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Abstract

Randomized Controlled Trials (RCTs) represent a gold standard when developing
policy guidelines. However, RCTs are often narrow, and lack data on broader
populations of interest. Causal effects in these populations are often estimated
using observational datasets, which may suffer from unobserved confounding and
selection bias. Given a set of observational estimates (e.g. from multiple studies),
we propose a meta-algorithm that attempts to reject observational estimates that
are biased. We do so using validation effects, causal effects that can be inferred
from both RCT and observational data. After rejecting estimators that do not
pass this test, we generate conservative confidence intervals on the extrapolated
causal effects for subgroups not observed in the RCT. Under the assumption that
at least one observational estimator is asymptotically normal and consistent for
both the validation and extrapolated effects, we provide guarantees on the coverage
probability of the intervals output by our algorithm. To facilitate hypothesis testing
in settings where causal effect transportation across datasets is necessary, we give
conditions under which a doubly-robust estimator of group average treatment
effects is asymptotically normal, even when flexible machine learning methods
are used for estimation of nuisance parameters. We illustrate the properties of our
approach on semi-synthetic and real world datasets, and show that it compares
favorably to standard meta-analysis techniques.

1 Introduction

Policy guidelines often rely on conclusions from Randomized Controlled Trials (RCTs), whether
considering treatment decisions in healthcare, classroom interventions in education, or social pro-
grams in economics [31, 13, 43]. In healthcare, when a target population has reasonable overlap with
the inclusion criteria of RCTs, current clinical treatment guidelines rely primarily on RCTs [23, 22].
For target populations not well-represented in RCTs, observational studies are often used to infer
treatment effects. However, different observational estimates can give conflicting conclusions. We
give an example of this tension when looking at a new chemotherapy for multiple myeloma.
Example 1.1 (Carfilzomib-based Combination Therapy for Newly Diagnosed Multiple Myeloma
(NDMM)). Until 2020, the effect of Carfilzomib-based combination therapy in the NDMM subpopu-
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lation had not been studied via an RCT. However, a trial (ASPIRE) in 2015 measured the effect of
Carfilzomib-based therapy on survival in Relapsed & Refractory Multiple Myeloma (RRMM) patients
[58]. The CoMMpass trial, an observational dataset, was also available in which the Carfilzomib
regimen was given to both NDMM and RRMM patients [36]. Several analyses on the CoMMpass
dataset to estimate the effect of Carfilzomib-based therapy on NDMM patients led to different,
sometimes opposing, conclusions on the benefit of the therapy in this subpopulation [33, 32].

A traditional meta-analysis approach would combine observational estimates under the assumption
that differences arise only due to random variation, and not e.g., differences in confounding bias
[24, Section 10.10.4.1]. This is unlikely to be true in practice. For instance, in Example 1.1, the two
studies in question made different choices in e.g., how to adjust for confounders. In this paper, we
relax the assumption that all observational estimates are valid. Instead, we assume that at least one
observational estimate is valid across all subpopulations. In the context of Example 1.1, we might
assume that at least one of the candidate observational studies yields consistent and asymptotically
normal estimates of the effects in both the NDMM and RRMM populations. While we cannot verify
that any given estimator is valid for all subpopulations, we can falsify this claim of validity if an
estimator is inconsistent for the causal effects identified by the RCT (e.g., RRMM). Hence, we
use the term validation effects to refer to causal effects in subpopulations that overlap between the
observational and randomized datasets (e.g., RRMM), and use the term extrapolated effects to refer
to those only covered by observational datasets (e.g., NDMM).

We propose a meta-algorithm that combines two key ideas: falsification of estimators, and pessimistic
combination of confidence intervals. We first aim to falsify candidate estimators using hypothesis
testing, rejecting those that fail to replicate the RCT estimates of validation effects. In Section 2.2,
we motivate this approach with examples of observational estimates based on different causal
assumptions, showing that hypothesis tests based on asymptotic normality can be applied even when
causal assumptions fail to hold. Then, we combine accepted estimators to get confidence intervals on
the extrapolated effects. Since failure to reject does not imply validity,2 we return an interval that
contains every confidence interval of the accepted estimators. We demonstrate theoretically that if at
least one candidate estimator is consistent for both the validation and extrapolated effects, then the
intervals returned by our algorithm provide valid asymptotic coverage of the true effects.

In scenarios where the covariate distribution differs across datasets, estimators that “transport” the
causal effect should be used [42, 14, 15]. Furthermore, in the case of high-dimensional covariates,
flexible machine learning methods are required to estimate nuisance functions, which can affect the
hypothesis tests due to their slower convergence rates. In light of this, we adapt estimators of the
average treatment effect in this setting to provide estimates of group-wise treatment effects, and
show (via the framework of double machine learning [12, 55]) that this estimator enjoys asymptotic
normality under mild conditions on convergence rates of the nuisance function estimators. Our
conclusions are supported by semi-synthetic experiments, based on the IHDP dataset, as well as
real-world experiments, based on clinical trial and observational data from the Women’s Health
Initiative (WHI), that demonstrate various characteristics of our meta-algorithm.

