ � q⇡)�m · (I � � eP⇡)�1(⌫ � (p > 0) � q⇡)
� (1�m)q · (I � � eP⇡)�1(⌫ � (p > 0)),

which implies w⇤
f can be expressed as a linear combination of the three previously defined features.

Solver We solve the linear system using CVXPY with optimizer SCS [DB16; AVDB18].

Environment The Gridwalk is a 10x10 environment with 4 actions corresponding to cardinal
directions. The objective is to reach the goal state (lower right corner). In each state, the agent
receives a reward inversely proportional to its distance from a goal state. Each trajectory terminates
after 100 steps. The initial states are randomly distributed over the upper half of the grid.

The target policy is defined to be a deterministic optimal policy that always moves towards the goal
by first going right, and then down. To create a strong shift, the behavioral policy is designed to
largely explore only the bottom left portion of the grid, providing poor coverage over the target policy
and starting states. Specifically, letting the following probabilities refer to distributions over actions
[RIGHT, DOWN, LEFT, UP], the target policy ⇡ has distribution [1, 0, 0, 0] over actions until it hits
the right wall, then [0, 1, 0, 0]. The behavior policy takes [0.1, 0.4, 0.5, 0] until it hits the right wall,
then takes [0, 0.5, 0.5, 0].

E Approximation and Optimization Error
The main results of this paper (Theorems 2, 6) utilize assumptions on realizability (Assumption 2, 5),
as well as (implicit) assumptions of perfect optimization. In this section, we analyze how approxima-
tion errors, i.e. when the saddle point solution is not contained in Q⇥W , and optimization errors
affect our error bounds. Due to the similarity in proofs between value function and weight learning,
we provide them only for value function learning; analogous methods can be used to derive similar
results for weight learning.

E.1 Finite-sample Guarantees
First, we relax the realizability requirements of Assumption 2. Define the approximation errors:

✏approx,q = min
q2Q

max
w2W

|EdD [w(s, a)(T ⇡
q(s, a)� q(s, a))] + E⌫ [fs,a(q(s, a))� fs,a(q

⇡(s, a))]|

✏approx,w = min
w2W

max
q2Q

|EdD [(w(s, a)� w
⇤
f (s, a))(T ⇡

q(s, a)� q(s, a))]|

✏approx := ✏approx,q + ✏approx,w.

✏approx,q is composed of the worst-case weighted combination of Bellman errors of the best candidate
q 2 Q, as well as the difference between the regularization function at q and q

⇡ . The error ✏approx,w
measures the distance between the best candidate w 2 W and the saddle point solution w

⇤
f by

projecting the difference onto the worst-case Bellman error T ⇡
q � q.

Remark 6. To increase intuition of ✏approx,q, we can relax the difference in regularization terms
as E⌫ [fs,a(q(s, a)) � fs,a(q⇡(s, a))]  C

q
f 0 ||q⇡ � q||2,⌫ , which is also the norm upon which the bq

estimation guarantee is given (Theorem 2) . Reflecting the nature of the value function estimation
task, this states that, even if there is a candidate q 2 Q with low Bellman error (e.g. if data is sparse),
✏approx,q will still be large if q is far from q

⇡ on the desired distribution ⌫.

Next, we can also relax the (implicit) assumptions that we obtain the true optima of (5). Let
(bq, bw) be the approximate solutions of (5) found by the algorithm. As before, define bw(q) :=
argmaxw2W

bL(w, q) to be the true empirical maximizer for any q 2 Q. Note that since we
allow for optimization error, it is not necessarily the case that bq = argminq2Q

bLq
f (q, bw(q)) and
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bw = bw(bq) = argmaxw2W
bLq
f (bq, w). Correspondingly, define the following optimization errors:

✏opt,w � bLq
f (bq, bw(bq))� bL

q
f (bq, bw)

✏opt,q � bLq
f (bq, bw(bq))�min

q2Q
bLq
f (q, bw(q))

✏opt := ✏opt,q + ✏opt,w.

✏opt,w states that the estimate bw should not be too far from the best discriminator in W for bq, while
✏opt,q states that the estimate bq should not be too far from the minimax solution.

