
A Model architectures

A.1 Face experiments

For the encoder, we use a resnet-50 backbone followed by projection heads that output pointwise,
lower and upper quantile predictions. Each projection head consists of a convolution layer followed
by a Leaky-Relu activation and a global average pooling layer. The input to each projection head is
the output of the backbone network – a feature map of size 512× 4× 4 and the output dimension
is the number of style dimensions – in the case of the pretrained FFHQ styleGAN2 used in our
experiments, this value is 9088.

For the generator, we use a FFHQ pretrained styleGAN2 trained to output faces of resolution
1024× 1024 obtained from the official implementation. No discriminator is used during training.

A.2 CLEVR experiments

For the encoder, we use a resnet-18 backbone followed by projection heads that output pointwise,
lower and upper quantile predictions. Each projection head consists of a convolution layer followed
by a Leaky-Relu activation and a global average pooling layer. The input to each projection head
is the output of the backbone network – a feature vector of size 512 and the output dimension is
the number of style dimensions – in the case of the pretrained CLEVR styleGAN2 used in our
experiments, this value is 204.

For the generator, we use a modified version of styleGAN2 that is trained to output images of
resolution 128 × 128. In order to have a controlled latent space, we reduce the size of the style
vectors from 512 in the original model to 12. This was done to reduce the size of the resulting style
dimension from 9088 to 204. Since the model was trained on the CLEVR dataset which has less
variability compared to other datasets such as FFHQ, the model was able to converge successfully
even at this reduced capacity.

B Training details

B.1 Input preprocessing

For the face experiments, the inputs to the encoder are resized to 256×256 and are rescaled to [−1, 1]
range. For the super-resolution experiment, the original input is first downsampled as required (i.e.
8x/16x etc) and is resized back to the input resolution 256×256. For the image inpainting experiment,
the corruption mask is generated using the procedure outlined in Section B.2. The image input is then
masked to only expose the unmasked parts – hence the corruption; the mask is concatenated along
with the image as an additional input. Example of a masked image is shown the main manuscript in
Figure 4.

The procedure described above is repeated for the CLEVR epxeriments with the exception that the
input size is 128× 128.

B.2 Mask generation procedure for image inpainting

For generating a corruption model for image completion, we generate a binary mask in a controlled
manner. For each input image of size H × W × C, we start by generating a random mask of
size H ×W where each pixel value in contained in the interval [0, 1]. For each difficulty level as
mentioned in the manuscript (easy, medium, hard), we activate only those pixels in the mask whose
values lie less than a corresponding threshold. For eg: for the easy level, we mask the pixels whose
values are less than 0.3. By changing this threshold, we can vary the difficulty level of the masked
input. We use the following thresholds: {easy : 0.3,medium : 0.6, hard : 0.9}. These thresholds
were obtained by visual inspection. Intuitively, the threshold can be interpreted as the fraction of
pixels that are masked at a given difficulty level – 30% being the easier case and 90% being the harder
case.

15



Figure 7: Inpainting masks: Masked inputs at different difficulty levels.

B.3 Masking irrelevant style dimensions

In StyleGAN models, the style space vector is very high dimensional. However, previous work on
style space analysis [39] has shown that only few of those dimensions are reliably disentangled. In
order to better focus the encoder’s capacity only on the disentangled dimensions, we mask out the
irrelevant dimensions ensuring that the quantile loss is only applied to the disentangled dimensions.

For instance, for a FFHQ pretrained model trained to produce an output of size 1024× 1024 has a
style space dimension of 9088. In order to better focus the encoder’s capacity only on the disentangled
dimensions, we mask out the irrelevant dimensions. More concretely, we apply the loss function
described in (9) to the masked latent, Lqβ (m⊙ x,m⊙ z), with m being the mask that contains ‘1’
for the disentangled dimensions and ‘0’ otherwise and ⊙ indicating element-wise product. Note that
the masking is applied only to the quantile loss and not the pointwise loss in (6). This ensures that
the pointwise prediction is able to match the true latents accurately, while the quantile heads focus on
learning variablity only in the disentangled dimensions.

C Quantitative analysis of interval variability

In this experiment, we set out to measure the variability of the predicted quantile intervals as a
function of problem difficulty. For this analysis, we use 500 images at each difficulty level sampled
from the FFHQ-trained pretrained GAN as inputs to our encoder.

