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Abstract

Graph Neural Networks (GNNs) and Graph Kernels (GKs) are two fundamental
tools used to analyze graph-structured data. Efforts have been recently made in de-
veloping a composite graph learning architecture combining the expressive power
of GNNs and the transparent trainability of GKs. However, learning efficiency on
these models should be carefully considered as the huge computation overhead.
Besides, their convolutional methods are often straightforward and introduce severe
loss of graph structure information. In this paper, we design a novel quantum graph
learning model to characterize the structural information while using quantum
parallelism to improve computing efficiency. Specifically, a quantum algorithm is
proposed to approximately estimate the neural tangent kernel of the underlying
graph neural network where a multi-head quantum attention mechanism is intro-
duced to properly incorporate semantic similarity information of nodes into the
model. We empirically show that our method achieves competitive performance
on several graph classification benchmarks, and theoretical analysis is provided to
demonstrate the superiority of our quantum algorithm. Source code is available at
https://github.com/abel1231/graphQNTK.

1 Introduction

Fusing quantum computing and classic machine learning has become a promising subject of research.
Quantum-based algorithms have been proposed in recent years, from naive quantum non-parametric
machine learning [52, 36, 43, 32] to classic-quantum hybrid deep leaning [7, 10, 46, 37, 14]. Despite
that quantum machine learning (QML) has shown its potential in many machine learning tasks,
quantum computing for graph learning is still in its early stage [61]. Inspired by the two popular
classes of methods for learning on graph data, i.e., Graph Neural Networks (GNNs) [20, 39, 21, 67]
and Graph Kernels (GKs) [23], several works attempt to build quantum graph learning architecture
that captures the structural information of graph data, such as Quantum Graph Neural Networks
(QGNNs) [64, 7, 11, 16, 1] and Quantum Graph Kernel Methods (QGKs) [56, 3, 25, 4]. A brief
review about quantum graph learning is illustrated in Fig. 1.

Some quantum subroutines for attribute encoding [5, 70] and structural encoding [64, 46] have been
developed to dissolve the characteristics of the graph into the quantum model. However, most present
quantum graph learning models are hybrid such that the expressive capability depends more on the
complexity of the classic modules [70]. It is difficult to characterize the structure information and
attribute information of the graph by the quantum components without the participation of classic
modules. Even worse, the frequent interactions between classical systems and quantum environments
generally incur additional overhead [55]. It is unclear whether the introduced quantum module
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can improve the performance of the model as well as the training efficiency. Besides, most of
existing proposals for quantum machine learning for graphs lack a clear demonstration of a quantum
superiority for tasks on classical datasets.

Using quantum computing power to boost the trainability and expressive behaviour of classic machine
learning models provides one of the most promising direction for quantum machine learning. It
is demonstrated that the power of quantum computing could be used to find atypical but useful
patterns that classical systems are not considered to be able to generate effectively [14, 24, 28], and
accelerate the training process of existing classic models [36, 43, 71]. Several quantum algorithms
[52, 45, 44] based on the HHL algorithm [22] show the exponential speedup compared with their
classical counterpart, with a assumption that a quantum random access memory (QRAM) [35] is
accessible. Recent literature employ quantum algorithms to efficiently train deep neural networks
[71], reconstruct unsupervised clustering [34] and supervised kernel classifier [43]. It is hopeful that
quantum computing could provide a new learning paradigm. In addition, simulations and physical
experiments have proved the potential of using quantum algorithms to encode and process regular
classical data such as text and image [60, 6].
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Figure 1: Overview of quantum graph learning.

Beyond vanilla GNNs and GKs, composite
graph learning studies have emerged that com-
bine the advantages of both areas [50, 10, 18].
In this literature, Graph Neural Tangent Kernel
(GNTK) [17] based on neural tangent kernel
(NTK) [31] shines its lights on elegantly fus-
ing GNNs and GKs, leading to new prospec-
tives of training and analysing infinite-width
GNNs. However, the computation overheads
is extremely large due to either the dense gram
matrix [17], or the large number of substructures
to be compared after graph decomposition [10].
Prospectively, the barrier that conventional model is difficult to train and scale up is expected to be
circumvented with the help of the uniqueness of quantum computing. Early research involves altering
the amplitude of quantum basis states to accomplish a quantum logic operations [8], which is prof-
itable from the huge quantum Hilbert space to encode the normalized data. Recently, simultaneous
transformation of basic states in quantum superposition using quantum parallelism is regarded as
a remarkable manifestation of quantum superiority, which is successfully implemented in classic
machine learning to reduce the computational overheads [36, 37, 71]. These strategies could be
helpful in the regime of training graph models with either the non-convex nature of the training
procedure, or the poor scalability w.r.t. training size.