2 Setup and Motivating Examples

2.1 Notation and Assumptions

Let Y 2 Y denote an outcome of interest, and A 2 {0, 1} denote a binary treatment. We use Ya to
denote the potential outcome of an individual under treatment A = a. We use X 2 X to denote
all other covariates. To distinguish between different sampling distributions (i.e., datasets), we use
the random variable D 2 {0, . . . J}, where J � 1 is the number of observational datasets, and
D = 0 is reserved for the sampling distribution of the randomized trial. We let P(Y1, Y0, Y, A,X,D)
denote the joint distribution over all variables, including unobserved potential outcomes. For instance,
P(Y1, Y0, X | D = 0) denotes the distribution of potential outcomes and covariates in the RCT.

We seek to estimate conditional average treatment effects for a finite set of I subgroups {Gi}Ii=1. We
assume subgroups are defined a-priori by a function G : X 7! {1, . . . , I}, such that G = i indicates
that X 2 Gi. We use observational data precisely because not all groups are supported on the RCT

2For instance, we could fail to reject due to low power, or because falsification is impossible, due to
differences in causal structure across subpopulations, as discussed in Appendix A.
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dataset. To this end, we use IR = {i : P(G = i | D = 0) > 0} to denote the set of subgroups
supported on the RCT dataset, and we let IO denote the complement {1, . . . , I} \ IR. We use |IR| to
denote the cardinality of a set, and assume that every observational dataset has support for all groups.
Assumption 2.1 (Support). We assume that P(G = i,D = j) > 0 for all i 2 {1, . . . , I} and
j 2 {1, . . . , J}, i.e., all observational datasets (D � 1) have support for all groups.
Definition 2.1 (Validation and Extrapolated Effects). We define the group average treatment effect
(GATE)3 as

⌧i :=

⇢
E[Y1 � Y0 | G = i,D = 0], if i 2 IR
E[Y1 � Y0 | G = i,D = 1], if i 2 IO

(1)

and refer to ⌧i for i 2 IR as a validation effect, and ⌧i for i 2 IO as an extrapolated effect.

Here, we focus on discrete subgroups, in part to reflect the practical reality of comparing RCTs to
observational studies, where we may have large observational datasets with rich covariates but only
have access to the published results of the RCT, which often provides estimates (with confidence
intervals) for subgroup effects but not the raw data itself [56, Figure 4, for example]. In Def. 2.1, we
allow for the fact that different datasets may have different distributions of effect modifiers. To have a
well-defined effect of interest, we have chosen the reference dataset D = 1 arbitrarily, but in principle
we could choose any of the observational datasets. We discuss further nuances of this definition under
Assumption 2.3. By Def. 2.1, we often write these effects as a vector ⌧ 2 RI . We use ⌧̂(k) 2 RI to
denote an estimator, where k 2 {0, . . . ,K}, with ⌧̂(0) reserved to denote the estimator derived from
the RCT data. The remainder are observational estimators.4 In general, we use “hat” notation to refer
to estimators, and refer to their population quantities without a hat. We use Nk to denote the number
of samples used by each estimator. Throughout, we will assume that the RCT estimator is consistent.
Assumption 2.2. The RCT estimator ⌧̂(0) is a consistent estimator of the (supported) dimensions of
⌧ , such that for each i 2 IR, ⌧̂i(0) is consistent for ⌧i.

Below, our central assumption states that at least one observational estimator also enjoys consistency.
We discuss examples of specific observational estimators in Section 2.2.
Assumption 2.3. There exists at least one observational estimator ⌧̂(k) 2 RI , k � 1 that is a
consistent estimator of ⌧ 2 RI , such that for each i 2 {1, . . . , I}, ⌧̂i(k) is consistent for ⌧i.
Remark 2.1. Assumption 2.3 is our primary non-trivial assumption, and in Appendix B, we give
one example of causal assumptions (for a given observational study) under which the entire GATE
vector ⌧ is identifiable from observational data, and give an estimator of the resulting observational
quantity which is asymptotically normal [41, 42, 40, 15, 16]. In order to compare observational
estimates with experimental ones, Assumption 2.3 requires not only that the observational data is free
of confounding, but also that the causal effect can be transported to the RCT population. This can be
done so long as relevant effect modifiers are observed in both the RCT and observational study, but
the latter requirement is satisfied automatically (without requiring RCT data) if e.g., treatment effects
are constant within each subgroup G, or if the distribution of effect modifiers is the same between the
RCT and observational study, in which case E[Y1 � Y0 | D,G] = E[Y1 � Y0 | G]. This represents
one (conservative) failure mode of our approach, in which we may reject an observational estimator
due to failures in transportability, even if it yields unbiased estimates of the extrapolated effects.