Using the above definitions, we provide the following generalization of Theorem 2, which accounts
for approximation and optimization errors.

Theorem 12. Under Assumptions 1 and 3, with probability at least 1� �,

||bq � q
⇡||2,⌫ 

r
4✏qstat + 2✏approx + 2✏opt

Mq
,

where ✏
q
stat is given in Theorem 2.

E.2 Proof of Theorem 12
The proof takes the same overall steps as the proof of Theorem 2 (Appendix B.1), but relies on
Lemma 13 to incorporate the approximation and optimization errors:

||bq � q
⇡||2,⌫ 

vuut2
⇣
L
q
f (bq, w⇤

f )� L
q
f (q

⇡, w⇤
f )
⌘

Mq


r

4✏qstat + 2✏approx,q + 2✏approx,w + 2✏opt,q + 2✏opt,w
Mq

. (Lemma 13)

Below, we state and prove the helper lemma, which bounds the difference between the Lagrangian
objective (4) at the saddle point (q⇡, w⇤

f ) and the point (bq, w⇤
f ):

Lemma 13. Under Assumptions 1 and 3, w.p. � 1� �,

L
q
f (bq, w

⇤
f )� L

q
f (q

⇡
, w

⇤
f )  2✏qstat + ✏approx,q + ✏approx,w + ✏opt,q + ✏opt,w.

Proof. With some abuse of notation (as eq, ew previously referred to models used with the regularizer),
for brevity in this section, let eq be the minimizer of ✏approx,q and ew be the minimizer of ✏approx,w.
That is,

eq = argmin
q2Q

max
w2W

|EdD [w(s, a)(T ⇡
q(s, a)� q(s, a))] + E⌫ [f(q(s, a))� f(q⇡(s, a))]|

ew = argmin
w2W

max
q2Q

|EdD [(w(s, a)� w
⇤
f (s, a))(T ⇡

q(s, a)� q(s, a))]|.

Decompose the error as follows:

L
q
f (q

⇡
, w

⇤
f )� L

q
f (bq, w

⇤
f ) = L

q
f (q

⇡
, w

⇤
f )� L

q
f (q

⇡
, bw(eq)) (1) � 0

+ L
q
f (q

⇡
, bw(eq))� L

q
f (eq, bw(eq)) (2) � �✏approx,q

+ L
q
f (eq, bw(eq))� bL

q
f (eq, bw(eq)) (3) � �✏stat

+ bLq
f (eq, bw(eq))� bL

q
f (bq, bw) (4) � �✏opt,q

+ bLq
f (bq, bw)� bL

q
f (bq, ew) (5) � �✏opt,w

+ bLq
f (bq, ew)� L

q
f (bq, ew) (6) � �✏stat

+ L
q
f (bq, ew)� L

q
f (bq, w

⇤
f ) (7) � �✏approx,w

First, (1) holds because (q⇡, w⇤
f ) is the saddle point solution of Lq

f over all q, w 2 R ⇥ R. The
statistical errors in (3) and (6) follow from Lemma 8.
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Next, we justify the optimization errors. For (4),
bLq
f (eq, bw(eq))� bL

q
f (bq, bw) � bLq

f (eq, bw(eq))� bL
q
f (bq, bw(bq)) � min

q2Q
bLq
f (q, bw(q))� bL

q
f (bq, bw(bq)) � �✏opt,q.

For (5),
bLq
f (bq, bw)� bL

q
f (bq, ew) � bLq

f (bq, bw)� max
w2W

bLq
f (bq, w) � �✏opt,w

Finally, we justify the approximation errors, starting with (2). Note that for any q, w 2 Q⇥W ,
|Lq

f (q
⇡
,w)� L

q
f (q, w)|

= |EdD [w(s, a)(T ⇡
q(s, a)� q(s, a)� T ⇡

q
⇡(s, a) + q

⇡(s, a))]

+ E⌫ [fs,a(q(s, a))� fs,a(q
⇡(s, a))]|

= |EdD [w(s, a)(T ⇡
q(s, a)� q(s, a))] + E⌫ [fs,a(q(s, a))� fs,a(q

⇡(s, a))]|
 max

w2W
|EdD [w(s, a)(T ⇡

q(s, a)� q(s, a))] + E⌫ [fs,a(q(s, a))� fs,a(q
⇡(s, a))]|.