In this paper, we focus on quantum machine learning of graph-structured data with attributed nodes
and binary edges. Inspired by recent quantum neural network methods [37, 71] that efficiently
reconstruct the dynamics of classic neural networks using quantum computing techniques, a new
quantum graph learning model is proposed which is analogue to train an infinite-width GNN with
attention mechanism, where the number of heads goes to infinity. Our contributions are:

• Attention-enhanced GNTK. Infinite-width GNN is a well established term in the GNN literature
[17, 29], and GNTK [17] is a powerful tool to analyze the GNN. However, the traditional feature ag-
gregation of the vanilla GNTK is straightforward, limiting itself within joint neighborhoods. In this
paper, a multi-head attention mechanism is introduced to properly incorporate semantic similarity
information of disconnected nodes but with similar features to improve model expressiveness.

• Kernel methods for evaluating the dynamics of wide and deep GNNs. It is generally hard to
train a deep GNN with attention, especially when the width of GNN, the width of attention layer,
or the number of heads goes to large. We properly incorporate infinite-width multi-head attention
into GNTK by using NTK theory. We use kernel methods to capture the dynamics of infinite-width
GNN with infinite-width attention, thus avoiding the huge overhead of training a wide and deep
GNN.

• Speedup introduced by quantum computing. Although GNTK is a useful method to train an
infinite-width GNN, its cost still grows quadratically with respect to the volume of data, which
is intractable for large datasets. We re-design the Attention-enhanced GNTK by splitting it into
small components and reuniting them using the quantum linear algebra subroutines. The produced
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quantum graph kernel – GraphQNTK, theoretically reduces the computational complexity from
O(N2) to O(N) benefited from the quantum parallelism.

2 Methodology

2.1 Preliminaries

We first briefly review the most common setting for GNNs and the corresponding NTK, and by the
way the notation is given. A graph G = (V,E) is denoted by a collection of nodes V and edges
E. Each node has a d-dimensional feature vector hv ∈ Rd, v ∈ V , and H ∈ Rn×d is the feature
matrix stacking all nodes features. For graph classification, we consider the dataset with a set of
graphs {G1, . . . , GN} ⊆ G and their labels {y1, . . . , yN} ⊆ Y . Our goal is to learn to predict labels
of unseen graphs.

The formulation of GNN. The differences of GNNs mainly depend on the different settings of
message propagation process. Here we consider a simple message passing framework [20] and the
propagation of the l-th (l ∈ [L]) layer is given as:

ĥl
u =

∑
v∈N (u)∪{u}

h(l−1)
v , (1)

hl
u =

√
cσ
dlR
σ

(
Wl

R

√
cσ
dlR−1

σ

(
Wl

R−1 · · ·
√
cσ
dl1

· σ
(
Wl

1ĥ
l
u

)))
, (2)

where N (u) denotes the neighbors of u, cσ is the scaling factor, dlr is the output dimension of
the l-th layer and the r-th fully-connected layers, σ is an element-wise activated function, and
Wl

R is learnable weights performing on the input for R times of the l-th layer (equivalent to R
fully-connected layers without the bias term).

For graph classification, the output is a permutation invariance function acting on the collection of all
node features in the last layer. The popular sum_pooling function is adopted: hG =

∑
u∈V hL

u ..

NTK of the infinite-width GNN. Consider a training set {(xi, yi)}Ni=1 ⊂ Rd × R. When an over-
parameterized fully connected network f(θ,x) : Rd → R whose width is allowed to go to infinity
and parameters θ are randomly initialized and trained with gradient descent, the dynamics of the
network is equivalent to the kernel regression [31]. This is the so called neural tangent kernel (NTK):

H(t)ij =

〈
∂f (θ(t), xi)

∂θ
,
∂f (θ(t), xj)

∂θ

〉
, (3)

which remains constant during training, i.e., H(t) = H(0). And we replace H(t) with H for
convenience. The final prediction for a test datapoint x∗ is

f(x∗) = k∗H
−1y, (4)

where yi = yi and k∗ ∈ RN is the vector whose i-th element denotes the NTK value between xi and
x∗.