Assumptions 2.2 and 2.3 imply that there exists an observational estimator ⌧̂(k) such that both ⌧̂i(k)
and the RCT estimate ⌧̂i(0) are both consistent for the validation effects ⌧i, 8i 2 IR. To validate
this implication in finite samples, we will construct a statistical test to compare ⌧̂i(k) and ⌧̂i(0). Our
general approach could be modified to use any valid test, but to facilitate further analysis, as well as
explicit construction of confidence intervals, we additionally assume the following:
Assumption 2.4. All GATE estimators are pointwise5 asymptotically normally distributed.

p
Nk(⌧̂i(k)� ⌧i(k))/�̂i(k)

d! N (0, 1) (2)
for all k 2 {0, , ...,K}, and for all i in IR if k = 0 (the RCT estimator), and otherwise for all
i 2 IR [ IO. Here, d! denotes convergence in distribution, and �̂2

i (k) is an estimate of the variance
that converges in probability to �2

i (k), the asymptotic variance of
p
Nk(⌧̂i(k)� ⌧i(k)).

3We use this term in line with the literature [11, 28, 38, 55] and to distinguish it from the CATE function.
4We define ⌧̂(0) as a vector in RI for simplicity of notation, allowing the entries ⌧̂i(0), i 2 IO to be arbitrary.
5Here, “pointwise” refers to the fact that each subgroup effect estimate is asymptotically normal.
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Assumption 2.4 requires each estimator ⌧̂(k) to be consistent and asymptotically normal for some
⌧(k), which may not be equal to ⌧ . This is not a particularly strong assumption, as we discuss below.

2.2 Asymptotic Normality of Biased Estimators

In this section, we give two simple examples to illustrate the principle that multiple estimators
⌧̂(k) may be asymptotically normal, even if they are asymptotically biased (i.e., ⌧(k) 6= ⌧ ). In
both cases, there is a distinction between the statistical assumptions required to obtain asymptotic
normality, and the causal assumptions required for ⌧(k) to identify the causal effect ⌧ . For simplicity
in both examples, we restrict to the setting of comparing one-dimensional estimates ⌧(k) 2 R, which
estimate the GATE, ⌧ , in a single group G = 1 covered by all datasets. The statistical claims here
also extend to GATE estimation with multiple groups [55].
Example 2.1 (Variation in confounding across datasets). Suppose that there is one estimator of
the GATE per observational dataset, and each estimator seeks to estimate the population quantity,
⌧(k) = E[gk(1, Xk) � gk(0, Xk) | G = 1, D = k], where Xk denotes the controls used in each
study, and gk(A,Xk) := E[Y | A,Xk, D = k] and mk(Xk) := P(A = 1 | Xk, D = k). We
assume that ⌘ < mk(x) < 1 � ⌘ for some ⌘ > 0 for all x, k. Note that ⌧(k) is only a statistical
quantity: identifying this with the causal quantity (the GATE) requires additional assumptions like
unconfoundedness, that Ya ?? A | Xk for the given dataset D. This assumption may hold for some
datasets, but not others, particularly if the set of observed confounders Xk differs across datasets.

Regardless of the interpretation of ⌧(k), one can construct estimators of it that are consistent
and asymptotically normal using flexible machine learning estimators.6 One approach, given
in Chernozhukov et al. [12], is to use double machine learning (DML), which employs cross-
fitting to produce estimates ⌧̂(k) based on the doubly-robust score [45], while using plug-in esti-
mates ĝk, m̂k based on machine learning models. This approach achieves asymptotic normality,
p
Nk(⌧̂(k)� ⌧(k))/�̂2(k)

d! N (0, 1), under regularity conditions that allow for flexible machine
learning estimators that converge at slower than parametric rates, and where �̂2(k) converges in
probability to the variance of the doubly robust score [See Theorem 5.1 of 12, for additional details].
These results hold whether or not ⌧(k) = ⌧ , as discussed in Footnote 9 of Chernozhukov et al. [12].
For simplicity, we have focused on the case where E[Y1 � Y0 | G = 1] is constant across datasets.
When this does not hold, certain conditions enable valid transportation of treatment effects across
datasets [16] with the use of transported estimators [15] (see Appendix B for details).
Example 2.2 (Selection of Adjustment Strategy). Consider the two causal graphs given in Figure 1,
and assume that all variables are binary. Each graph suggests a different identification strategy for
the causal effect, E[Y | do(A = a), G = 1]. In Figure 1a, this is identified by the (observational)
quantity E[Y | A = a,G = 1], and in Figure 1b, by front-door adjustment [39] as

P
M P (M |

a,G = 1)
P

A0 P(Y | M,A0, G = 1)P(A0 | G = 1).