Then since eq was chosen to minimize the above expression,
L
q
f (q

⇡
, bw(eq))� L

q
f (eq, bw(eq))

� �max
w2W

|EdD [w(s, a)(T ⇡eq(s, a)� eq(s, a))] + E⌫ [fs,a(eq(s, a))� fs,a(q
⇡(s, a))]|

= �min
q2Q

max
w2W

|EdD [w(s, a)(T ⇡
q(s, a)� q(s, a))] + E⌫ [fs,a(q(s, a))� fs,a(q

⇡(s, a))]|

= �✏approx,q.

Next we justify (8). For any w 2 W and q 2 Q,
|Lq

f (q, w)� L
q
f (q, w

⇤
f )| = |EdD [(w(s, a)� w

⇤
f (s, a))(T ⇡

q(s, a)� q(s, a))]|
 max

q2Q
|EdD [(w(s, a)� w

⇤
f (s, a))(T ⇡

q(s, a)� q(s, a))]|.

Then since ew was chosen to minimize the RHS of the above inequality,
L
q
f (bq, ew)� L

q
f (bq, w

⇤
f ) � �max

q2Q
|EdD [( ew(s, a)� w

⇤
f (s, a))(T ⇡

q(s, a)� q(s, a))]|

= � min
w2W

max
q2Q

|EdD [(w(s, a)� w
⇤
f (s, a))(T ⇡

q(s, a)� q(s, a))]|

= �✏approx,w.

Combining these inequalities gives the lemma statement.

F Off-Policy Return Estimation
Section 4 demonstrates how q-value estimates bq can be obtained, and Section 5 demonstrates how
weight estimates bw can be obtained. The estimates bq and/or bw can additionally be used for downstream
off-policy evaluation (OPE) of the policy’s value J(⇡), which can be equivalently defined in the
following three ways:
J(⇡) = (1� �)Es0⇠µ0 [q

⇡(s0,⇡)] (“value function-based")
J(⇡) = E(s,a)⇠dD,r⇠R(·|s,a)[w

⇡(s, a) · r] (“weight-based")
J(⇡) = (1� �)Es0⇠µ0 [q

⇡(s0,⇡)] (“doubly robust")
+ E(s,a)⇠dD,r⇠R(·|s,a),s0⇠P (·|s,a)[w

⇡(s, a)(r + q
⇡(s0,⇡)� q

⇡(s, a))]

With finite samples and estimates bq and bw approximating q
⇡ and w

⇡ , respectively, their corresponding
off-policy estimators are:

bJq(⇡) = (1� �)
1

n0

n0X

i=1

bq(s0,i,⇡)

bJw(⇡) =
1

n

nX

i=1

bw(si, ai)ri

bJdr(⇡) = (1� �)
1

n0

n0X

j=1

bq(s0,j ,⇡) +
1

n

nX

i=1

bw(si, ai) (ri + bq(s0i,⇡)� bq(si, ai))

21



While the OPE estimator bJdr(⇡) utilizes both the weights and value functions, bJw(⇡) and bJq(⇡)
utilize only one or the other. As a result, when bq and bw are estimated as in Sections 4 and 5,
respectively, bJw(⇡) and bJq(⇡) both inherit their O(n�1/4) sample complexities:

Corollary 14. Suppose Assumptions 1, 2, and 3 hold, and let

bq = argminq2Q maxw2W bLq
f (q, w). Then with probability � 1� 2�,

| bJq(⇡)� J(⇡)|  ✏
q
eval +

q
Cµ⇡

0 /⌫
· ✏qest,

where ✏
q
eval = (1� �)Cq

Q

q
2 log 2|Q|

� /n0, Cµ⇡
0 /⌫

= ||µ⇡
0/⌫||1, and ✏

q
stat is as in Theorem 2.

