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Abstract

Nonnegative (linear) least square problems are a fundamental class of problems
that is well-studied in statistical learning and for which solvers have been imple-
mented in many of the standard programming languages used within the machine
learning community. The existing off-the-shelf solvers view the non-negativity
constraint in these problems as an obstacle and, compared to unconstrained least
squares, perform additional effort to address it. However, in many of the typical
applications, the data itself is nonnegative as well, and we show that the nonneg-
ativity in this case makes the problem easier. In particular, while the worst-case
dimension-independent oracle complexity for unconstrained least squares problems
necessarily scales with one of the data matrix constants (typically the spectral norm)
and these problems are solved to additive error, we show that nonnegative least
squares problems with nonnegative data are solvable to multiplicative error and
with complexity independent of any matrix constants. The algorithm we introduce
is accelerated and based on a primal-dual perspective. We further show how to
provably obtain linear convergence using adaptive restart coupled with our method
and demonstrate its effectiveness on large-scale data via numerical experiments.

1 Introduction

Nonnegative least squares (NNLS) problems, defined by minx≥0
1
2∥Ax− b∥22, where A ∈ Rm×n

and b ∈ Rm, are fundamental problems and have been studied for decades in optimization and statis-
tical learning [26, 7, 23], with various off-the-shelf solvers available in standard packages of Python
(as optimize.nnls in the SciPy package), Julia (as nnls.jl), and MATLAB (as lsqnonneg).
Within machine learning, NNLS problems arise whenever having negative labels is not meaningful,
for example, when representing prices, age, pixel intensities, chemical concentrations, or frequency
counts. NNLS is also widely used as a subroutine in nonnegative matrix factorization [10, 18, 25] to
extract sparse features in applications like clustering, collaborative filtering, and community detection.

From a statistical perspective, NNLS problems can be shown to possess a regularization property
that enforces sparsity similar to LASSO [46], while being comparatively simpler, without the need to
tune a regularization parameter or perform cross-validation [44, 8, 17, 24, 49, 43].

From an algorithmic standpoint, the nonnegativity constraint in NNLS problems is typically viewed
as an obstacle: most NNLS algorithms perform additional work to handle it, and the problem is
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considered harder than unconstrained least squares. However, in many important applications of
NNLS, such as text mining [6], functional MRI [3, 20], EEG data analysis [33], pulse oximetry [22,
50], statistical procedures in observational astronomy [19], and those traditionally addressed using
nonnegative matrix factorization [10], the data is also nonnegative. We argue in this paper that
when the data for NNLS is nonnegative, it is in fact possible to obtain stronger guarantees than for
traditional least squares.

Our Contributions. We study NNLS problems with (element-wise) nonnegative data matrix A, to
which we refer as the NNLS+ problems, through the lens of the (equivalent) quadratic problems:

min
x≥0

{
f̄(x)

def
=

1

2
∥Ax∥22 − c⊤x

}
, (P)

where c = A⊤b may be assumed element-wise positive. This assumption is without loss of generality
since if cj < 0 for some j, then∇j f̄(x) ≥ 0, implying that the jth coordinate of the optimal solution
is zero2. Hence, we could fix xj = 0 and optimize over only the remaining coordinates.

We further assume that the matrix A is non-degenerate: none of its rows or columns has all elements
equal to zero. This assumption is without loss of generality because (1) if such a row exists, we
could remove it without affecting the objective, and (2) if the jth column had all elements equal to
zero, the optimal value of (P) would be −∞, obtained for x with xj →∞. Having established our
assumptions and setup, we now proceed to state our contributions, which are three-fold.

(1) A scale-invariant, ε-multiplicative algorithm. We design an algorithm based on coordinate
descent that, in total cost O(nnz(A)√

ε
), constructs an ε-multiplicative approximate solution to (P). Our

algorithm capitalizes on structural properties of (P) that arise as a result of the nonnegativity of A.

Theorem 1.1 (Informal; see Theorem 3.5). Given a matrix A ∈ Rm×n
+ and ε > 0, define f(x) =

1
2∥Ax∥22−c⊤x and x⋆ ∈ argminx≥0 f(x). Then, there exists an algorithm that inK = O(n log n+
n√
ε
) iterations and O

(
nnz(A)

(
log n + 1√

ε

))
arithmetic operations returns x̃K ∈ Rn

+ such that
E [⟨∇f(x̃K), x̃K − x⋆⟩] ≤ ε|f(x⋆)|.