A M

G

Y

(a)

A M

G

Y

(b)

Figure 1: (Ex. 2.2) In (a), M and Y are confounded by
unobservables (bi-directional dotted arrow). In (b), A and Y
are confounded, but the causal effect is identified via front-
door adjustment.

These observational quantities will typi-
cally differ: the one that represents the
true interventional effect depends on which
graph reflects the true causal structure.
However, in the case where all variables
are discrete and low-dimensional, we can
still construct asymptotically normal esti-
mators for both observational quantities.7
For more complex settings (e.g., requiring
regularized ML models for estimating con-
ditional distributions) asymptotic normality
has been established under certain condi-
tions for general graphs [7, 29]
Remark 2.2. In each example, there are multiple estimators available, each asymptotically normal
under basic statistical assumptions, but potentially biased in the sense that ⌧(k) 6= ⌧ . In the first
example, this bias occurs if X is not sufficient to control for confounding in all observational

6A rich literature focuses on establishing such results, beyond the approach in this example [2, 20, 60, 37, 3].
7This follows from the use of maximum likelihood (i.e., empirical counts) for estimating each conditional

distribution, and applying the delta method to the front-door estimator.
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datasets. In the second, this bias arises in a given estimator if the causal graph is incorrectly specified.
Assumption 2.3 corresponds to assuming that both the statistical assumptions and causal assumptions
hold for one of the candidate estimators, e.g., X is sufficient to control for confounding in at least
one study (Example 2.1), or that one of the causal graphs is correct (Example 2.2).

2.3 Asymptotic Normality of GATE Estimators with Transportation

Example 2.1 assumes that E[Y1 � Y0 | G = i] is constant across datasets. In practice, it may be
necessary to correct for differences (not captured by group indicators) between the observational and
RCT populations. There exist estimators for the ATE in this setting under mild additional assumptions
[15, 14]. These extend in a straightforward way to estimators of the GATE, but proving asymptotic
normality is nuanced in high-dimensional settings when using flexible machine learning methods
to estimate nuisance functions. For completeness, inspired by Semenova and Chernozhukov [55],
we demonstrate that a doubly-robust GATE estimator for this setting is asymptotically normal under
reasonable conditions (Assumption C.1 to C.5). Details on the estimator, and the corresponding proof
of normality, are given in Appendix C, and may be of independent interest.

2.4 Testing for Bias under Asymptotic Normality

Under Assumption 2.4, each observational estimate ⌧̂i(k) can be compared to the estimate from the
randomized trial ⌧̂i(0) for i 2 IR, the groups with common support. Since the observational and
randomized datasets are distinct, we can conclude that each ⌧̂i(k) is independent of ⌧̂i(0), and use
this to test for the hypothesis that ⌧i(k) = ⌧i.
Proposition 2.1. For an observational estimator ⌧̂(k), assume Assumptions 2.2 and 2.4 hold.
Furthermore, let N = Nk + N0 with fixed proportions, where Nk = ⇢N,N0 = (1 � ⇢)N for
⇢ 2 (0, 1). Define the test statistic

T̂N (k, i) :=
⌧̂i(k)� ⌧̂i(0)� µi(k)

ŝ
(3)

where ŝ2 := �̂2
i (k)
Nk

+ �̂2
i (0)
N0

is the estimated variance, and µi(k) := ⌧i(k) � ⌧i. This test statistic

converges in distribution to a normal distribution as N !1, T̂N (k, i)
d! N (0, 1).

We present the proof for Proposition 2.1 in Appendix D. This asymptotic normality allows for
the construction of simple hypothesis tests. For instance, one can construct a Wald test for H0 :
⌧i(k) = ⌧i, with asymptotic level ↵ by setting µi(k) = 0 in Equation (3) and rejecting H0 whenever,
|T̂N (k, i)|> z↵/2, where z↵/2 is the 1� ↵/2 quantile of the normal CDF. Moreover, the asymptotic
power of this test (the probability of correctly rejecting H0) is given by

1� �

✓
µi(k)

�k,0
+ z↵/2

◆
+ �

✓
µi(k)

�k,0
� z↵/2

◆
(4)

where �2
k,0 := �2(k)i

Nk
+ �2

i (0)
N0

[see Theorems 10.4, 10.6 of 62]. Likewise, Assumption 2.4 implies an
asymptotic 1� ↵ confidence interval for ⌧i(k) as

[L̂i(k)(↵), Ûi(k)(↵)] :=


⌧̂i(k)�

z↵/2 · �̂i(k)p
Nk

, ⌧̂i(k) +
z↵/2 · �̂i(k)p

Nk

�
(5)

