
Supplementary

1 Outline

The following is the outline of this supplementary material:

• In appendix A, we present our upper-bound experiments which complements the experiments
presented in Table 2 and Table 3 of our main manuscript.

• In appendix B, we present extra qualitative results to show the advantage of our proposed
method.

• In appendix C, we present additional details of the camera projection model described by
Eq. (2) and Eq. (3) in our main manuscript.

• In appendix D, we present details about the re-implementation of SSLayout360 and its
results.

• In Figure 1, we show a t-SNE plot of the distributions in four datasets used in this work.

A Upper-bound Results

Table 1: Evaluation results of Setting 1 on MP3D-FPE [2].

Pre-trained Dataset Method 2D IoU (%) ↑ 3D IoU (%) ↑ RMSE ↓ δ1 ↑

MatterportLayout [7]

Pre-trained 65.38 62.28 0.58 0.78

SSLayout360∗ [4] 70.53 66.74 0.48 0.82
Ours 72.38 68.16 0.51 0.79

ZInD [1]

Pre-trained 45.43 42.17 1.02 0.61

SSLayout360∗ 62.59 58.17 0.65 0.74

Ours 66.63 61.88 0.57 0.75

LayoutNet [6]

Pre-trained 64.34 58.92 0.61 0.70

SSLayout360∗ 66.99 62.50 0.55 0.78
Ours 70.02 63.59 0.64 0.67

In Table 1 and Table 2 of this supplementary material, we present our upper-bound results that
complement the experiments shown in Table 2 and Table 3 of the main manuscript. These upper-
bound experiments use the same settings described in Sec 4 of our main manuscript, but instead
of using the lowest entropy HMLC for model selection, here we use the best 2D IoU evaluation.
Therefore, these experiments represent the scenario when ground truth annotations are available
during testing.

Comparing the results presented in our main manuscript with the ones depicted here, we can verify
that indeed our proposed metric HMLC can lead to similar best models but without using ground truth
annotations. In addition, our proposed method still outperforms other baselines, for both settings (i.e.,
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Table 2: Evaluation results of Setting 2 on MP3D-FPE [2].

Pre-trained Dataset Method 2D IoU (%) ↑ 3D IoU (%) ↑ RMSE ↓ δ1 ↑

MatterportLayout [7]
SSLayout360-ST∗ 70.07 66.19 0.47 0.82
Ours 72.67 67.72 0.53 0.75

ZInD [1]
SSLayout360-ST∗ 55.18 51.18 0.71 0.74
Ours 67.62 62.42 0.56 0.74

LayoutNet [6]
SSLayout360-ST∗ 66.14 61.51 0.57 0.76
Ours 68.78 61.74 0.70 0.64

Setting 1 and 2 described in Sec 4.2 in our main manuscript), which demonstrates the efficacy of our
self-training formulation.

B Qualitative Results

In this section, we present additional qualitative visualizations of multi-view layout consistency
projected to the top-view via the 2D density function in Figure 2.
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Figure 1: t-SNE plot of the four datasets in this work. It is observed that the three source datasets,
i.e., MatterportLayout, ZInD, and LayoutNet, have different data distributions with respect to the
target dataset, MP3D-FPE [2]. This is because these source datasets consist of real-world images,
whereas our target dataset is rendered from a simulator.
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Figure 2: 2D density function of multi-view layouts. We show the qualitative results on MP3D-
FPE dataset [2] for a pre-trained model on ZinD dataset [1] (a), the baseline SSLayout360* [4] (b),
and our proposed 360-MLC (c). In this figure, a sharper yellow silhouette represents an accumulation
of multiple layout estimations, hence showing the geometry consistency along the scene.
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C Camera Projection Model

Let
Proj : R2 −→ R3, (θ, ϕ) −→ (x, y, z) (1)

denote the Proj(·) function introduced in Eq. (2) of the main paper, which maps the spherical
coordinate (θ, ϕ) ∈ R2 to 3D world coordinate (x, y, z) ∈ R3. We can expand this function as
follows:

Xi = Proj
(
Yi, Ti, hi

)
= X̄i ·Ri + ti, X̄i =

[
x
y
z

]
=

 |hi|
sinϕ cosϕ sin θ

hi
|hi|
sinϕ cosϕ cos θ

 , (2)

where Xi ∈ R3 is the layout projected in world coordinates; Yi is the layout boundary (cf.
Sec. 3.1); Ti = [Ri|ti] is the camera pose for i-th camera view parameterized by the rotation
matrix Ri ∈ SO(3) and translation vector ti ∈ R3; hi is the camera height; X̄i is the projected
layout in the i-th camera coordinates. Note that every pair of spherical coordinates (θ, ϕ) is first
projected into 3D Euclidean space as X̄i ∈ R3 in camera reference and then registered into world
coordinates by Ti.

In the case of projecting the floor boundary, the camera height is defined as hi = h
(f)
i , i.e., the

distance from the camera center to the floor. However, for projecting the ceiling boundary, the camera
height hi = h

(c)
i can be computed by h

(f)
i given the assumption that walls are perpendicular to the

floor and ceiling [3], which is defined as follows:

h
(c)
i =

1

W

W∑
θ=1

−h
(f)
i cot Y

(f)
i (θ) · tan Y

(c)
i (θ), (3)

where Y
(f)
i and Y

(c)
i are the layout boundaries for floor and ceiling respectively, W is the number of

column defined in Yi (cf. Sec. 3.1), and h
(c)
i is the distance from the camera center to the ceiling.

We can detail the back-projection function Proj−1(·) as follows:

Proj−1 : R3 −→ R2, (x, y, z) −→ (θ, ϕ), (4)

Yi→j = Proj−1
(
Tj ,Xi

)
, (5)

X̄j = Xi ·R⊤
j −R⊤

j · tj ,

[
x
y
z

]
=

X̄j∥∥X̄j

∥∥
2

, (6)

[
θ
ϕ

]
=

[
tan−1(xz )
sin−1(−y)

]
, ∀ Yi→j(θ) = ϕ, (7)

where Xi is the layout geometry projected by Eq. (2), Tj is the camera pose of the j-th image view
parameterized by the rotation matrix Rj ∈ SO(3) and translation vector tj ∈ R3, X̄j is the geometry
layout in the j-th camera reference, and Yi→j is the layout boundary in spherical coordinates at the
j-th references. Here, every set of coordinates (x, y, z) ∈ R3 defined by Xi is first transformed in
j-th camera reference by Tj and then mapped into spherical coordinates by Eq. (7).

D SSLayout360 and SSLayout360∗

In Table 3, we present the results of our re-implemented SSLayout360∗ along with the original
SSLayout360 [4] on the MatterportLayout [7, 5] dataset. We follow the standard training, validation,
and testing splits from Zou et al. [7] and the list of labeled subset provided by SSLayout3601. We
show that our implementation has comparable performance with the official results presented by
SSLayout360. For more implementation details, please refer to [4].

1https://github.com/FlyreelAI/sslayout360
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Table 3: Quantitative results of SSLayout360 and SSLayout360∗ on MatterportLayout [7].

Labels / Images Method 2D IoU (%) ↑ 3D IoU (%) ↑ RMSE ↓ δ1 ↑

50 / 1837
SSLayout360 71.03 67.42 0.35 0.81

SSLayout360∗ 69.95 66.10 0.34 0.70

100 / 1837
SSLayout360 75.46 72.37 0.29 0.89

SSLayout360∗ 75.26 71.95 0.26 0.80

200 / 1837
SSLayout360 78.05 75.31 0.27 0.91

SSLayout360∗ 77.87 74.88 0.22 0.86

400 / 1837
SSLayout360 79.67 77.09 0.25 0.93

SSLayout360∗ 79.09 76.26 0.21 0.88

1650 / 1837
SSLayout360 82.54 80.33 0.22 0.95

SSLayout360∗ 80.89 78.13 0.19 0.90
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