Corollary 15. Suppose Assumption 4, 5, and 6 hold, and let

bw = argminw2W maxq2Q bLw
f (q, w). Then with probability � 1� 2�,

| bJw(⇡)� J(⇡)|  ✏
w
eval +

q
CdD/⌘ · ✏west,

where ✏
w
eval = C

w
W

q
2 log 2|W|

�
n , CdD/⌘ = kdD

/⌘k1, and ✏
w
est is as in Theorem 6.

However, when bq and bw are used together in the doubly robust estimator bJdr, their estimation error
becomes multiplicative, and bJdr(⇡) can achieve the O(n� 1

2 ) fast rate of convergence. In Theorem 16
below, we present two versions this guarantee. The first requires no additional assumptions beyond
d
D

> 0, which we already make (see footnote 5), but involves the largest singular value of I � �P
⇡ ,

which may be difficult to characterize. The second utilizes an additional assumption, and replaces the
singular value with an occupancy ratio, stated below. The assumption requires that all next states s0
are also present as states s in transitions of dD (a condition which may reasonably hold in practice),
and is also made by [UIJKSX21].

Assumption 7 (Next State Coverage). Let dD(s) =
P

a d
D(s, a) be the marginal distribution of

states s in d
D, and d

D
s0 (s) :=

P
s0,a0 P (s|s0, a0)dD(s0, a0) be the marginal distribution of next states

s
0. Suppose

Cs0/s := ||dDs0 (·)/dD(·)||1 < 1

Theorem 16. Suppose Assumption 1, 2, 3, 4, 5, and 6 hold. Let bw and bq be estimated from:

bq = argmin
q2Q

max
w2W

bLq
f (q, w)

bw = argmin
w2W

max
q2Q

bLw
f (q, w).

Then with probability � 1� 3�,

| bJdr(⇡)� J(⇡)|  ✏
dr
eval + �max(I � �P

⇡) ·
q
CdD/⌘CdD/⌫ · ✏west · ✏

q
est,

If Assumption 7 additionally holds, with probability � 1� 3�,

| bJdr(⇡)� J(⇡)|  ✏
dr
eval +

⇣
1 + �

q
Cs0/sC⇡/⇡D

⌘
·
q
CdD/⌘CdD/⌫ · ✏west · ✏qest,

where ✏
dr
eval = (1� �)Cq

Q

q
2 log 2|Q|

� /n0 + C
w
W(1 + (1 + �)Cq

Q)
q

2 log 2|W||Q|
� /n, �max denotes the

largest singular value, and ✏
q
est and ✏

w
est are as in Theorems 2 and 6.

As the evaluation error ✏dreval in Theorem 16 is O(n�1/2), the sample complexity of doubly robust
estimation is rate-limited by ✏

w
est · ✏

q
est, the product of weight and value function estimation errors. If

both functions can be estimated at an O(n�1/4) rate, as is true of our method, then bJdr(⇡) attains
the overall O(n�1/2) fast rate. Finally, while Theorem 16 assumes for simplicity that the same Q,W
classes are used in both of its optimization problems, it can easily be extended to the case where
different pairs of function classes are used as long as the required assumptions hold.
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Remark 7 (Comparison to Related Work). [YNDLS20] conduct experiments comparing off-policy
evaluation using bJq(⇡), bJw(⇡), bJdr(⇡), and generally observe that bJdr(⇡) has higher variance and
worse performance than either bJq(⇡) or bJw(⇡). Though at first glance this may appear to contradict
Theorem 16, that is actually not the case; in fact, our theoretical analysis provides insight into why
[YNDLS20] may observe such a phenomenon. In contrast to Theorem 16, when using bJdr(⇡)
[YNDLS20] utilize saddle point predictions (bq, bw) from either only value function learning or
only weight learning, e.g. (bq, bw) = argminq2Q argmaxw2W

bLq
f (q, w) that approximates (q⇡, w⇤

f ).
Continuing with this example (and the same applies to weight learning), it is clear from our analysis
that bw estimated in such a manner may not approximate w