3 Meta-Algorithm for Conservative Extrapolation

In this section, we more formally introduce our algorithm (Algorithm 1). There are two primary
steps: falsification of estimators, and combination of confidence intervals. First, we attempt to falsify
candidate estimators via hypothesis testing, rejecting estimator k whenever we are able to reject
the null hypothesis H0 : ⌧i(k) = ⌧i, 8i 2 IR. We use Bonferroni correction to control the false
positive rate of the test. For the combination of confidence intervals, while we are unlikely to reject
the “correct” estimator if one exists (Assumption 2.3), we may be unable to reject all “incorrect”
(i.e., biased) estimators. This motivates the combination of confidence intervals (for the extrapolated
effects) of the accepted estimators by taking the maximum and minimum bounds over all such
intervals. Our main result characterizes the properties of our procedure, with proof in Appendix D.
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Algorithm 1 Extrapolated Pessimistic Confidence Sets

Input: Desired coverage 1 � ↵. For each i 2 IR, RCT estimate ⌧̂i(0) and variance �̂2
i (0). For

each i 2 IR [ IO, K candidate estimators ⌧̂i(k) and variances �̂2
i (k). Sample sizes N0, . . . , NK .

Initialize: Empty candidate set Ĉ  ?
for k = 1 to K do

Compute T̂N (k, i), 8i 2 IR, with µi(k) = 0 (Eq. 3)
if 8i 2 IR,

���T̂N (k, i)
���  z↵/4|IR|, then Ĉ  Ĉ [ {k}

end for
for i 2 IO do
L̂i  mink2Ĉ L̂i(k)(↵/2) and Ûi  maxk2Ĉ Ûi(k)(↵/2) (Eq. 5)

end for
Return: L̂i, Ûi for each i 2 IO.

Theorem 3.1 (Properties of Algorithm 1). Under Assumptions 2.1 and 2.2, the output of Algorithm 1
has the following asymptotic properties as N !1, where N denotes the total sample size, and the
samples used for all estimators are of the same order Nk = ⇢kN0, 8k � 1, for some ⇢k > 0.

1. Under Assumptions 2.3 and 2.4, for each i 2 IO,

lim
N!1

P(⌧i 2 [L̂i, Ûi]) � 1� ↵ (6)

2. Under Assumption 2.4, for each estimator where ⌧i(k) 6= ⌧i for some i 2 IR,

lim
N!1

P(k 2 Ĉ) = 0 (7)

The first point says that for each extrapolated effect ⌧i, the coverage of the final confidence interval
[L̂i, Ûi] is at least 1�↵ in the limit. It follows from Assumption 2.3 and 2.4 that at least one estimator
provides intervals [L̂i(k)(↵/2), Ûi(k)(↵/2)] that achieve asymptotic coverage of 1�↵/2. The result
follows from our choice of threshold for the significance test as well as application of union bounds.
The second point says that we will reject estimators that are not consistent for the validation effects,
in the limit. Assumption 2.4 ensures that Proposition 2.1 holds for all estimators, so that this rejection
is a consequence of the asymptotic power in Equation (4), going to 1 for a fixed bias as N !1.
Remark 3.1. Equations (4) and (5) are useful for building further intuition. All of the candidate
confidence intervals shrink at a rate of O(1/

p
N) as the overall sample size increases. For sufficiently

large N , the width of our generated intervals will depend largely on our power to reject biased
estimators, which will be higher for observational estimates with larger biases for validation effects.

4 Semi-Synthetic Experiments

4.1 Setup of Simulation

We generate semi-synthetic RCTs and observational datasets with covariates from the Infant Health
and Development Program (IHDP), a randomized experiment on premature infants assessing the
effect of home visits from a trained provider on the future cognitive performance [8]. The outcomes
are simulated. Our data generation is based on the partial IHDP dataset used in [25], which includes
n0 = 985 observation, 28 covariates, and a binary treatment variable. We construct a scenario where
there are four subgroups, defined by the infant’s birth weight and maternal marital status: (high [�
2000g], married), (low [< 2000g], married), (high, single) and (low, single), which we shorthand as
HM, LM, HS and LS. We include all subgroups in the observational studies, but exclude the latter
two subgroups for the simulated RCT (i.e. only infants with married mothers are in the RCT).

For each simulated dataset, we generate 1 RCT and K observational studies. For the observational
studies, we resample the rows of the IHDP dataset to the desired sample size n = r · n0. We
performed weighted sampling to induce a different covariate distribution for observational studies,
such that male infants, infants whose mothers smoked, and infants whose mothers worked during
pregnancy are less prevalent. Then, we introduce confounding in the observational data, generating
mc continuous confounders and mb binary confounders. Finally, we simulate outcomes in each
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dataset, modifying the response surface given in Hill [25]. In our experiments, we may choose to
conceal some confounders in each observational study to mimic unobserved confounding, denoting
the number of concealed variables across the K studies as cz = (cz1, cz2, ..., czK). For further details
on confounder generation, outcome simulation, and confounder concealment, see Appendix F. Data
generation parameters include K, r, mc, mb, cz, and the significance level ↵. By default, we set
K = 5, r = 10, mc = 4, mb = 3, cz = (0, 0, 2, 4, 6), and ↵ = 0.05. The full hyperparameter search
is provided in Appendix F, and details of hyperparameter tuning can be found in Appendix C.