It is discovered that convolutional neural networks (CNNs) with infinite-width channels and infinite
number of filters also have the same behaviour [2]. Inspired by this, Du et al. [17] adopts the
designing strategy of NTK and leverages a GNN architecture to design new graph kernels, which
is called GNTK. The dynamics of training the GNTK is equivalent to train an infinitely-wide GNN
initialized with random weights trained with gradient descent. Specifically, consider two input graph
G = (V,E) and G′ = (V ′, E′) with |V | = n and |V | = n′, the GNTK Θ ∈ Rn×n′

and the relative
covariance matrix Σ ∈ Rn×n′

in the l-th layer of the feature aggregation phase as described in Eq. 1
after R fully-connected layers are given by[

Σl
0 (G,G

′)
]
uu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Σl−1

R (G,G′)
]
vv′ ,

[
Θl

0 (G,G
′)
]
uu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Θl−1

R (G,G′)
]
vv′ ,

(5)
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which is an affine transformation of the input GNTK and covariance respectively where[
Θ0

R(G,G
′)
]
uu′ and

[
Σ0

R(G,G
′)
]
uu′ are both defined to be h⊤

u hu′ . We replace them with[
Θ0(G,G′)

]
uu′ and

[
Σ0(G,G′)

]
uu′ respectively without ambiguity.

The successive fully-connected layers defined in Eq. 2 are used to update the node hidden feature
after aggregation. Specifically, the GNTK of the fully-connected layer is recursively associated to
that of the previous layer, and the transformation is given by[

Σl
r (G,G

′)
]
uu′ = σ̂(r−1)

([
Σl

r−1 (G,G
′)
]
uu′

)
, r ∈ [R], (6)

where σ̂(r) : [−1, 1] → R denotes the the conjugate activation function corresponding to the activated
function σ with centered Gaussian processes of covariance at the r-th fully-connected layer, as
described in [15]. And the derivation of the covariance is[

Σ̇l
r (G,G

′)
]
uu′

= ˆ̇σ
(
σ̂(r−1)

([
Σl

r−1 (G,G
′)
]
uu′

))
, (7)

where ˆ̇σ denotes the derivative of σ. Given Eq. 6 and Eq. 7, the transformation of the GNTK for the
feature update phase denoted by Eq. 2 is given by

[
Θl

R (G,G′)
]
uu′ =

R∑
r=1

[
Σl

0 (G,G
′)
]
uu′

(
R∏

r′=r

[
Σ̇l

0 (G,G
′)
]
uu′

)
. (8)

Therefore, computing each element of the GNTK (or covariance) matrix is only reliant on the element
at the same place of the GNTK (or covariance) matrix in the previous fully-connected layer. The final
GNTK corresponding the two input graphs G and G′ determined by the sum_pooling function:

Θ (G,G′) =
∑

u∈V,u′∈V ′

[
ΘL

R (G,G′)
]
uu′ . (9)

Intuitively, calculating each element of the GNTK of fully-connected layers could be accelerating
by a proper quantum kernel estimation algorithm. However, it is indirect to realize an end-to-end
speedup for GNTK since calculating the element of GNTK requires an affine transformation. To
circumvent this barrier, we derive a unitary quantum aggregation transformation to bridge the gap
between quantum kernel methods and estimation of GNTK.

2.2 QNTK with Attention Mechanism

Before giving the analytical quantum reconstruction of GNTK with multi-head attention mechanism,
we first elaborate on how to integrate the transformer layer into the GNN as described in Sec. 2.1.
The resulting GraphQNTK can be efficiently reconstructed by quantum computing paradigm, which
gives a quadratic speed-up over the classic estimation of GNTK. The mechanism to build the GNN
and estimate the GNTK is shown in Fig. 2.