The application of our structural observations on (P) to Theorem 4.6 of [13] enables the recovery
of our guarantee on the optimality gap; however, we provide a guarantee on the primal-dual gap,
and this is stronger than the one on the optimality gap stated in Theorem 1.1. What is significant
about Theorem 1.1 is the invariance of the computational complexity to the scale of A—it does not
depend on any matrix constants. This cost stands in stark contrast to that of traditional least squares,
where the dependence of (oracle) complexity on matrix constants (specifically, the spectral norm of
A in the Euclidean case) is unavoidable [35, 36], and multiplicative approximation is not possible
in general.3 In general, scale-invariance is a crucial feature in problems with data matrices, since a
dependence on the width implies that the algorithm is technically not polynomial-time. This feature
has, in fact, been an object of extensive study in the long line of works on packing and covering linear
programs [48, 1] and its variants such as a fair packing [14]. Conceptually, our algorithm is a new
acceleration technique inspired by VRPDA2 [45].

(2) Linear convergence with restart. By incorporating adaptive restart in (P), we improve the
guarantee of Theorem 1.1 to one with linear convergence (with log(1/ε) complexity). Thus, we
establish the first theoretical guarantee for NNLS+ that simultaneously satisfies the properties of
being scale-invariant, accelerated, and linearly-convergent.

Theorem 1.2 (Informal; see Theorem 4.1). Consider the setup of Theorem 1.1. Then, there is an
algorithm that in expected O(nnz(A)(log n+

√
n
µ ) log( 1ε )) arithmetic operations returns x̃K ∈ Rn

+

with f(x̃K)− f(x⋆) ≤ ε|f(x⋆)|, where µ is the constant in a local error bound for (P).

Proving this bound requires bounding the expected number of iterations between restarts in conjunc-
tion with careful technical work in identifying an appropriate local error bound for NNLS+.

2To see this, note that by first-order optimality condition ∇f̄(x⋆)⊤(x− x⋆) ≥ 0 for all x ≥ 0. Choosing x
with xi = x⋆

i for all i ̸= j and xj = 0 in the first-order optimality condition gives x⋆
j = 0.

3To see why, consider a case in which the optimal objective value equals zero. Then any problem with a
multiplicative guarantee of the form in Theorem 1.1 would necessarily return an optimal solution.
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(3) Numerical experiments. We consolidate our theoretical contributions with a demonstration of the
empirical advantage of our restarted method over state-of-the-art solvers via numerical experiments
on datasets from LibSVM with sizes up to 19996× 1355191. Figure 1 shows that, when combined
with the restart strategy, our algorithm significantly outperforms the compared algorithms.

Related work. NNLS has seen a large body of work on the empirical front. The first method
that was widely adopted in practice (including in the lsqnonneg implementation of MATLAB)
is due to the seminal work of [26] (originally published in 1974). This method, based on active
sets, solves NNLS via a sequence of (unconstrained) least squares problems and has been followed
up by [7, 47, 34, 11] with improved empirical performance. While these variants are generally
effective on small to mid-scale problem instances, they are not suitable for extreme-scale problems
ubiquitous in machine learning. For example, in the experiments reported in [34], Fast NNLS [7] took
6.63 days to solve a problem of size 45000× 45000, while the TNT-NN algorithm [34] took 2.45
hours. However, the latter requires computing the Cholesky decomposition of A⊤A at initialization,
which can be prohibitively expensive both in computation and in memory. Another prominent
work on the empirical front is that of [23], which performs projected gradient descent with modified
Barzilai-Borwein steps [4] and step sizes a carefully designed sequence of diminishing scalars.

Another, separate, line of work concerns optimization algorithms with multiplicative error guarantees.
Of interest to us are standard first-order algorithms that run in time that is near-linear in the input size
and are thus applicable to large-scale setting (for multiplicative-error algorithms applicable to broad
classes of problems but that run in time that is superlinear in the input size, see [41, Chapter 7]). Most
of the existing literature in this domain concerns positive (packing and covering) linear programs (e.g.,
[29, 51, 1, 30]). Results also exist for positive semidefinite programs [2], (nonlinear) fair packing and
covering problems [32, 14], and fair packing problems under Schatten norms for matrices [21]. With
the exception of [14] (discussed below), none of these results are directly applicable to (P).

To the best of our knowledge, theoretical guarantees explicitly for (P) have been scarce. For in-
stance, [23] mentioned in the preceding paragraph provides only asymptotic guarantees. Orthogonally,
the result on 1-fair covering by [14] solves the dual of NNLS+, which also gives a multiplicative
guarantee for NNLS+, but with overall complexity Õ(nnz(A)

ε ), where Õ(·) hides poly-log factors.

Since our algorithm is based on the coordinate descent algorithm, we highlight some results of
other coordinate descent algorithms when specialized to the closely related problem of uncon-
strained linear regression. The pioneering work of [37] proposed a coordinate descent method

called RCDM, which in our setting has an iteration cost O
(∑n

j=1 ∥A:j∥2
2∥x0−x⋆∥2

ε

)
, where ∥A:j∥2 is

the Euclidean norm of the jth column of A. This was improved by [27], in an algorithm termed
ACDM, by combining Nesterov’s estimation technique [39] and coordinate sampling, giving an it-

eration complexity of O
(√n

∑n
j=1 ∥A:j∥2

2∥x0−x⋆∥
√
ε

)
for solving (P). The latest results in this line of

work by [2, 42, 40] perform non-uniform sampling atop a framework of [37] and achieve iteration

complexity of O
(√∑n

j=1 ∥A:j∥2
2∥x0−x⋆∥

√
ε

)
, with [12] dropping the dependence on max1≤j≤n ∥A:j∥2.