4.2 Implementation and Evaluation of Meta-Algorithm

To implement Algorithm 1, we first obtain GATE estimates for the four subgroups and their estimated
variances in each observational study, combining techniques from the DML and trasportability
literature [55, 15]. Estimation details are shown in Appendices B and C. For the RCT, we stratify
the data into the subgroups HM, LM and estimate the GATEs as the difference of mean outcomes
between the treated and untreated. The z tests in Algorithm 1 are applied to both GATE estimates in
the HM and LM subgroups (|IR|= 2), and the significance level of the tests is set at ↵/4.

We evaluate performance using two main metrics: (1) the coverage probability of the output confi-
dence intervals (ideally at least 1�↵), and (2) the width of the confidence intervals (narrower is better).
In addition to assessing the intervals produced by Algorithm 1, which we call Extrapolated Pes-
simistic Confidence Sets (ExPCS), we will evaluate intervals produced by a variant of our algorithm,
called Extrapolated Optimistic Confidence Sets (ExOCS). In ExOCS, after falsifying estimators, we
combine confidence intervals using a random-effects meta-analysis on the non-falsified observational
studies. We compare ExPCS and ExOCS against two baselines. Meta-Analysis is a random-effects
meta-analysis on all observational studies, as described in Section 6, with heterogeneity variance
estimated via the DerSimonian-Laird moment method [17]. This baseline is the current standard
for aggregating observational study results. The second baseline, Simple Union, uses the maximum
upper bound and minimum lower bound of the 1� ↵ confidence intervals across all observational
studies, with no falsification procedure.8

4.3 Results

We perform three semi-synthetic experiments to assess the performance of our proposed meta-
algorithm under different scenarios. The first experiment applies our algorithm under the default
settings given in Section 4.1. In the second experiment, we vary the sample size ratio between the
observational studies and the original RCT, r, from 1 to 10. In the third experiment, we vary the
proportion of biased observational studies by setting cz to be (0, 0, 0, 0, 0), (0, 0, 0, 0, 3), (0, 0, 0, 3, 3)
or (0, 3, 3, 3, 3), corresponding to 0, 1, 2, 4 studies being biased out of a total of 5 observational studies.
Results for the latter two experiments are shown over 100 simulations of the datasets. Results for all
experiments are shown in Figures 2, 3, and Figure 5 in Appendix G, respectively. We observe the
following:

Meta-algorithm produces confidence intervals that cover the true GATE with nominal probability: We
demonstrate in Figure 2 the application of our meta-algorithm (ExPCS), a variant of it (ExOCS), and
two other baselines on one dataset. Our goal is to produce narrow confidence intervals that still cover
the true GATEs in the extrapolated subgroups. The confidence intervals of ExPCS cover the true
GATEs in the extrapolated subgroups with reasonable widths. In contrast, intervals produced by Meta-
Analysis fail to cover the true GATE in both extrapolated subgroups due to the false assumption of
unbiasedness across all studies. The ExOCS approach produces narrow intervals for the extrapolated
effects, though it barely covers the true effect in the HS subgroup. This hints at the need for a
conservative combination of non-falsified studies. However, an overly conservative approach (e.g.
Simple Union) produces wide intervals that may be of little use for meaningful inference.

Although Meta-Analysis produces confidence intervals with inadequate coverage, its intervals for
the married subgroups still have considerable overlap with the intervals produced by the RCT. This
suggests that testing the meta-analyzed GATE estimates against the RCT GATE estimates may not
be enough to demonstrate their validity. Compared to our ExPCS intervals, the lower bounds of the

8Note that Simple Union combines 1 � ↵ confidence intervals, while our approach combines 1 � ↵/2
confidence intervals to account for the probability of rejecting the “correct” estimator, if one exists. As a result,
Simple Union intervals do not always strictly cover the intervals produced by ExPCS.
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Figure 2: The confidence intervals for group average treatment effects (GATE) within the four subgroups output
by our algorithm (ExPCS), our algorithm variant (ExOCS), random-effects meta-analysis on all observational
studies (Meta-Analysis), simple union bound on all observational studies (Simple), and RCT, for one dataset
generated using the default parameter settings laid out in Section 4.1. LM, HM, LS, HS represent four subgroups
defined in Section 4.1
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Figure 3: Coverage probabilities of confidence intervals shown as a function of the size of the observational
studies relative to the RCT. Dotted red lines stand for 95% coverage. Vertical bars are the 95% confidence
intervals of the coverage probabilities. LS / HS stand for groups with low / high birth weight and single mother.
Between ExPCS and Simple which have adequate coverage, ExPCS generally has narrower intervals.