⇡ at all, leading to increased estimation
error of bJdr(⇡) over bJq(⇡). First, the closed-form solution we have derived for w⇤

f in (Lemma 3)
shows that w⇤

f may have a significantly different magnitude from w
⇡ . Second, even if ⌫ and f were

chosen such that w⇤
f ⇡ w

⇡, as per the reasons stated in Section 4.1, we are not even guaranteed to
output bw close to w

⇤
f since L

q
f is not regularized in w. In order to obtain the estimation benefits

of doubly robust estimation, our analysis shows that bq and bw should be separately estimated from
their respective optimization problems, then combined in bJdr(⇡). This is in accordance with similar
results from [KU20] and [UIJKSX21].

F.1 Proof of Corollary 14

Let eJ(⇡) = (1� �)Eµ0 [bq(s,⇡)]. We decompose the error as

| bJ(⇡)� J(⇡)|  | bJ(⇡)� eJ(⇡)|+ | eJ(⇡)� J(⇡)|

First we bound | bJ(⇡)� eJ(⇡)|. Using Hoeffding’s with union bound, for all q 2 Q, w.p. � 1� �,

�����
1

n0

nX

i=1

q(s0,i,⇡)� Eµ0 [q(s,⇡)]

�����  (1� �)Cq
Q

s
2 log 2|Q|

�

n0
:= ✏

q
eval,

which implies | bJ(⇡) � eJ(⇡)|  ✏
q
eval. For the second term, let Cµ⇡

0 /⌫
= ||µ⇡

0/⌫||1. Then w.p.
� 1� �

| eJ(⇡)� J(⇡)| = (1� �)|hµ⇡
0 , bq � q

⇡i|
 (1� �)||bq � q

⇡||1,µ⇡
0

 (1� �)||bq � q
⇡||2,µ⇡

0

= (1� �)
q
Cµ⇡

0 /⌫
||bq � q

⇡||2,⌫

 (1� �)
q
Cµ⇡

0 /⌫
✏
q
est

using Theorem 2 in the last line.

F.2 Proof of Corollary 15

Let eJ(⇡) = EdD [ bw(s, a)r(s, a)]. We decompose the error as

| bJw(⇡)� J(⇡)|  | bJw(⇡)� eJ(⇡)|+ | eJ(⇡)� J(⇡)|

For the first term, using Hoeffding’s with union bound, w.p. � 1� �, for all w 2 W ,

�����
1

n

nX

i=1

w(si, ai)ri � EdD [w(s, a)r(s, a)]

�����  C
w
W

s
2 log 2|W|

�

n
:= ✏

w
eval
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which implies | bJ(⇡)� eJ(⇡)|  ✏
w
eval. For the second term,

| bJ(⇡)� J(⇡)| = |h bw · dD, ri � hw⇡ · dD, ri|
 ||dD · ( bw � w

⇡)||1||r||1
 ||dD · ( bw � w

⇡)||1 = || bw � w
⇡||dD,1

 || bw � w
⇡||dD,2


q
CdD/⌘|| bw � w

⇡||2,⌘


q
CdD/⌘✏

w
est

w.p. � 1� �, using Theorem 6 in the last line. Taking a union bound over both terms gives the stated
result.

F.3 Proof of Theorem 16
Let eJ(⇡) = (1� �)Eµ⇡

0
[bq(s, a)] + EdD [ bw(s, a)(r + bq(s0,⇡)� bq(s, a))]. Again we decompose the

error as:

| bJdr(⇡)� J(⇡)|  | bJdr(⇡)� eJ(⇡)|+ | eJ(⇡)� J(⇡)|.