GNN with multi-head attention. The aggregation process of vanilla GCN [39] regards the contri-
bution of each node’s neighbor to the central node as equally important, which can be viewed as
learning an averaged filter across the whole graph [66], leading to a great loss of structure information.
Besides, the aggregation only is performed within the adjoining neighbors under the assumption that
the graph is homophilous. The method may fail to learn effective graph structures for message passing
[12]. To capture the global node similarity semantics of the provided graph, numerous attempts that
employ transformer for graph learning have been developed [27, 51, 53, 68]. Consider the input
feature matrix Hl

in ∈ RN×sl where N denotes the number of samples and sl is the dimension of
feature at layer l before implementation of the transformer. The single transformer layer is to project
the input Hl

in ∈ RN×sl by three matrices, i.e., Wl
Q ∈ Rsl×slK , Wl

K ∈ Rsl×slK and Wl
V ∈ Rsl×slV ,

to the corresponding representations Ql,Kl,Vl. The formulation is given as

Ql = Hl
inW

l
Q, Kl = Hl

inW
l
K , Vl = Hl

inW
l
V ,

Ĥl = ζ
(
Gl
)
Vl, Gl =

QlKl⊤√
slK

,
(10)
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Figure 2: Framework for GNN with attention mechanism and its corresponding GNTK. The GNN
comprises a message transmission process similar to the vanilla GCN but involves a transformer at
the tail of the model (excluding the last layer), which characterizes the global semantic similarity
between each pairs of nodes. The neighbor aggregation is kept since the two nodes connected by
an edge often have stronger semantic relationship. The dynamics of the infinite-width-limit GNN is
analogous to kernel methods and we reconstruct it by quantum algorithms to estimate the kernel.

where ζ denotes an element-wise activated function. The multi-head attention alternative is given by

Hl
out =

[
Ĥl

head1 , . . . , Ĥ
l
headM

]
Wl

O, (11)

where Wl
O ∈ R(MslV )×sl projects the N ×MslV concatenated multi-head feature matrix back to

N × sl matrix.

Let Y and Θ denote the neural network Gaussian Process Kernel (NNGP) [51] and NTK after
the transformer layer, and let Ỹ and Θ̃ be the input NNGP and NTK before the transformer layer.
Consider two input feature vector x and x′. When the output dimension of the transformer layer and
the number of heads go to infinity, i.e., sl → ∞, slK → ∞, slV → ∞,M → ∞, the output NTK is:

Θ (x,x′) = 2Y (x,x′) + ζ
(
Ỹ (x,x)

)
Θ̃ (x,x′) ζ

(
Ỹ (x′,x′)

)⊤
,

Y (x,x′) = ζ
(
Ỹ (x,x)

)
Ỹ (x,x′) ζ

(
Ỹ (x′,x′)

)⊤
,

(12)

where the under the restriction that 1) Wl
Q and Wl

K share the same weighs, and 2) scaling the dot
products between Ql and Kl by their dimension instead of the square root of the same quantity, i.e.,

Gl = QlKl⊤

slK
. The detailed proof can be found in [26].

To efficiently estimate the element of the NTK defined by the transformer layer using quantum
parallel, we slightly modify the Eq. 12 as

Θ (x,x′) = 2Y (x,x′) + T̃ζ (x,x
′)⊙ Θ̃ (x,x′) ,

Y (x,x′) = T̃ζ (x,x
′)⊙ Ỹ (x,x′) ,

(13)

where T̃ (x,x′) is the result of matrix multiplication between the column vector of the diagonal of
Ỹ (x,x) and row vector of the diagonal of Ỹ (x′,x′), and T̃ζ is the result of matrix multiplication
between the diagonal of those two matrix after activated operation. For simplicity of use, we consider
identity function as the activated operation, i.e, ζ = I . It is reasonable to accept this modification
since in the limit of infinite width neural network the output converges in distribution to a multivariate
normal with a block diagonal covariance [51]. Notice that the difference between the definition of
NNGP and the covariance of NTK is that the former denotes the expectation with respect to the
output before the activated operation, while the later after the denotes the expectation with respect
to the output after the activated operation [31]. Consequently, we consider that Y is equal to the
covariance of NTK within the transformer layer as the result of the identity activated function.
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GNTK with infinite-width-limit attention. To appropriately incorporate semantic similarity in-
formation of nodes into the model, a multi-head attention mechanism is implemented at the tail
of the each GNN layer except the first and the last layer, and the calculation of the GNTK with
infinite-width-limit attention is to insert an additional procedure after the fully connected layers. For
the two input graphs G and G′, the formulation derived by Eq. 13 is given as[

Θ̂l
R (G,G′)

]
uu′

= 2
[
Σ̂l

R (G,G′)
]
uu′

+
[
Tl (G,G′)

]
uu′

[
Θl

R (G,G′)
]
uu′ ,[

Σ̂l
R (G,G′)

]
uu′

=
[
Tl (G,G′)

