
A Appendix

A.1 Conjugate Derivations

Cross-Entropy Loss :

L(h, y) = −
c∑

i=1

yilog
exp(hi)∑c
j=1 exp(hj)

= −
c∑

i=1

yi ∗ hi + log
c∑

j=1

exp(hj)

= f(h)− y⊤h,

(14)

where f(h) is log
∑c

j=1 exp(hj) and the constraint that
∑c

i=1 yi = 1. Now, the conjugate f⋆(y) is
given by :

f⋆(y) = −min
h
{f(h)− yTh} = −min

h
{log

c∑
j=1

exp(hj)− yTh} (15)

with the constraint
∑c

i=1 yi = 1. At the optimality,

yi = (∇f(h))i =
exp(hi)∑
j exp(hj)

(16)

Then,

f⋆(y) = −log
c∑

j=1

exp(hj) +

c∑
i=1

hi
exp(hi)∑
j exp(hj)

=
∑
i

exp(hi)∑
j exp(hj)

log
exp(hi)∑
j exp(hj)

,

(17)

if the constraint
∑c

i=1 yi = 1 is satisfied, otherwise f⋆(y) =∞ by duality.

This in turn gives, the conjugate loss for cross-entropy (when the constraint is satisfied) :

Lconj(h) = −f⋆(y) = −f⋆(∇f(h)) = −
∑
i

exp(hi)∑
j exp(hj)

log
exp(hi)∑
j exp(hj)

(18)

Squared Loss :

L(h, y) = 1

2
||h− y||22

≈ 1

2
||h||22 − y⊤h [ignoring the constant term]

= f(h)− y⊤h,

(19)

Now, the conjugate f⋆(y) is given by:

f⋆(y) = −min
h
{f(h)− yTh} = −min

h
{1
2
||h||22 − yTh}

= −1

2
||h||22

(20)

A.2 Experiments on Binary Classification with Exponential Loss

Here we present the results on a binary classification task over a synthetic dataset of 100 dimensional
gaussian clusters.

16

Dataset Creation For the binary classification task, we create a synthetic dataset similar to
[23]. Specifically, let the data X ∼ N (µ,Σ) ∈ R100 and labels Y ∈ {−1,+1}. We sample
µ ∼ N (k, I100). For Σ, similar to [23], we sample a diagonal matrix D, where each entry is
sampled uniformly from a specified range, and a rotation matrix U from a HAAR distribution, giving
Σ = UDUT .
For the source data, we sample µ−1

s , µ+1
s ,Σ−1

s ,Σ+1
s as specified above with k = 0. Now to create a

distribution shifted data of various severity, we sample µ−1
t , µ+1

t ,Σ−1
t ,Σ+1

t as specified above with
k = 1, which are then used to sample the shifted data as follows :

µ1
λ = λµ1

t + (1− λ)µ1
s

µ−1
λ = λµ−1

t + (1− λ)µ−1
s

Σ1
λ = λΣ1

t + (1− λ)Σ1
s

Σ−1
λ = λΣ−1

t + (1− λ)Σ−1
s

Xλ ∼ N (µλ,Σλ)

In the following experiments, easy shift refers to λ = 0.6, moderate shift to λ = 0.65 and hard shift
to λ = 0.7.

Exponential Loss for Binary Classification Let z be the classification score hθ(x). For logistic
training loss, conjugate adaptation loss would default to entropy with sigmoid probability. Thus, here
we experiment with a different but also commonly used surrogate loss to 0/1 loss: exponential loss,
which is defined as:

Lexp(z, y) = exp(−yz) (21)

where y ∈ {−1,+1}. It can be rewritten in the expanded conjugate form of:

Lexp(z, y) =
1

2
·
(
ez + e−z

)
− 1

2
· y ·

(
ez − e−z

)
(22)

For exponential loss, the conjugate pseudo-label function and the conjugate pseudo-label loss are:

yCPL
exp (z) =

ez − e−z

ez + e−z
, LCPL

exp (z) =
2

ez + e−z
(23)

The model is adapted on shifted gaussian clusters and we compare the conjugate loss with two
baseline approaches: 1) Hard pseudo-labelling exp(−yhard pl · z); 2) Entropy applied to sigmoid
probability P (y = +1) = σ(z). The losses are compared on three degrees of shift (easy, moderate
and hard), which is controlled by the drifted distance of Gaussian clusters. The results are shown
in Figure 3, where we plot the accuracy curve with respect to adaptation iterations. With easy and
moderate shift, conjugate loss (green) generalizes faster to shifted test data; with hard shift, only
conjugate loss improves model accuracy on shifted test data while entropy (blue) deteriorates model
performance.