For the first term, since E[ bJdr(⇡)] = eJ(⇡), w.p. � 1� � we have that 8 q, w 2 Q⇥W ,

| bJdr(⇡)� eJ(⇡)|  (1� �)Cq
Q

s
2 log 2|Q|

�

n0
+ C

w
W(1 + (1 + �)Cq

Q)

s
2 log 2|W||Q|

�

n
:= ✏

dr
eval

For the second term,

| eJ(⇡)� J(⇡)| = |(1� �)hbq, µ⇡
0 i+ h bw · dD, r + �P

⇡bq � bqi � (1� �)hq⇡, µ⇡
0 i|

= |(1� �)hbq, µ⇡
0 i+ h bw · dD, r + �P

⇡bq � bqi � (1� �)hq⇡, µ⇡
0 i � h bw · dD, r + �P

⇡
q
⇡ � q

⇡i|
= |hbq � q

⇡
, (1� �)µ⇡

0 + (�P⇡,> � I)(dD · bw)i|

=
���
D
bq � q

⇡
, (I � �P

⇡,>)(dD · w⇡ � d
D · bw)

E���

 ||(I � �P
⇡)(bq � q

⇡)||2,dD || bw � w
⇡||2,dD

where the last equality is due to the fact that (1��)µ⇡
0 = (I��P

⇡)(dD ·w⇡), and the final inequality
is from Cauchy-Schwarz. We can automatically bound the || bw � w

⇡||2,dD term using Theorem 6,
and it remains to bound ||(I � �P

⇡)(bq � q
⇡)||2,dD . We will consider two cases, first when d

D
> 0

thus Diag(dD) is invertible, and second, when Assumption 7 is satisfied.

In the first case, let D = Diag(dD), which by assumption is invertible. Then

||(I � �P
⇡)(bq � q

⇡)||22,dD = (bq � q
⇡)>(I � �P

⇡)>D(I � �P
⇡)(bq � q

⇡)

= ||D1/2(I � �P
⇡)(bq � q

⇡)||22
= ||D1/2(I � �P

⇡)D�1/2
D

1/2(bq � q
⇡)||22

 ||D1/2(bq � q
⇡)||22||D1/2(I � �P

⇡)D�1/2||22
= ||bq � q

⇡||2dD,2||I � �P
⇡||22

in the last line using the fact that the eigenvalues of a matrix A and L
�1

AL are the same for any
invertible matrix L. Thus, denoting the largest singular value of a matrix by �max,

| eJ(⇡)� J(⇡)|  �max (I � �P
⇡) || bw � w

⇡||2,dD ||bq � q
⇡||2,dD

Using Theorem 6 and Theorem 2 in the last line to control the errors of bw and bq in the last line,
followed by a union bound over the three inequalities, gives the result.
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For the second case, we can directly apply Lemma 17:

| eJ(⇡)� J(⇡)|  ||(I � �P
⇡)(bq � q

⇡)||2,dD || bw � w
⇡||2,dD


�
||bq � q

⇡||2,dD + �||P⇡(bq � q
⇡)||2,dD

�
|| bw � w

⇡||2,dD


⇣
1 + �

q
Cs0/sC⇡/⇡D

⌘
||bq � q

⇡||2,dD || bw � w
⇡||2,dD ,

and again applying Theorem 6 and Theorem 2 gives the result.

Lemma 17 uses Assumption 7 to bound the distance in value functions under the transition operator,
and is stated and proved below.

Lemma 17. Under Assumption 7,

||P⇡(bq � q
⇡)||2,dD 

q
Cs0/sC⇡/⇡D ||bq � q

⇡||2,dD .

Proof. Define ||P⇡||2,dD := supx 6=0 ||P⇡
x||2,dD/||x||2,dD . Then

||P⇡(bq � q
⇡)||2,dD  ||P⇡||2,dD ||bq � q

⇡||2,dD .

It remains to bound ||P⇡||2,dD . For any x,

||P⇡
x||22,dD = E(s,a)⇠dD

h�
E(s0,a0)⇠P⇡(·|s,a)[x(s

0
, a

0)]
�2i

 E(s,a,s0,a0)⇠dD⇥P⇡ [x(s0, a0)2]

 max
s,a

����
d
D
s0 (s)⇡(a|s)

dD(s)⇡D(a|s)

����E(s,a)⇠dD [x(s, a)2]

= Cs0/sC⇡/⇡D ||x||22,dD

This implies that ||P⇡||2,dD 
p
Cs0/sC⇡/⇡D , which gives the stated result.