Additionally, the work of [28] develops an accelerated randomized proximal coordinate gradient
(APCG) method to minimize composite convex functions.

As remarked earlier, [12], coupled with insights on NNLS+ problems provided in this work, can
recover our guarantee for the optimality gap from Theorem 3.5. However, our work is the first to bring
to the fore the properties of NNLS+ required to get such a guarantee, and our choice of primal-dual
perspective allows for a stronger guarantee in terms of an upper bound on the primal-dual gap.
Further, our algorithm is a novel type of acceleration, with our primal-dual perspective transparently
illustrating our use of the aforementioned properties. We believe that these technical contributions,
along with our techniques to obtain vastly improved theoretical guarantees with the restart strategy
applied to this problem, are valuable to the broader optimization and machine learning communities.

2 Notation and preliminaries

Throughout the paper, we use bold lowercase letters to denote vectors and bold uppercase letters
for matrices. For vectors and matrices, the operator ′ ≥′ is applied element-wise, and R+ is the
non-negative part of the real line. We use ⟨a,b⟩ to denote the inner product of vectors a and b and∇
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for gradient. Given a matrix A, we use A:j for its jth column vector, and for a vector x, xj denotes
its jth coordinate. We use nnz(A) for the number of non-zero entries of A. We use xk for the vector
in the kth iteration and, to disambiguate indexing, use [xk]j to mean the jth coordinate of xk. The
ith standard basis vector is denoted by ei. For an n-dimensional vector x and A ∈ Rm×n, we define
Λ = diag([∥A:1∥22, . . . , ∥A:n∥22]) and ∥x∥2Λ =

∑n
i=1 x

2
i ∥A:i∥22. Finally, [n] def

= {1, 2, . . . , n}.
A differentiable function f : Rn → R is convex if for any x, x̂ ∈ Rn, we have f(x̂) ≥ f(x) +
⟨∇f(x), x̂ − x⟩. A differentiable function f : Rn → R is said to be µ-strongly convex w.r.t. the
ℓ2-norm if for any x, x̂ ∈ Rn, we have that f(x̂) ≥ f(x) + ⟨∇f(x), x̂− x⟩+ µ

2 ∥x− x̂∥22. We have
analogous definitions for concave and strongly concave functions, which flip the inequalities noted.

Given a convex program minx∈X f(x), where f : Rn → R is differentiable and convex and X ⊆ Rn

closed and convex, the first-order optimality condition of a solution x⋆ ∈ argminx∈X f(x) is

(∀x ∈ X ) : ⟨∇f(x⋆),x− x⋆⟩ ≥ 0. (1)

Problem setup. As discussed in the introduction, our goal is to solve (P), with A ∈ Rm×n
+ . For

notational convenience, we work with the problem in the following scaled form:

min
x∈Rn

+

{
f(x)

def
=

1

2
∥Ax∥22 − 1⊤x

}
, (2)

This assumption is w.l.o.g. since any (P) can be brought to this form by a simple change of variable
x̂j = cjxj (see also e.g., [1, 14] for similar scaling ideas). The scaling need not be explicit in the
algorithm since the change of variable x̂j = cjxj is easily reversible.

Properties of the objective. To kick off our analysis, we highlight some properties inherent to the
objective defined in (2). These properies, which strongly need the non-negativity of A and x, are
central to obtain a scale-invariant algorithm for (P).
Proposition 2.1. Given f : Rn

+ → R as defined in (2) and x⋆ ∈ argminx∈Rn
+
f(x), the following

statements all hold.

a) ∇f(x⋆) ≥ 0.

b) f(x⋆) = − 1
2∥Ax⋆∥22 = − 1

21
⊤x⋆.

c) for all j ∈ [n], we have x⋆j ∈
[
0, 1

∥A:j∥2
2

]
.

d) − 1
2

∑
j∈[n]

1
∥A:j∥2

2
≤ f(x⋆) ≤ − 1

2minj∈[n] ∥A:j∥2
2
.

The validity of division by ∥A:j∥2 in the preceding proposition is by the non-degeneracy of A
discussed in the introduction. We prove this proposition in Section 6.1.

An important consequence of Proposition 2.1 (c) is that (P) can be restricted to the hyperrectangle
X = {x ∈ Rn : 0 ≤ xj ≤ 1

∥A:j∥2
2
} without affecting its optimal solution, but effectively reducing

the search space. Thus, going forward, we replace the constraint x ≥ 0 in (P) by x ∈ X .