Simple Union intervals are higher in several subgroups, since we use a higher confidence level for the
candidate intervals corresponding to each study to account for probable error in study falsification.

An analysis of increasing observational study size: In Figure 3, we find that the coverage of the Meta-
Analysis intervals is quite low across all sample sizes and particularly decreases at higher sample sizes.
This result is intuitive, as three out of five studies are biased, meaning that meta-analysis will converge
to a biased estimate as the amount of data increases. One could attempt to fix this issue through
ExOCS, which does meta-analysis after falsification. However, ExOCS has poor coverage when
the sample size of the observational studies is small, since the falsification tests are underpowered
(evidenced by the high probability of selecting biased studies in Appendix G, Table 2). Both ExPCS
and the Simple Union intervals have adequate coverage across all sample sizes. However, the widths
of the intervals reported at the bottom of Figure 3 show that ExPCS intervals are narrower when
there is adequate power, i.e. at higher sample sizes. Ultimately, ExPCS will tend to provide intervals
that cover the true effect regardless of sample size, and in the case we have sufficient power, these
intervals will both have good coverage and narrower width, allowing for more meaningful inference.

5 Women’s Health Initiative (WHI) Experiments

In order to assess our approach in a real-world setting, we use clinical trial and observational data
available from the WHI. Each subgroup is supported in both RCT and observational data, which
proves useful for evaluation. At a high level, we “hide” some number of subgroups from the RCT,
estimate a confidence interval of the effect estimate using our algorithm on the remaining data,
and compare the result to the hidden RCT estimate. We do this over a large set of possible “held-
out” subgroups, yielding >2000 different scenarios on which to test our approach. Because the
original observational datasets replicate the RCT results fairly well using standard methods, we create
additional “biased” datasets by sub-selecting the original observational dataset in a way that induces
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selection bias. We evaluate each method, for each held-out subgroup, according to the length of
the intervals as well as coverage of the RCT point estimates. Below, we describe the specifics of
the data, the experimental setup, and the main results of the analysis. For additional details on data
preprocessing, setup, and evaluation, see Appendix E.

5.1 Setup

The Postmenopausal Hormone Therapy (PHT) trial, i.e. the RCT used in this analysis, was run
on postmenopausal women aged 50-79 years who had an intact uterus. It studied the effect of
hormone combination therapy on several types of cancers, cardiovascular events, and fractures. The
observational study (OS) was run in parallel, had a similar follow-up time to the RCT, and tracked
similar outcomes. In our analysis, we use a composite outcome, where Y = 1 if any of the following
events are observed to occur in the first 7 years of follow-up, and Y = 0 otherwise: coronary heart
disease, stroke, pulmonary embolism, endometrial cancer, colorectal cancer, hip fracture, and death
due to other causes. This represents a binarization of the “global index” time-to-event outcome from
the original study, where Y = 0 could also occur due to censoring. We establish treatment and control
groups in the OS based on explicit confirmation or denial of usage of both estrogen and progesterone
in the first three years. We use only covariates measured in both the RCT and OS to simplify analysis.

5.2 Evaluation

Our empirical evaluation consists of several steps. In the first step, we replicate the principal results
from the PHT trial, given in Table 2 of [51], by fitting a doubly robust estimator (of the style given
in Appendix C) on the WHI OS data. Then, while treating the WHI OS dataset as the “unbiased”
observational dataset, we simulate additional “biased” observational datasets by inducing selection
bias into the WHI OS. The exact mechanism of selection bias and its clinical intuition is given in
Appendix E. Importantly, this is the only part of the evaluation that involves any simulation.

The second step is to construct a large suite of tasks on which to evaluate our method, by considering
different sets of validation-extrapolation subgroups. To construct the subgroups, we consider all pairs
of a selected set of binary covariates (see Appendix E.6), where each pair defines four subgroups.
For example, one covariate pair is (“current smoker”, “currently drinks alcohol”). We treat two of
the subgroups as validation subgroups and two as extrapolated subgroups. For the latter groups, we
apply our algorithm without access to the RCT data, and only use the RCT data for final evaluation.
The total number of covariate pairs is 592, leading to 1184 distinct “tasks” (i.e., extrapolated groups).
For each task, we evaluate ExPCS (our method), ExOCS, Simple, and Meta-Analysis (described
in Section 4.2). Additionally, we evaluate an “oracle” method, which is identical to ExPCS, except
that it always selects only the original observational study (i.e. the base WHI OS to which we have not
added any selection bias). For each method, we compute the following metrics, averaged across all
tasks – Length: length of the confidence interval, Coverage: percentage of tasks where the interval
covers the RCT point estimate. In addition, we report the Unbiased OS Percentage: the percentage
of tasks where the ExPCS approach retains the unbiased study after the falsification step.