Figure 3: Test-time adaptation result on synthetic data with three shift levels ranging from easy,
moderate and hard (detailed in section A.2). The source model is a linear classifier trained with
exponential loss Lexp = e−yhθ(x). Adaptation with the conjugate loss generalizes better compared to
baseline losses.

17

A.3 Meta Learning Experiment Details

In section 3 we talked about learning the meta-loss function parameterized by a neural network
mϕ : R|Y| 7→ R, that takes in the model predictions/logits and outputs a loss value. Here we discuss
the architecture chosen and the implementation details. Further, in Appendix A.4 we empirically
show that the learnt meta-loss is not affected by the choice of task loss / surrogate loss used in meta
learning (L in Equation 1). Note that the task loss / surrogate loss function is used to update the
meta-loss mϕ during meta-learning. The surrogate loss is calculated on updated source model’s
predictions on labeled samples from test domain. The surrogate loss tries to update the meta-loss in
the outer loop such that when meta-loss is later used to update the source model in the inner loop, the
source model generalizes better to the test domain.

Architecture and Implementation Details Figure 4 gives an overall schema for meta-learning
the loss function and algorithm 2 gives the pseudo-code for meta-learning the loss function. Below
we describe this in further detail. We use a transformer (denoted by T) with a MLP (denoted by P)
over the output of transformer as the architecture for mϕ, i.e. mϕ(x) = P(T (x)). Specifically, for a
given source trained model hθ and input x ∼ Dtest :

1. Let hθ(x) ∈ R|Y| be the model predictions/logits, where |Y| denotes the number of classes.

2. Let hj
θ(x) ∈ R,∀j ∈ |Y| be the prediction corresponding to class j.

3. The input to transformer is then given by z ∈ R|Y|×(1+e), where zj ∈ R1+e,∀j ∈ |Y| is the
concatenation of hj

θ(x) and the learnable positional embedding pej ∈ Re.

4. The transformer output is given by w = T (z) ∈ Rd, where d denotes the feed-forward dimension
of the transformer.

5. The transformer output w is finally passed through a MLP to get the meta-loss value mϕ(hθ(x)) =
P(w) ∈ R

6. The source model is updated by optimizing over the meta-loss.

θt+1 ← θt − α
∂mϕt(hθt(x))

∂θt
(24)

7. The updated source model is then used to update the meta-loss by optimizing over some supervised
loss function Ltask.

ϕt+1 ← ϕt − β
∂Ltask(hθt+1(x′), y′)

∂ϕt
, where (x′, y′) ∼ Dtest (25)

Note that the last step assumes access to labels of test inputs. In this paper, we do not propose
meta-learning the TTA loss as an approach. Rather, we use meta-learning to explore what the “best”
TTA losses look like.

We select the trasformer input embedding dimension (1 + e) from {16, 32, 64} and transformer
feed-forward dimension d from {32, 64, 128}. The number of transformer layers and the hidden
layers in MLP are selected from {1, 2}. We use Adam optimizer with a learning rate of 1e−3 for
learning the meta-loss (i.e. the transformer + MLP). We train the meta-loss for 100 epochs with a
batch size of 200.

A.4 Effect of Task Loss in Meta Learning

In section 3, we show that the meta losses learned on different source classifiers differ substantially
if the source classifiers are trained using different source loss functions. Here we further empirically
verify that the learnt meta loss is not affected by the task loss used in meta learning (L in Equation 1).
Thus the learnt meta loss is determined by the source model.

In Figure 5, we show the meta loss learnt on a ResNet-26 trained with Cross Entropy loss for two
meta task losses: Cross Entropy Figure 5a and Squared Loss Figure 5b. We plot the meta loss as a
function over one of its input prediction scores, while keeping other fixed. We can see that the task
loss barely affects the learnt meta loss. Similar observations can be made for the classifier trained
with squared loss Figure 6.