Primal-dual gap perspective. As alluded earlier, our algorithm is analyzed through a primal-dual
perspective. For this reason, it is useful to consider the Lagrangian

L(x,y) = ⟨Ax,y⟩ − 1

2
∥y∥22 − 1⊤x (3)

from which we can derive our rescaled problem (2) as the primal problem minx∈X P(x), where

P(x) = max
y∈Rm

L(x,y) = −1⊤x+max
y≥0

[
− 1

2
∥y∥22 + ⟨Ax,y⟩

]
= −1⊤x+

1

2
∥Ax∥2.

Thus, the Lagrangian is constructed in a way that one can derive the primal problem from it while
also localizing the matrix in the bilinear term and ensuring coordinate-wise separability of the terms
involving either only the dual or only the primal variable since this greatly simplifies our analysis.
Similar to [45], we use Eq. (3) to define the following relaxation of the primal-dual gap, for arbitrary
but fixed u ∈ X , and v ∈ Rm:

Gap(u,v)
L (x,y)

def
= L(x,v)− L(u,y). (4)
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The significance of this relaxed gap function is that for a candidate solution x̃ and an arbitrary
ỹ ∈ Rm, a bound on Gap(u,v)

L (x̃, ỹ) translates to one on the primal error, as follows. First select
u = x⋆, v = Ax̃. Then, by observing that L(x̃,Ax̃) = f(x̃) and L(x⋆,Ax⋆) = f(x⋆), we have

f(x̃)− f(x⋆) = L(x̃,Ax̃)− L(x⋆,Ax⋆).

For a fixed x, L(x, ·) is 1-strongly concave and minimized at Ax. Thus, L(x⋆,Ax̃) ≤ L(x⋆,Ax⋆)−
1
2∥A(x̃− x⋆)∥2. Hence, we have the following primal bound:

f(x̃)− f(x⋆) +
1

2
∥A(x̃− x⋆)∥2 ≤ L(x̃,Ax̃)− L(x⋆, ỹ) = Gap(x

⋆,Ax̃)
L (x̃, ỹ). (5)

In light of this connection, our algorithm for bounding the primal error is one that generates iterates
that can be used to construct bounds on Gap(u,v)L (x̃, ỹ), as we detail next.

3 Our algorithm and convergence analysis

Our algorithm, Scale Invariant NNLS+ (SI-NNLS+), is an iterative algorithm using the estimate
sequences ϕk(x) and ψk(y) for k ≥ 1 (see Section 3.1) giving the primal and dual updates

xk = argmin
x∈X

ϕk(x) and yk = argmax
y∈Rm

ψk(y). (6)

We use our algorithm’s iterates from Eq. (6) to construct Gk, an upper estimate of Gap(u,v)
L (x̃k, ỹk),

where x̃k, ỹk are convex combinations of the iterates and u ∈ X ,v ∈ Rm
+ , where u is fixed and v is

arbitrary. Our motivation for constructing Gk(u,v) ≥ Gap(u,v)
L (x̃k, ỹk) is to obtain a bound on the

primal error, using Inequality (5). The main goal in the analysis is to show that Gk ≤ Q
Ak
, whereAk is

a sequence of positive numbers andQ is bounded. To obtain the claimed multiplicative approximation,
we use Inequality (5) and argue that for u = x⋆,v = Ax̃k, we have Q ≤ O

(
|f(x∗)|

)
.

Our algorithm may be interpreted as a variant of the VRPDA2 algorithm [45], with our analysis
inspired by the approximate duality gap technique [13]; however, unlike VRPDA2, which uses
estimate sequences, our analysis directly bounds the primal-dual gap. Another difference from
VRPDA2 is in our choice of primal regularizer (described shortly) and our lack of a dual regularizer.
A variant of SI-NNLS+ suitable for analysis is shown in Algorithm 1, with proofs in Section 6.2 and
Section 6.3. We give an equivalent implementation version (“Lazy SI-NNLS+”, which updates as few
coordinates as is possible to improve cost per iteration) in Algorithm 2 and its analysis in Section 7.

Algorithm 1 Scale Invariant Non-negative Least Squares with Non-negative Data (SI-NNLS+)

1: Input: Matrix A ∈ Rm×n
+ with n ≥ 4, accuracy ε, initial point x0

2: Initialize: x̃0 = x0, y0 = y0 = Ax0, K = 5
2n log n + 6n√

ε
, a1 = 1√

2n1.5
, a2 = a1

n−1 , A0 = 0,
A1 = a1, ϕ0(x) = 1

2∥x− x0∥2Λ.
3: for k = 1, 2, . . . ,K do
4: Sample jk uniformly at random from {1, 2, . . . , n}
5: xk ← argminx∈X ϕk(x), for ϕk(x) defined by Eq. (12) and Eq. (15)
6: yk ← argmaxy∈Rm ψk(y), for ψk(y) defined by Eq. (9)
7: x̃k = 1

Ak

[
Ak−1x̃k−1 + ak

(
nxk − (n− 1)xk−1

)]
.