G Infinite Function Classes
Our results for finite function classes can be easily extended to infinite function classes using covering
numbers. We show that our method value function estimation under infinite function classes achieves
the same eO(n�1/4) rate as it does under finite function classes (Theorem 2). The same results also
apply to weight function learning using similar proof techniques.

G.1 Finite-sample Guarantees with Infinite Function Classes
First, we define the covering functions used in our results and analysis:

Definition 1 (Covering Number). For a function class F , the covering number N1(✏,F) is defined

to be the minimum cardinality of a set F ✓ F , such that for any f 2 F , there exists f 2 F with

kf � fk1  ✏.

Our guarantee for value function learning under infinite function classes is stated below, showing that
we achieve the same rate as we do with finite classes.

Theorem 18. Suppose Assumptions 1, 2, 3 hold. Then, with probability at least 1� �, for ✏ = B
2A

p
n

,

||bq � q
⇡||2,⌫  2

r
2B

Mq

 
2 log 2N1(✏,Q)N1(✏,W)

�

n

!�1/4

,

where N1(✏,Q) and N1(✏,W) are as per Definition 1, and A = 1 + (1 + �)Cq
Q + 2(1 + �)Cq

W
and B = C

q
W(1 + (1 + �)Cq

Q).

The proof is given below.
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G.2 Proof of Theorem 18
The statistical error of estimating bL(q, w) under infinite function classes is the main technical
detail of this proof. Given that, the stated bound on kbq � q

⇡k⌫ can be derived using the same
methods (leveraging strong convexity and Lemma 9) as were used in the proofs for value function
estimation under finite function classes, i.e. for Theorem 2 (in Appendix B.1) and for Theorem 12 (in
Appendix E.2).

The bound on this statistical error is stated then proved below:

Lemma 19 (Statistical Error under Infinite Function Classes). Suppose Assumption 3 holds. Then,

setting ✏ = B
2A

p
n

, for any (q, w) 2 Q⇥W with probability at least 1� �,

|L(q, w)� bL(q, w)|  2B

s
2 log 2N1(✏,Q)N1(✏,W)

�

n
,

where N1(✏,Q) and N1(✏,W) are as per Definition 1, and A = 1 + (1 + �)Cq
Q + 2(1 + �)Cq

W
and B = C

q
W(1 + (1 + �)Cq

Q).

Proof of Lemma 19. First, because the regularization term computes E⌫ [·] exactly (not from samples),
it has no effect on our bound. Formally, define the unregularized population Lagrangian to be

L0(q, w) = EdD [r(s, a) + �q(s0,⇡)� q(s, a)],

and its empirical version to be bL0(q, w). Then the LHS of Lemma 19 is equivalent to

|L(q, w)� bL(q, w)| = |L0(q, w) + E⌫ [fs,a(q(s, a))]� bL0(q, w)� E⌫ [fs,a(q(s, a))]|
= |L0(q, w)� bL0(q, w)|,

so it suffices to bound the statistical error of estimating the unregularized Lagrangian bL0.

For some (later to-be-specified) ✏ > 0, let Q be a minimal ✏-covering of Q in the infinity norm
as per Definition 1, that is, |Q| = N1(✏,Q). Let W be defined similarly for W . Then for any
(q, w) 2 Q⇥W , let (q, w) 2 Q⇥W be such that kq � qk1  ✏ and kw � wk1  ✏. By triangle
inequality,

|L0(q, w)� bL0(q, w)|  |L0(q, w)� bL0(q, w)� L(q, w)� bL(q, w)|+ |L(q, w)� bL(q, w)|
Next, define `sas0(q, w) := w(s, a)(r(s, a) + �q(s0,⇡) � q(s, a)) such that L0(q, w) =
EdD [`sas0(q, w)] and bL0(q, w) = 1

n

Pn
i=1 `siais0i

(q, w). Then we can further upper bound the
above as:

|L0(q, w)� bL0(q, w)|  2 max
s,a,s0

|`sas0(q, w)� `sas0(q, w)|| {z }
(T1)

++ |L(q, w)� bL(q, w)|| {z }
(T2)

.