18

Meta-Loss

Backpropogate

Figure 4: Meta-Loss learning procedure : The model predictions hθt(x) are passed through the
parameterized loss function mϕt , which outputs a loss value. We optimize ϕ such that when
optimizing the source model over the loss mϕt(hθt(x)), the updated θt+1 has a better performance
on the test domain. To do this, we take one gradient step over the meta-loss to get the update source
model parameters θt+1, and then update ϕ by evaluating θt+1 on the labeled validation data using
some task loss Ltask.

Algorithm 2 Learning the Meta-Loss
Input: Source trained classifier hθ0 . Randomly initialized meta-loss mϕ0 .

Task loss / Surrogate loss Ltask like cross-entropy or squared loss for meta learning
N batches of test data Dtest = [(x1, y1), . . . , (xN , yN)]

Hyperparams: learning rates α and β.
for epoch = 0, 1, 2, . . . do

for n = 0, 1, . . . N − 1 do

θt+1 ← θt − α
∂mϕt (hθt (xn))

∂θt

Sample (xr, yr) ∼ Dtest.

ϕt+1 ← ϕt − β
∂Ltask(hθt+1 (xr),yr)

∂ϕt

A.5 Test-Time Adaptation Detail

For completeness, we also give the test-time adaptation setup in Algorithm 3.

A.6 ImageNet results on each severity level

In continuation with results shown in Table 2 in Section 5.3, Table 4 shows the mean errors averaged
across the 15 corruption types for each of the severity level on ImageNet-C, for a source classifier
trained with PolyLoss (ϵ = 8).

A.7 Square Loss Trained Source Classifier

In Section 5.3, we briefly discussed that similar to the other source training losses like cross-entropy
and polyloss, our proposed conjugate loss outperforms the baselines when the source classifier is

19

(a) (b)
Figure 5: Visualizations of meta loss by varying one input dimension (prediction score). The source
model is a ResNet-26 trained with Cross Entropy. Here we show meta loss trained by two different
task losses: Cross Entropy Figure 5a and Squared Loss Figure 5b.

(a) (b)
Figure 6: Visualizations of meta loss by varying one input dimension (prediction score). The source
model is a ResNet-26 trained with Squared Loss. Here we show meta loss trained by two different
task losses: Cross Entropy Figure 6a and Squared Loss Figure 6b.

Algorithm 3 Test-Time Adaptation
Input: Source classifier θ0 trained using loss L(hθ(x), y), An unsupervised loss function for
test-time adaptation Ltta(x), N batches of test data Dtest = [x1, . . . , xN]
Hyperparams: learning rate η.
for n = 0, 1, . . . N − 1 do

θn+1 = θn − η∇Ltta(xn)

ŷn = hθn+1(xn) [Predictions for the nth batch]

20

Corrution
Severity

Temperature Robust PL Entropy MEMO Softmax PL Conjugate

1
✗ 34.27 33.17 34.39 32.49 32.26
✓ 34.27 32.84 34.39 32.70 32.26

2
✗ 41.25 39.04 40.38 37.78 37.40
✓ 41.25 38.50 40.38 37.75 37.40

3
✗ 47.37 44.04 45.67 42.30 41.72
✓ 47.37 43.33 45.67 42.14 41.72

4
✗ 56.63 51.88 54.49 49.61 48.84
✓ 56.63 51.03 54.49 49.39 48.84

5
✗ 67.11 62.53 66.13 60.94 59.90
✓ 67.11 61.80 66.13 60.30 59.90

Mean
✗ 49.32 46.13 48.21 44.62 44.02
✓ 49.32 45.50 48.21 44.45 44.02

Table 4: Mean Errors across the 15 noises for various severity level on the ImageNet-C dataset, with
source model trained using Poly-1 Loss. Note that Temperature scaling helped only in the case of
Entropy and Softmax PL.

trained using a squared loss. Table 5 shows a detailed comparison with the baselines. We note that
for the conjugate of squared loss, the temperature scaling can be wrapped into the learning rate as
shown in Section 4.2. Further, on the CIFAR-10-C dataset we observe temperature scaling doesn’t
help any of the other baselines too, hence we do not include the temperature row in CIFAR-10-C.