8: yk ← yk + ak

ak+1
(yk − yk−1)

9: Ak+1 ← Ak + ak+1, ak+2 = min{nak+1

n−1 ,

√
Ak+1

2n }
10: end for
11: Return x̃K

3.1 Gap estimate construction

The gap estimate Gk is constructed as the difference Gk(u,v) = Uk(v)− Lk(u),where Uk(v) ≥
L(x̃k,v) and Lk(u) ≤ L(u, ỹk) are, respectively, upper and lower bounds we construct on the
Lagrangian. It then follows by Eq. (4) that Gk(u,v) is a valid upper estimate of Gap(u,v)L (x̃k, ỹk).
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We first introduce a technical component our constructions Lk and Uk crucially hinge on: we define
two positive sequences of numbers {ai}i≥1 and {aki }1≤i≤k, with one of their properties being that
both sum up to Ak > 0 for k ≥ 1. Specifically, we define A0 = 0 and {ai}i≥1 as ai = Ai −Ai−1.
The sequence {aki } changes with k and for k = 1 is defined by a11 = a1, while for k ≥ 2 :

aki =


a1 − (n− 1)a2, if i = 1,
nai − (n− 1)ai+1, if 2 ≤ i ≤ k − 1,
nak, if i = k.

(7)

Summing over i ∈ [k] verifies that Ak =
∑k

i=1 a
k
i . For the sequence {aki }1≤i≤k to be non-negative,

we further require that a1 − (n− 1)a2 ≥ 0 and ∀i ≥ 2, nai − (n− 1)ai+1 ≥ 0.

The significance of these two sequences lies in defining the algorithm’s primal-dual output pair by

x̃k =
1

Ak

∑
i∈[k]

aki xi and ỹk =
1

Ak

∑
i∈[k]

aiyi. (8)

The intricate interdependence of {ai} and {aki } enables expressing x̃k in terms of only {ai}. This
expression further simplifies to a cheaper recursive one, which is used in Algorithm 1.

With the sequences {ai}i≥1 and {aki }1≤i≤k in tow, we are now ready to show the construction of an
upper bound Uk(v) on L(x̃k,v) and a lower bound Lk(u) on L(u, ỹk).

Upper bound. To construct an upper bound, first observe that by Eq. (3) and Eq. (8),

L(x̃k,v) = ⟨Ax̃k,v⟩ −
1

2
∥v∥22 − 1⊤x̃k =

1

Ak

∑
i∈[k]

aki

[
⟨Axi,v⟩ −

1

2
∥v∥22 − 1⊤xi

]
.

Consider the primal estimate sequence defined for k = 0 as ψ0 = 0 and for k ≥ 1 by

ψk(v)
def
=
∑
i∈[k]

aki

[
⟨Axi,v⟩ −

1

2
∥v∥22 − 1⊤xi

]
, (9)

which ensures that L(x̃k,v) =
1
Ak
ψk(v). A key upshot of constructing ψk(v) as in Eq. (9) is that

the quadratic term implies Ak-strong concavity of ψk for k ≥ 1, which in turn ensures that the
vector yk = argmaxy∈Rm ψk(y) from Eq. (6) is unique. This property, coupled with the first-order
optimality condition in Inequality (1), gives that for any y ∈ Rm, ψk(y) ≤ ψk(yk)− Ak

2 ∥y−yk∥22.
We are now ready to define the following upper bound by:

Uk(v)
def
=

1

Ak
ψk(yk)−

1

2
∥v − yk∥22. (10)

The preceding discussion immediately implies that Uk is a valid upper bound for the Lagrangian.

Lemma 3.1. For Uk as defined in Eq. (10), Lagrangian defined in Eq. (3) and x̃k ∈ Rn
+ in Eq. (8),

we have, for all y ∈ Rm, the upper bound Uk(y) ≥ L(x̃k,y).

Lower bound. Analogous to the preceding section, we now obtain a lower bound on the Lagrangian,
completing the bound on the gap estimate. However, the construction becomes more technical. We
start with the same approach as for the upper bound. Since L(u, ỹk) is concave in ỹk, by Jensen’s
inequality: L(u, ỹk) ≥ 1

Ak

∑
i∈[k] ai

(
⟨Au,yi⟩ − 1⊤u − 1

2∥yi∥22
)
.Were we to define the dual

estimate sequence ϕk in the same way as we did for the primal estimate sequence ψk, we would now
simply define it as Ak times the right-hand side in the last inequality. However, doing so would make
ϕk depend on yk, which is updated after xk, which in Eq. (6) is defined as the minimizer of the ϕk.