Term (T1) can be controlled using the ✏-covering definition, and (T2) can be controlled using
standard concentration methods. Their respective bounds are provided below, with proofs in the next
subsection:

Lemma 20 (Bound for T1). Let Q and W be ✏-coverings of Q and W , respectively, satisfying

Definition 1. Then for any (q, w) 2 Q⇥W , there exists (q, w) 2 Q⇥W such that kq � qk1  ✏

and kw � wk1  ✏, and if Assumption 3 holds,

max
sas0

|`sas0(q, w)� `sas0(q, w)|  A✏,

with A = 1 + (1 + �)Cq
Q + 2(1 + �)Cq

W .

Lemma 21 (Bound for T2). Let Q and W be minimal ✏-coverings of Q and W , respectively, as in

Definition 1, that is, |Q| = N1(✏,Q) and |W| = N1(✏,W). Then if Assumption 3 holds, for any

(q, w) 2 Q⇥W w.p. � 1� �,

|L0(q, w)� bL0(q, w)|  B

s
2 log N1(✏,Q)N1(✏,W)

�

n
,

where B = Cq
W(1 + (1 + �)Cq

Q).

26



Putting these two bounds together, letting A be as in Lemma 20 and B be as in Lemma 21, we have

|L0(q, w)� bL0(q, w)|  2A✏+B

s
log 2N1(✏,Q)N1(✏,W)

�

n
.

Choosing ✏ = B
2A

p
n

gives the final bound:

|L(q, w)� bL(q, w)| = |L0(q, w)� bL0(q, w)| 
Bp
n
+B

s
log 2N1(✏,Q)N1(✏,W)

�

n

 2B

s
log 2N1(✏,Q)N1(✏,W)

�

n
.

G.3 Proofs for Helper Lemmas
The proofs of Lemmas 20 and 21 are given below:

Proof of Lemma 20. For any s, a, s
0, (since this tuple is fixed, going forward, we drop the s, a, s

0

subscript from ` for brevity)

|`sas0(q, w)� `sas0(q, w)| = |`(q, w)� `(q, w) + `(q, w)� `(q, w)|
 |`(q, w)� `(q, w)|| {z }

T3

+ |`(q, w)� `(q, w)|| {z }
T4

(T3) expresses the error from the covering approximation for w, while (T4) expresses this for q. First,
to bound (T3),

|`(q, w)� `(q, w)| = |(w(s, a)� w(s, a))(r(s, a) + �q(s0,⇡)� q(s, a)|
 kw � wk1(krk1 + (1 + �)kqk1)

 ✏(1 + (1 + �)Cq
Q).

To bound (T4),

|`(q, w)� `(q, w)| = |w(s, a)(�q(s0,⇡)� q(s, a)� �q(s0,⇡) + q(s, a))|
 2(1 + �)kwk1kq � qk1
 2(1 + �)Cq

W✏.

Since these two inequalities hold for any sas
0, combining them directly gives lemma statement.

Proof of Lemma 21. This is a straightforward application of Hoeffding’s with union bound over
Q,W , akin to the proof of Lemma 8 (which is over Q,W).

27


	Introduction
	Related Works
	Preliminaries
	Value-function Estimation
	Estimator
	Finite-sample Guarantees
	On the Closed Form of wf* and the Data Coverage Assumptions

	Weight-function Estimation
	Experiments
	Discussion and Conclusion
	Further Discussions
	Proofs for Section 4
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Proposition 4

	Proofs for Section 5
	Proof of Lemma 5
	Proof of Theorem 6

	Additional Details of the Experiments
	Derivation
	Experimental Setup

	Approximation and Optimization Error
	Finite-sample Guarantees
	Proof of Theorem 12

	Off-Policy Return Estimation
	Proof of Corollary 14
	Proof of Corollary 15
	Proof of Theorem 16

	Infinite Function Classes
	Finite-sample Guarantees with Infinite Function Classes
	Proof of Theorem 18
	Proofs for Helper Lemmas