]
uu′

[
Σl

R (G,G′)
]
uu′ ,

(14)

where Tl (G,G′) is the result of matrix multiplication between the column vector of the diagonal of
Σl

R (G,G) and row vector of the diagonal of Σl
R (G′, G′). The affine transformation of the input

GNTK corresponding to the aggregation phase as described in Eq. 5 is changed to (similar to Σl
0):[

Θl
0 (G,G

′)
]
uu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Θ̂l−1

R (G,G′)
]
vv′
, (15)

2.3 The Proposed GraphQNTK

We first show that estimating the single-layer GraphQNTK and its covariance with infinite-width-
limit attention mechanism can be efficiently reconstructed in the regime of quantum computing, and
generalize to the multi-layer model. The following statements only consider two input graphs G =
(V,E) and G′ = (V ′, E′) with |V | = n and |V ′| = n′, and the corresponding feature matrix H =

[h⊤
1 , · · · ,h⊤

u , · · · ,h⊤
n ] ∈ Rn×d and H′ = [h⊤

1 , · · · ,h⊤
u′ , · · · ,h⊤

n′ ] ∈ Rn′×d. The approximate
estimation of GNTK is denoted as Θ̄ ∈ Rn×n′

and its element is Θ̄uu′ . The corresponding
covariance is Σ̄ ∈ Rn×n′

and Σ̄uu′ . We use Θ̄GG′ ∈ R to represent GraphQNTK after readout. We
omit the subscript R for clarity. The same setting can be easily generalized to the arbitrary pair of
graphs G,G′ ∈ G by introducing auxiliary index registers. First, we introduce the quantum data
structure accessible to the classical data, as commonly used by QML algorithms [52, 36, 34, 71].

Feature encoding. Using the storage structure as stated in our proposed Theorem 1 in Appendix,
the feature matrix can be prepared into the QRAM at the initialization of the algorithm. The data
encoding only occurs a single time and readout operation only takes logarithmic complexity time
with respect to the number of samples n and dimension of feature d. The quantum representations
corresponding to the encoded feature vector and feature matrix are as follows

|u⟩ |0⟩ → |u⟩ |hu⟩ , |0⟩ → 1

∥H∥F

∑
u

∥hu∥ |u⟩,

|u′⟩ |0⟩ → |u′⟩ |hu′⟩ , |0⟩ → 1

∥H′∥F

∑
u′

∥hu′∥ |u′⟩.
(16)

Estimation of the initialized NTK. The empirical uncentered covariance of inputs
[
Σ0(G,G′)

]
uu′

and the initialized GNTK
[
Θ0(G,G′)

]
uu′ is the inner product between hu and hu′ . Fol-

lowing a similar approach to [37], the inner product between two vectors with respect to
their quantum representations can be estimate efficiently by introducing an auxiliary register.
Specifically, estimation of the inner product h⊤

u hu′ can be performed by constructing the state
1√
2
(|u⟩|u′⟩|0⟩| |hu⟩⟩+ |u⟩|u′⟩|1⟩| |hu′⟩⟩). Applying a Hadamard gate on the third register gives the

state |u⟩|u′⟩
(√
Puu′ |0, guu′⟩+

√
1− Puu′ |1, g′uu′⟩

)
, where Puu′ =

1+h⊤
u hu′
2 is the estimation of

the inner product. This procedure takes O(log d) time and we denote this quantum operation by D0,
and we add a subscript to denote the corresponding conditioned operator, i.e, D0

uu′ represents D0 is
conditioned acting on the basis state coupled with state |0⟩ → |u⟩|u′⟩. We can perform the D0

uu′ in su-
perposition such that the state 1√

nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩

(√
Puu′ |0, guu′⟩+

√
1− Puu′ |1, g′uu′⟩

)
can be generated in time O(log(nd)).