5.3 Results

Coverage Length OS %

Simple 0.39 0.416 –
Meta-Analysis 0.03 0.260 –
ExOCS 0.28 0.058 –
ExPCS (ours) 0.45 0.081 0.99

Oracle 0.44 0.068 –

Table 1: Coverage, length, and unbiased OS % of ExPCS
and baselines. ExPCS achieves comparable coverage to the
oracle method with highly efficient intervals. Additionally,
we do not reject the unbiased OS in 99% of the tasks.

Table 1 reports the metrics above, averaged
across all extrapolated subgroups.

Compared to the “simple” baseline, our
approach has better coverage with much
shorter confidence intervals. Our falsifi-
cation procedure retains the unbiased ob-
servational study 99% of the time, yield-
ing near-oracle coverage rates, but produces
substantially shorter intervals than the “sim-
ple” baseline. Recall that the simple base-
line takes a union over all 1 � ↵ intervals
estimated from each observational dataset,
while ExPCS takes a union of a smaller number of slightly wider (1� ↵/2) confidence intervals.
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Compared to the Meta-Analysis and ExOCS baselines, we achieve comparable (or much better)
length with substantially better coverage. In particular, compared to meta-analysis, we achieve
tighter intervals and also cover the RCT estimate with higher frequency. This result is intuitive,
since one will get a biased estimate if biased observational studies are included in the meta-analysis.
Additionally, conservatively combining the non-falsified estimates (as opposed to ExOCS, which does
a meta-analysis on the non-falsified estimates) is important to achieve good coverage (0.45 vs 0.28).

We get comparable coverage and interval lengths to the oracle method. Our coverage rate is nearly
identical (0.45) to that of the oracle method (0.44), with intervals that are marginally wider (0.081
vs. 0.068). Our slightly improved coverage is possible due to the wider intervals. Note that our
measure of “coverage” may be pessimistic, because we track coverage of the RCT point estimate,
as opposed to the true causal effect (which is unknown), and the confidence intervals are designed
to cover the latter. Indeed, we report the oracle method precisely as a means of providing a more
suitable comparison. Overall, our real-world results suggest that our method of falsification followed
by a conservative combination of intervals may be useful for biostatisticians and clinicians when
doing meta-analyses.

6 Related Work

Meta-analysis for combining observational estimates Among the quantitative approaches for
meta-analysis to account for potential bias, our Meta-Analysis baseline is standard for meta-analysis
of observational data [24] to account for heterogeneity. Allowing for heterogeneity of treatment
effects among studies produces wider confidence intervals and thus more conservative inference. If
additional study-level covariates are available (e.g. study designs, drop-out rate), several approaches
aim to adjust for potential bias, either by modeling the bias magnitude [19, 64, 1, 21], down-weighting
studies with higher risk of bias [26, 35], or using Bayesian hierarchical regression to account for
difference between subgroups of studies [44, 63]. Our work differs from these approaches, in that (1)
we use information from outside the population of interest to assess bias, and (2) we do not place any
assumptions on the patterns of bias across studies.

Partial identification and sensitivity analysis These methods seek to place bounds on causal effects
when they cannot be point-identified. Our method can be seen as an alternative way of doing so, with a
fundamentally different type of assumption. Methods for partial identification rely on having discrete
variables and a known causal graph (typically including unobserved confounders) [18, Section 9].
Methods for sensitivity analysis, on the other hand, translate assumptions about the strength and
nature of unobserved confounding into bounds on causal effects [47, 48, 65]. In contrast, we do
not make any such assumptions, e.g., we allow for continuous variables, and when some candidate
estimators are biased due to unmeasured confounding, we do not place any limit a-priori on the bias.
An extended related work is given in Appendix H.

7 Discussion and Limitations

We have presented a meta-algorithm that constructs conservative confidence intervals for group
average treatment effects of subgroups that are not represented in RCTs, but are represented in
observational studies. Under the assumption that there exists at least one candidate estimator that is
asymptotically normal and consistent for both the validation and extrapolated effects, these intervals
will achieve the correct asymptotic coverage of the true effect. However, our method is not without
limitations. Most notably, we may fail to reject the null hypothesis due to low power, e.g., when an
observational estimate ⌧̂(k) has high variance. In practice, we expect that our approach will be most
useful when the observational studies in question have large sample sizes, leading to higher-precision
estimates of potential bias, and smaller confidence intervals on the extrapolated effects. Our hope is
that methods such as ours will lead to higher confidence in observational estimates when RCT data is
available to falsify observational studies that do not replicate known causal relationships. Finally,
great care should be taken to appropriately validate and soundly interpret the results of our method in
practice, especially with more sensitive subgroups (e.g. with respect to race or gender).
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