To avoid such a circular dependency, we add and subtract a linear term
∑

i∈[k]⟨A⊤yi−1,u⟩, where
yi−1, defined later, are extrapolation points that depend only on y1, . . .yi−1. We thus have

L(u, ỹk) ≥
1

Ak

∑
i∈[k]

ai

[
⟨Au,yi−1⟩ − 1⊤u− 1

2
∥yi∥22

]
+

1

Ak

∑
i∈[k]

ai⟨Au,yi − yi−1⟩.
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If we now defined ϕk based on the first term in the above inequality, we run into another obstacle:
the linearity of the resulting estimate sequence is insufficient for cancelling all the error terms in
the analysis. Hence, as is common, we introduce strong convexity by adding and subtracting an
appropriate strongly convex function. Our chosen strongly convex function is motivated by the
box-constrained property of the optimum from Proposition 2.1 (c) and crucial in bounding the initial
gap estimate. It coincides with ϕ0: for any x ∈ Rn

+, define the function

ϕ0(x) =
1

2
∥x− x0∥2Λ. (11)

This function is 1-strongly convex with respect to ∥ · ∥Λ and used in defining ϕ1 as:

ϕ1(u) = a1⟨A⊤ȳ0 − 1,u⟩+ ϕ0(u). (12)

The definition of ϕ1 is driven by the purpose of cancelling initial error terms. Next, we choose ϕk so
that for any fixed u ∈ X , we have

E[ϕk(u)] = E
[ ∑
i∈[k]

ai⟨A⊤yi−1 − 1,u⟩+ ϕ0(u)
]
, (13)

where the expectation is with respect to all the randomness in the algorithm. This construction is
used to reduce the per-iteration complexity, for which we employ a randomized coordinate update on
xk for k ≥ 2. To support such updates, we relax the lower bound to hold only in expectation.

Concretely, let ji be the coordinate sampled uniformly at random from [n] in the ith iteration of
SI-NNLS+, independent of history. Fix yi for i = 1, . . . , k − 1 and for k ≥ 2 and x ∈ X , define

ϕk(x) = ϕ1(x) +

k∑
i=2

nai⟨A⊤yi−1 − 1, xjieji⟩. (14)

For k ≥ 2, ϕk(u) can also be defined recursively via

ϕk(x) = ϕk−1(x) + nak⟨A⊤yk−1 − 1, xjkejk⟩. (15)

The function ϕk inherits the strong convexity of ϕ0. This property, together with Eq. (6) and first-order
optimality from Inequality (1), give

ϕk(x) ≥ ϕk(xk) +
1

2
∥x− xk∥2Λ. (16)

Along with strong convexity, our choice of ϕk in Eq. (15) leads to the following properties essential
to our analysis: (1) ϕk is separable in its coordinates; (2) the primal variable xk is updated only at its
jthk coordinate; (3) Eq. (13) is true. These are formally stated in Proposition 6.2.

With the dual estimate sequence ϕk defined in Eq. (15), we now define the sequence Lk by

Lk(x)
def
=
ϕk(xk) +

1
2∥x− xk∥2Λ − ϕ0(x) +

∑
i∈[k] ai(⟨Ax,yi − yi−1⟩ − 1

2∥yi∥22)
Ak

. (17)

We conclude this section by justifying our choice of Lk as a valid expected lower bound on EL(x, ỹk).
Lemma 3.2. For Lk defined in Eq. (17), for the Lagrangian in Eq. (3) and ỹk in Eq. (8), we have,
for a fixed u ∈ X , the lower bound EL(u, ỹk) ≥ ELk(u), where the expectation is with respect to
all the random choices of coordinates in Algorithm 1.

3.2 Bounding the gap estimate

With the gap estimate Gk constructed as in the preceding section and combining Eq. (10) and Eq. (17),
we now achieve our goal of bounding AkGk (to obtain a convergence rate of the order 1/Ak) by
bounding the change in AkGk and the initial scaled gap A1G1.
Lemma 3.3. Consider the iterates {xk} and {yk} evolving according to Algorithm 1. Let n ≥ 2
and assume that a1 = 1√

2n1.5
and a1 ≥ (n− 1)a2, while for k ≥ 3,

ak ≤ min
(nak−1

n− 1
,

√
Ak−1

2n

)
. (18)
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Then, for fixed u ∈ X , any v ∈ Rm, and all k ≥ 2, the gap estimate Gk = Uk − Lk satisfies

E(AkGk(x,y)−Ak−1Gk−1(x,y))

≤ −E
(
Ak

2
∥y − yk∥22 −

Ak−1

2
∥y − yk−1∥22

)
− 1

2
E∥x− xk∥2Λ +

1

2
E∥x− xk−1∥2Λ

− akE⟨A(x− xk),yk − yk−1⟩+ ak−1E⟨A(x− xk−1),yk−1 − yk−2⟩

− 1

4
Ak−1E∥yk − yk−1∥22 +

1

4
Ak−2E∥yk−1 − yk−2∥22.

Lemma 3.4. Given a fixed u ∈ X , any v ∈ Rm, ȳ0 = y0, and x1 and y1 from Algorithm 1, we have

A1G1(u,v) = a1⟨A⊤(y1 − y0),x1 − u⟩+ ϕ0(u)− ϕ0(x1)−
1

2
∥u− x1∥2Λ −

A1

2
∥v − y1∥22.