Quantum aggregation transformation. Recall that an affine transformation (refer to Eq. 5 and
Eq. 15) acting on the GNTK and its covariance is relative to the neighborhood aggregation defined by
Eq. 1. Therefore, it is indirect to realize an end-to-end speedup similar to the estimation of the inner
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product since the transformation of each element of NTK and the covariance is not independent. To
circumvent this barrier, we derive a unitary quantum aggregation transformation to approximately
reconstruct the affine transformation. Consider the quantum operation D0

uu′ : |u⟩|u′⟩|0⟩|0⟩ →
|u⟩|u′⟩

(√
Puu′ |0, guu′⟩+

√
1− Puu′ |1, g′uu′⟩

)
that is employed to estimate the inner product of

two feature vectors. Define a unitary operator which is used to perform aggregation transformation

U =
∑

v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

|v⟩ |v′⟩ ⟨v| ⟨v′| ⊗ D0
vv′ , (17)

which can be generated by introducing conditional quantum evolution [22]. The operation ⊗ denotes
the tensor product. We apply the U with Hadamard gates to the given initial state, which is given as

H⊗UH⊗|0⟩⊗|0⟩|0⟩ → H⊗U
∑
v,v′

|v, v′⟩ |0⟩|0⟩

→ H⊗
∑

v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

|v, v′⟩
(√

Pvv′ |0, gvv′⟩+
√
1− Pvv′ |1, g′vv′⟩

)
→

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

√
Pvv′ |0⟩⊗ +

√
· |other⟩+ · · ·

(18)

where
√
· |other⟩ represents other computational basis states except for |0⟩⊗ with amplitude

√
·, and

the detailed mathematical expression and the scalar for state normalization are omitted since the
result of the affine transformation has been embedded into the amplitude of |0⟩⊗. The (·)⊗ denotes
that there could be multiple unitary operations acting on multiple registers, depending on the number
of qubits required to encode the classic data. Similar to the inner product estimation, the quantum
aggregation transformation can be performed in superposition and the resulting superposition is

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩
(√

Auu′ |0, yuu′⟩+
√

1−Auu′ |1, y′uu′⟩
)
,

√
Auu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

√
Pvv′

|v| × |v′|
.

(19)

The amplitude
√
Auu′ can be encoded into an ancillary register by using Amplitude Es-

timation (Theorem 3) and Median Evaluation (Theorem 4). The obtained quantum state
1√
nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩|Āuu′⟩|yuu′⟩ whose third register carries the approximate result after

aggregation transformation as described in Eq. 5 and Eq. 15, where |Auu′ − Āuu′ | ≤ ϵ and |yuu′⟩ is a
garbage state. The runtime is O(log(nd)log(1/∆)/ϵ) and ∆ is the proximity defined by the Median
Evaluation. Note that Āuu′ is actually the polynomial combination of the element-wise square root
of the NTK from the previous layer, thus it is an approximate aggregation transformation. In the
experiment, we empirically show that this approximation has a restrictive effect on the performance.

Quantum kernel estimation. For fully-connected neural network, the calculation of each ele-
ment of the NTK and its covariance is only reliant on the element at the same position of the
covariance matrix in the previous fully-connected layer. Besides, the affine transformation of the
GNTK and its covariance can be efficiently approximated by quantum aggregation transforma-
tion and the result has been embedded into the basis states of a superposition. In general, there
exits a unitary V :

∑
x |x, 0⟩ →

∑
x |x, f(x)⟩ for any classical function f with the same time

complexity to evaluate each element of the NTK and each element of the covariance [48, 71].
Specifically, an oracle which operates as the same as classical function defined by Eq. 8 is im-
plemented on the third register of 1√

nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩|Āuu′⟩|yuu′⟩. The resulting NTK is

1√
nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩|Θ̄uu′⟩|yuu′⟩, where Θ̄uu′ is the approximate estimation of its classical

counterpart after R fully-connected layers. The oracle is expected to be with the same complexity
of its classical counterpart, which is associative to the number of fully-connected layers and is
independent on the number of training samples n. For estimation of the GNTK after a transformer
layer (Eq. 14), the covariance Σl

R (G,G) for any G ∈ G requires to be estimated in advance. It
means that the state 1

n

∑
u∈V

∑
u′∈V |u⟩|u′⟩|Σ̄uu′⟩|yuu′⟩ must be estimated for any G(V,E) ∈ G

before input the different graphs, and we only consider the element when u = u′. By taking the
partial trace on the second register, we obtain the state 1√

n

∑
u∈V |u⟩|Σ̄uu⟩|yuu⟩ for graph G and
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1√
n′

∑
u′∈V ′ |u′⟩|Σ̄u′u′⟩|yu′u′⟩ for graph G′. Thus, estimation of the GNTK and its covariance

corresponding to the multiplication part in Eq. 14 is given as
1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Θ̄uu′⟩|yuu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Θ̄uu′ × Σ̄uu × Σ̄u′u′⟩|yuu′⟩,

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Σ̄uu′⟩|yuu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Σ̄uu′ × Σ̄uu × Σ̄u′u′⟩|yuu′⟩.