Dataset Temperature Hard PL Robust PL ENT MEMO Softmax PL Conjugate PL

CIFAR-10-C ✗ 13.71 (±0.07) 13.06 (±0.05) 13.24 (±0.02) 13.22 (±0.04) 14.85 (±0.08) 12.99 (±0.04)

CIFAR-100-C
✗ 50.82 (±0.31) 44.53 (±0.13) 43.55 (±0.12) 51.35 (±0.04) 51.99 (±0.03) 43.39 (±0.11)
✓ 50.82 (±0.31) 43.99 (±0.15) 43.21 (±0.08) 51.35 (±0.04) 51.99 (±0.03) 43.39 (±0.11)

Table 5: Mean Errors on the common corruptions datasets for source classifier trained using squared
loss. We note that temperature scaling didn’t help on the CIFAR-10-C dataset. Source Classifier
Errors without adaptation : CIFAR-10-C (28.34%), CIFAR-100-C (68.79%)

Dataset
Temperature

(T)
Hard PL Robust PL MEMO

Conjugate PL
(ENT)

CIFAR-10-C
✗ SGD,1e−3, 1 SGD,1e−3, 1 SGD,1e−3, 1 SGD, 1e−3, 1
✓ SGD,1e−3, 1 SGD,1e−2, 2 SGD,5e−3, 3 Adam,1e−3, 2

CIFAR-100-C
✗ SGD,1e−2, 1 SGD,1e−2, 1 SGD,5e−3, 1 SGD, 1e−2, 1
✓ SGD,1e−2, 1 SGD,1e−2, 2 SGD,1e−2, 2 SGD,1e−2, 2

ImageNet-C
✗ SGD,1e−2, 1 SGD,2.5e−3, 1 SGD,1e−3, 1 SGD,2.5e−3, 1
✓ SGD,1e−2, 1 SGD,2.5e−3, 1.5 SGD,1e−3, 1 SGD,2.5e−3, 1.5

Table 6: Hyper-parameters (Optimizer, Learning Rate, Temperature) for the results in Table 1,
where we showed the mean errors on the common corruptions dataset for a source classifier trained
using cross-entropy loss.

A.8 Hyper-Parameters

We share the exact hyper-parameters found using gridsearch over the 4 validation noises for the
common corruptions dataset.

21

Cross Entropy Classifier Experiments In Section 5.2, Table 1 shows the results when adapting a
cross entropy trained classifier on various common corruptions dataset. Table 6 gives the optimizer,
learning rate and optimal temperature for each of the baseline and our proposed conjugate loss.

PolyLoss Classifier Experiments In Section 5.3, Table 2 shows the results when adapting a
polyloss trained classifier on various common corruptions dataset. Table 7 gives the optimizer,
learning rate and optimal temperature for each of the baseline and our proposed conjugate loss.

Dataset T Hard PL Robust PL ENT MEMO Softmax PL
Conjugate PL

(Ours)

CIFAR-10-C
✗ SGD,1e−3, 1 SGD,1e−3, 1 SGD,1e−3, 1 SGD,5e−3, 1 SGD, 1e−3, 1 SGD, 1e−3, 1
✓ SGD,1e−3, 1 SGD,1e−2, 3 SGD,1e−2, 3 SGD,5e−3, 3 SGD, 1e−3, 2 SGD, 1e−3, 1.5

CIFAR-100-C
✗ SGD,1e−2, 1 SGD,1e−2, 1 SGD,1e−2, 1 SGD,1e−2, 1 SGD, 1e−2, 1 SGD, 1e−2, 1
✓ SGD,1e−2, 1 Adam,1e−3, 3 SGD,1e−2, 2 SGD,1e−2, 2 SGD, 1e−2, 2.5 SGD, 1e−2, 1.5

ImageNet-C
✗ SGD,1e−2, 1 SGD,2.5e−3, 1 SGD,2.5e−3, 1 SGD,5e−3, 1 SGD, 2.5e−3, 1 SGD, 2.5e−3, 1
✓ SGD,1e−2, 1 SGD,2.5e−3, 1 SGD,2.5e−3, 1.5 SGD,5e−3, 1 SGD, 2.5e−3, 2 SGD, 2.5e−3, 1

Table 7: Hyper-parameters (Optimizer, Learning Rate, Temperature) for the results in Table 2,
where we showed the mean errors on the common corruptions dataset for a source classifier trained
using poly-loss.