Combining the two lemmas, we now bound GK and deduce our final result on the primal error.
Theorem 3.5. [Main Result] Assume that n ≥ 4. Given a matrix A ∈ Rm×n

+ , ε > 0, an arbitrary
x0 ∈ X and ȳ0 = y0 = Ax0, let xk and Ak evolve according to SI-NNLS+ (Algorithm 1) for k ≥ 1.
For f defined in (2), define x⋆ ∈ argminx≥0 f(x). Then, for all K ≥ 2, we have

E
[
⟨∇f(x̃K), x̃K − x⋆⟩+ 1

2
∥A(x̃K − x⋆)∥2

]
≤ 2ϕ0(x

⋆)

AK
=
∥x0 − x⋆∥2Λ

AK
.

When K ≥ 5
2n log n, we have AK ≥

(K− 5
2n logn)2

36n2 . If ϕ0(x⋆) ≤ |f(x⋆)|, then for K ≥ 5
2n log n+

6n√
ε
, we have E[f(x̃K)− f(x⋆)] ≤ ε|f(x⋆)|. The total cost is O

(
nnz(A)

(
log n+ 1√

ε

))
.

The assumption ϕ0(x⋆) ≤ |f(x⋆)| above is satisfied by x0 = 0 (c.f. Proposition 2.1 and Eq. (11)).
We reiterate that the reason ∥A∥ does not show up in the final bounds (thereby rendering our algorithm
“scale-invariant”) is because Proposition 2.1 allows bounding ∥x0 − x⋆∥2Λ by |f(x⋆)|, where we
crucially used the non-negativity of A and x; this does not seem possible for general A.
Remark 3.6. SI-NNLS+ (Algorithm 1) and Theorem 3.5 also generalize to a mini-batch version.
Increasing the batch size grows our bounds and number of data passes by a factor of at most square-
root of the batch size s, by relating the spectral norm of the s columns of A corresponding to a batch
to the Euclidean norms of individual columns of A from the same batch. However, due to efficient
available implementations of vector operations, mini-batch variants of our algorithm with small batch
sizes can have lower total runtimes on some datasets (see Section 5).

4 Adaptive restart

We now describe how SI-NNLS+ can be combined with adaptive restart to obtain linear convergence
rate. To apply the restart strategy, we need suitable upper and lower bounds on the measure of
convergence rate. Our measure of optimality is the natural residual r(x) = ∥R(x)∥Λ [31] for

R(x) = x−ΠRn
+
(x−Λ−1∇f(x)) = x− (x−Λ−1∇f(x))+, (19)

where ΠRn
+

is the projection operator onto Rn
+ and Λ is as defined in Section 2. For Λ = I, R(x) is

the natural map as defined in, e.g., [15]. Due to space constraints, we only state the main result of
this section in the following theorem, while full technical details are deferred to Section 6.4.
Theorem 4.1. Given an error parameter ε > 0 and x0 = 0, consider the following algorithm A :

A : SI-NNLS+ with Restarts
Initialize: k = 1.
Initialize Lazy SI-NNLS+ at xk−1.
Run Lazy SI-NNLS+ until the output x̃k

K satisfies r(x̃k
K) ≤ 1

2r(xk−1).
Restart Lazy SI-NNLS+ initializing at xk = x̃k

K .
Increment k.
Repeat until r(x̃k

K) ≤ ε.
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(a) real-sim (b) real-sim (c) real-sim (d) real-sim

(e) news20 (f) news20 (g) news20 (h) news20

(i) E2006train (j) E2006train (k) E2006train (l) E2006train

Figure 1: NNLS+ algorithms with restart on real-sim, news20 and E2006train with spectral
norm 3 · 10−3, 10−3, 5 · 10−6 and condition number 6 · 1018, 5 · 1010, 6 · 105, respectively.

Then, the expected number of arithmetic operations of A is O
(
nnz(A)

(
log n+

√
n
µ

)
log
( r(x0)

ε

))
.

As a consequence, given ε̄ > 0, the total expected number of arithmetic operations until a point with
f(x)− f(x⋆) ≤ ε̄|f(x⋆)| can be constructed by A is O

(
nnz(A)

(
log n+

√
n
µ

)
log
(

n
µε̄

))
.