For each input, we compute the calibrated uncertainty interval using our approach and compute the
identity loss specified in Equation 7, and perceptual loss between the upper and lower edges. We
repeat the procedure for each image by varying the input difficulty, similar to the previous Appendix.
It can be observed from Table 1 that both perceptual and ID losses increase with increasing perceived
input difficulty. This substantiates our claim that the calibrated quantiles display more variability as
we increase the difficulty of the task. Note that most of the style dimensions only affect attributes like
hair color/glasses/facial hair that do not necessarily change the identity of the individual. Given this
observation, the change in ID loss is very much indicative of the variability of the quantile predictions.

Table 1: Measuring variability over quantiles: Perceptual loss (L-PIPS) and ID Loss between the
upper and lower calibrated quantiles.

METRIC EASY MEDIUM HARD
ID LOSS 0.03 0.06 0.08
PERCEPTUAL LOSS 0.17 0.21 0.24

D Effect of calibration on coverage

The guarantee in Definition 2.1 tells us that the risk will always be controlled, but it does not tell us
that our control will be tight. This experiment tells us how conservative our procedure is, i.e., how
closely we match our desired risk and error levels.

Since we work in realm of generated data for model training and calibration, we have access to the
true latents Zd which ensures a precise measurement of the average risk. We do a random 50-50 split

16



Risk
0.05 0.10 0.200.15 0.25

FFHQ Super-resolution

H
is

to
gr

am
 d

en
si

ty

Risk
0.0 0.05 0.150.10 0.20

FFHQ Image inpainting

H
is

to
gr

am
 d

en
si

ty

0.05 0.10 0.20 0.25

Before

After

CLEVR Super-resolution

H
is

to
gr

am
 D

en
si

ty

Risk
0.15

Figure 8: Calibration: Comparison of distribution of empirical risk for 100 calibration runs before
and after performing the RCPS calibration procedure. We show results on FFHQ and CLEVR for the
Image super-resolution and inpainting corruption models, calibrating for risk level α = 0.1.

on the calibration set, where we calibrate on one split and evaluate on the other. To validate the power
of the procedure, we repeat this process 100 times. For each run, we report the average risk incurred
by our model over the evaluation split.

Figure 8 compares the average risk of the quantile encoders across different corruption models
and datasets, before and after calibration. The performance of the uncalibrated quantile encoder
is problem / dataset dependent, i.e., the base model has lower risk in the FFHQ super-resolution
problem compared to the inpainting problem or the CLEVR super resolution problem . However,
for all settings, the calibration procedure results in lower risk that satisfies the guarantee specified in
Definition 2.1.

E Quantifying coverage and adaptivity in real data

In Table 2, we quantify the effect of coverage and adaptivity on real data in comparison with generated
data. The average set size shows that our intervals adapt to problem difficulty successfully for both
real and generated data. However the value is higher in case of real data, which is expected since
our encoder was not trained for quantile regression on real data. Regarding coverage metrics, we
compute the average risk separtely for real and generated data, with and without calibration. While
the calibration procedure does not make a significant change in the generated data, since the base
encoder is has pretty good coverage to begin with, it makes a significant different in the case of real
data.

Table 2: Adaptivity and Coverage: We measure adaptivity by computing the average set size across
problem difficulty. Note that the average set size increases with problem difficulty illustrating the
adaptivity of the predicted quantile intervals. For quantifying coverage, we measure the average risk
before and after calibration. Note that, the risk before calibration on real data is much higher before
calibration. This points to the importance of our calibration procedure especially in the presence of
real data, which the encoder model was not trained on.

Generated data Real data

Average set size Easy 2.5 3.1
Hard 4.7 5.3

Average risk w/o calib 0.114 0.267
w/ calib 0.085 0.096

F Ablation of feature loss weights

We ablate the feature loss weights that are specified in Eq 8. For simplicity, we fix c1 = c2 = c.
Table 3 shows the predicted set sizes for different values of c. Higher values of c yield more visually
pleasing reconstructions during training while also providing slightly tighter quantile sets across

17



varying levels of corruption. Hence, we pick a value of c = 10.0 for our experiments. A larger
hyper-parameter sweep might yield better results.

Table 3: Ablation: Predicted set sizes for different values of the feature coefficient, c. We pick the
value c = 10 as it provides more visually pleasing reconstructions on real data.

Corruption level c = 0 c = 1.0 c = 10.0

Easy 2.56 2.4 2.5

Hard 5.23 5.1 4.7

18