Squared Loss Classifier Experiments In Section 5.3, we briefly discussed the results when
adapting a squared loss trained classifier on various common corruptions dataset. Table 8 gives the
optimizer, learning rate and optimal temperature for each of the baseline and our proposed conjugate
loss for the results in Table 5.

Digit Adaptation Datasets For the experiments on digits adaptation tasks, we do not have any
validation set. Hence, we don’t use temperature scaling here (T = 1) and fix the optimizer and LR as
Adam and 1e−2 respectively for all the baselines.

A.9 Additional Experiments on Digit Adaptation Datasets

Similar to the setting of Table 1, we perform additional experiments on digit adaptation datasets when
the source classifier is trained using the cross-entropy loss. Note that when the source classifier is
trained using cross-entropy loss, the conjugate loss is equal to the softmax-entropy. In the absence of
validation dataset in digit adaptation benchmarks, we used a fixed learning rate of 0.01 for all the
baselines, optimizer as Adam and an informed temperature scaling guess of T=2.

Table 9 compares softmax-entropy minimization with various baselines. Here, again we observe that
on SVHN→MNIST benchmark, without temperature scaling, MEMO (10.67% error) outperforms
softmax-entropy (14.41% error). However, similar to the observations in Table 1, with temperature
scaling, softmax-entropy minimization (9.26% error) is able to match the performance of MEMO
(9.36% error). Further, on the SVHN→ USPS benchmark, softmax-entropy (conjugate) and MEMO
perform similar even without temperature scaling.

A.10 Additional Meta Learning the TTA Loss Experiments

In Section 3, we tried to learn a test-time adaptation (TTA) loss via meta-learning for adapting a
CIFAR10 trained ResNet26 to distribution shifts on CIFAR10 corruptions. Figure 1 showed that the
learnt meta-loss looks like a temperature scaled softmax-entropy.

In this section, we show the learnt meta loss across a range of settings as described below :

1. Digit Adaptation: Figure 7a and 7b show the learnt meta-loss when adapting a SVHN trained
ResNet26 to MNIST dataset and USPS dataset respectively. We observe that the learnt meta-loss
can be well approximated by a temperature scaled softmax-entropy.

2. Various Noise Types: In Figure 8, we show the learnt meta-loss when adapting a ResNet26
trained on CIFAR10 dataset using cross-entropy loss, to various noise types like speckle, gaussian,
saturate and spatter. The severity level is kept fixed at the maximum i.e. 5.

22

Dataset T Hard PL Robust PL ENT MEMO Softmax PL
Conjugate PL

(Ours)

CIFAR-10-C ✗ SGD,1e−2, 1 SGD,1e−2, 1 SGD,1e−2, 1 SGD,1e−2, 1 SGD,1e−4, 1 SGD,1e−2, 1

CIFAR-100-C
✗ Adam,1e−3, 1 Adam,1e−3, 1 Adam,1e−3, 1 Adam,1e−3, 1 Adam, 1e−4, 1 Adam, 1e−3, 1
✓ Adam,1e−3, 1 Adam,1e−3, 0.5 Adam,1e−3, 2 Adam,1e−3, 2 Adam, 1e−4, 2.5 Adam, 1e−3, 1

Table 8: Hyper-parameters (Optimizer, Learning Rate, Temperature) for the results in Table 5,
where we showed the mean errors on the common corruptions dataset for a source classifier trained
using squared loss.

Dataset
Temperature

(T)
Hard PL Robust PL MEMO

Conjugate PL
(ENT)

SVHN→MNIST
✗ 21.54 27.44 10.67 14.41
✓ 21.54 13.26 9.36 9.26

SVHN→ USPS
✗ 26.06 26.81 22.72 22.57
✓ 26.06 22.32 22.42 22.27

Table 9: Mean errors when adapting to digit adaptation benchmarks using a source classifier trained
via cross-entropy loss. Here, conjugate pseudo-labeling becomes softmax-entropy minimization.
Again we observe that with the right temperature scaling, softmax-entropy minimization matches
other approaches. For additional context, the source classifier errors without adaptation are: SVHN
→MNIST (34.17%), SVHN→ USPS (31.84%).