5 Numerical experiments and discussion

We conclude our paper by presenting the numerical performance of SI-NNLS+ and its restart versions
(see the efficient implementation version in Algorithm 2) against FISTA with restart [5, 38], a general-
purpose large-scale optimization algorithm, OA+DS with restart designed by [23] specifically for
large-scale NNLS problems, and lazy implemented APCG [16] with restart. We use the same restart
strategy for all the algorithms, proposed in Section 4. As an accelerated algorithm, FISTA has the
optimal 1/k2 convergence rate; OA+DS, while often efficient in practice, has only an asymptotic
convergence guarantee. For FISTA, we compute the tightest Lipschitz constant (i.e., the spectral
norm ∥A∥); for OA+DS, we follow the best practices laid out by [23]. For our SI-NNLS+ algorithm
and its restart version with batch size bs = 1, we follow Algorithm 2 and the restart strategy in
Section 4.4 For the restart version with batch size larger than 1, we choose the best batch size in
{10, 50, 300, 500} and compute the block coordinate Lipschitz constants as the spectral norms of the
corresponding block matrices. All algorithms were implemented in Julia and run on a server with 32
Intel(R) Xeon(R) Silver 4110 32-Core Processors.

We evaluated the performance of the algorithms on the large-scale sparse datasets real-sim, news20,
and E2006train from the LibSVM library [9]. Both real-sim and news20 datasets have non-
negative data matrices, but the labels may be negative. When there exist negative labels, it is possible
for the elements of A⊤b to be negative. In such cases, per the discussion from the introduction, we
can simply remove the corresponding columns of A and solve an equivalent problem with smaller
dimension. On the other hand, the data matrix in E2006train dataset is not non-negative, which
means that this dataset does not satisfy the assumption required for the analysis of Algorithm 1.

4The algorithm is implemented for the non-scaled version of the problem, (P); see Section 2. An implemen-
tation is in https://github.com/arcturus611/nnlr-2021.
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(a) real-sim (b) real-sim (c) real-sim (d) real-sim

(e) news20 (f) news20 (g) news20 (h) news20

(i) E2006train (j) E2006train (k) E2006train (l) E2006train

Figure 2: NNLS+ algorithms without restart on real-sim, news20 and E2006train with spectral
norm 3 · 10−3, 10−3, 5 · 10−6 and condition number 6 · 1018, 5 · 1010, 6 · 105, respectively.

However, Algorithm 1 can still be run by keeping only the non-negativity constraints for primal
updates. This example is provided solely for illustration of empirical performance.

Results. To compare all implemented algorithms, we plot the natural residual/objective value gap
versus number of data passes/time in Figure 1 for all algorithms implemented with restart and in
Figure 2 for all algorithms implemented without restart. As can be observed from the two figures,
our proposed restart speeds up all the algorithms. Figure 1(a)-(d) shows that SI-NNLS+ is better
than FISTA and OA+DS in terms of number of data passes on the real-sim dataset and better
than APCG in terms of time. While the proposed restart strategy speeds up all the algorithms to
linear convergence, variants of SI-NNLS+ remain competitive in all the settings. In terms of the
performance of different variants of SI-NNLS+, with bs = 1, we have a much better coordinate
Lipschitz constant than for bs = 10 and thus the case of bs = 1 dominates bs = 10 in terms of
data passes. As FISTA and OA+DS take less time accessing the full dataset once, they have lower
runtimes than SI-NNLS+ but are beaten by SI-NNLS+ with restart and bs = 1. In Figure 1(e)-(h), on
the news20 dataset, in terms of number of data passes, restarted APCG and SI-NNLS+ with bs = 1
are dominant. However, as news20 is a very sparse dataset, letting bs = 1 significantly increases the
total time to access the full data once due to the overhead per iteration. As a result, single-coordinate
methods have the worst runtimes, while restarted OA+DS is the fastest but SI-NNLS+ with bs = 10
remains competitive. Figure 1(i)-(l) shows the performance comparison on the E2006train dataset.
On this dataset, both restarted FISTA and restarted OA+DS ran for 4 hours without visibly reducing
the function value. SI-NNLS+ outperforms FISTA and OA+DS in both number of data passes and
time, and outperforms APCG in terms of time. Further experiments are left for future work.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We summarized the contributions and reviewed
related work in Introduction. Section 3 and 6 contain the full technical details for
our theoretical results. Section 5 provides full details for numerical experiments,
while Section 7 provides full technical details for the implementation version of our
algorithm, including the associated discussion about maintaining the claimed theoretical
guarantees.

(b) Did you describe the limitations of your work? [Yes] The main examples are: (i) that
similar to ours (although weaker) results can be obtained with existing accelerated
coordinate descent algorithms once the structural properties we prove are taken into
account, in Introduction (Section 1); (ii) the discrepancy between the theoretical and
empirical guarantee depending on the batch size as a consequence of modern processor
architecture, in Remark 3.6 and Section 5; and (iii) that further experiments are left for
future work, in Section 5.
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a theoretical optimization paper for generic non-negative least squares problems, and
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of GPUs, internal cluster, or cloud provider)? [Yes] We included this information in
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