20 10 0 10 20
prediction score

5

0

5

10

lo
ss

 v
al

ue

meta loss (error 10.44%)
softmax entropy (error 14.41)
fitted entropy (error 9.26)

Meta Loss for SVHN -> MNIST

(a)

20 10 0 10 20
prediction score

6

4

2

0

2

4

6

8

lo
ss

 v
al

ue

meta loss (error 20.13%)
softmax entropy (error 22.57)
fitted entropy (error 22.22)

Meta Loss for SVHN -> USPS adpatation

(b)
Figure 7: Visualizations of the learnt meta-loss by varying one input dimension (prediction score).
The source model is a ResNet-26 trained with cross-entropy on the SVHN dataset. (a) The learnt
meta-loss when adapting to the MNIST test dataset. (b) The learnt meta-loss when adapting to the
USPS test dataset.

3. Various Severity Levels: In Figure 9, we vary the severity level of the noise, keeping the noise
type fixed.

4. Dataset and Architecture: In Figure 10, we compare the learnt meta-loss when adapting to speckle
noise, for different source classifier architectures (ResNet26 and ResNet50) and different source
training dataset (CIFAR10 and CIFAR100). In all the cases, we again observe that the learnt
meta-loss can be well approximated by a temperature scaled softmax-entropy.

5. Squared Loss : Finally, in Figure 11 we show the learnt meta-loss for classifiers trained with
squared loss function instead of cross-entropy. We observe that in this case, the learnt meta loss
mimics a quadratic function as expected from the conjugate formulation.

23

For each of the learnt meta losses, we also show the values (α, T,C) we use to fit the meta loss with
softmax entropy function: α · H(softmax(x/T))−C. Note that although the learnt meta-loss can be
approximated by the conjugate, the parameters α, T,C differ across the settings.

In the case of classifiers trained with squared loss, we fit the meta loss with a quadratic function∑K
i=1(A · x2

i + C), where K is the number of classes and x is the logit vector. Again, we also show
the fitted parameter value A,C. The meta loss follows the trend of a quadratic function. The fitted
quadratic function performs better or similar as the meta loss, while the parameters of the fitted
quadratic function remain different across the meta learning setup (base classifier architectures and
noise types).

(a) (b)

(c) (d)
Figure 8: Visualization of meta loss (blue) learnt from various noise types in CIFAR-10-C validation
set, where base classifiers are trained with cross-entropy loss. We show the error of meta loss, softmax
entropy and fitted entropy for test-time adaptation on the corresponding noise types. We also show
the parameters (α, T,C) in the fitted entropy.

24

(a) (b)

(c) (d)
Figure 9: Visualization of meta loss (blue) learnt on speckle noise with different severity level for
CIFAR-10-C, where base classifiers are trained with cross-entropy loss. We show the error of meta
loss, softmax entropy and fitted entropy for test-time adaptation on the corresponding noise types.
We also show the parameters (α, T,C) in the fitted entropy.

25

(a) (b)

(c) (d)

Figure 10: Visualization of meta loss (blue) learnt across datasets (CIFAR-10-C/CIFAR-100-C)
and base classifier architectures (ResNet-26/ResNet-50), where base classifiers are trained with
cross-entropy loss. We show the error of meta loss, softmax entropy and fitted entropy for test-time
adaptation on the corresponding noise types. We also show the parameters (α, T,C) in the fitted
entropy.

(a) (b)

Figure 11: Visualization of meta loss (blue), where base classifier is trained with quadratic loss. We
show the error of meta loss, softmax entropy and fitted quadratic function for test-time adaptation
on the corresponding noise types. We also show the parameters (A,B,C) in the fitted quadratic
function.

26

	Appendix
	Conjugate Derivations
	Experiments on Binary Classification with Exponential Loss
	Meta Learning Experiment Details
	Effect of Task Loss in Meta Learning
	Test-Time Adaptation Detail
	ImageNet results on each severity level
	Square Loss Trained Source Classifier
	Hyper-Parameters
	Additional Experiments on Digit Adaptation Datasets
	Additional Meta Learning the TTA Loss Experiments