(20)
This is performed by using the conditional quantum adder and the multiplier conditioned on the
index register, i.e. |u⟩ and |u′⟩, which are designed by [63, 54, 41]. The final GNTK after the
transformer layer can be directly generated by additional quantum arithmetic operations that perform
an element-wise addition between the covariance to the GNTK.

Estimation the GNTK for multiple layers. The quantum aggregation transformation requires
that the approximate NTK and its covariance are embedded into the amplitudes of a superposition.
However, after the quantum kernel estimation, these matrix are embedded into the quantum basis
states of a superposition. To extract them back to the amplitudes, we apply Conditional Rotation [37]
on the register containing the approximate GNTK (and the covariance), which is given by

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Θ̄uu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩(auu′ |0⟩+
√

1− a2uu′ |1⟩),

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Σ̄uu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩(buu′ |0⟩+
√
1− b2uu′ |1⟩),

(21)

where auu′ =

√
Θ̄uu′

maxuu′(Θ̄uu′)
and buu′ =

√
Σ̄uu′

maxuu′(Σ̄uu′)
. We denote this quantum operation as

Dl, l ∈ {1, . . . , L}, where DL is used for the quantum readout operation. Similar to the operation
D0, the quantum aggregation transformation can be performed by generating a unitary operator by
introducing conditional quantum evolution. Notice that auu′ and buu′ can be viewed as

√
Puu′ in the

setting of the single-layer GraphQNTK.

Quantum readout. The resulting NTK is embedded into the basis states of a superposition since
the algorithm ends up in the fully-connected layers. Similar to the classic readout operation, the
summation of all the elements of the NTK matrix at the L-th layer is required. We use Conditional
Rotation to extract the NTK back to the amplitude, and define a unitary O which is a generalization
of the unitary U , where

O =
∑
v∈V

∑
v′∈V

|v⟩ |v′⟩ ⟨v| ⟨v′| ⊗ DL
vv′ . (22)

The unitary O sums the square root of all the elements of the GraphQNTK matrix. And the

resulting GraphQNTK between two input graphs is Θ̄GG′ =
(
∑

u∈V,u′∈V ′
√

Θ̄uu′ )2

n×n′ , where Θ̄uu′ is
the GraphQNTK of the last layer.

Quantum inference to unseen data. We assume that the test data and the label of the training set
are already encoded into the QRAM such that |k∗⟩ ∈ RN , the GraphQNTK between the test graph
G∗, can be evaluated as the same way to the evaluation between the training data. Let Θ̄ ∈ RN×N

denote the GraphQNTK. The final prediction for a test datapoint G∗ is
f∗(G∗) = ⟨k∗|Θ̄−1|y⟩, (23)

which requires solving the linear equation |E⟩ = Θ̄−1|y⟩ and performing inner product estimation
on ⟨k∗|E⟩. A popular quantum algorithm which is designed to solve the quantum linear systems
problem (QLSP) is developed by [13], and its runtime is O(log(N)κs polylog (κs/ϵ)) where s is
the sparsity of matrix Θ̄ and κ is the condition number. To realize the quantum speedup, we assume
a specific sparsity pattern is created in the quantum storage that only keeps O(logN) number of
non-zero elements of the N ×N GraphQNTK matrix and the well-conditioning is achieved by using
Gershgorin circle theorem similar to [71].

2.4 Complexity Study
In Sec. 2.3, we discuss how to approximately estimate GNTK using quantum computing paradigm
between two input graphs. The time complexity is dominated by the quantum aggregation trans-
formation procedure as it requires encoding the amplitude into an additional register, which takes
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Table 1: Classification accuracies on graphs with discrete node attributes. The AttentionGNTK
denotes the GNTK with attention mechanism without both sparsity and well conditioning, while the
GraphQNTK is the kernel after performing these two transformations to meet the conditions for the
use of quantum matrix inversion. The results of other models are taken from [17] except QS-CNN,
which we evaluate on our dataset separation.

Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M

WL subtree [57] 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8 73.8 ± 3.9 50.9 ± 3.8
AWL [30] 87.9 ± 9.8 - - - 74.5 ± 5.9 51.5 ± 3.6
RetGK [69] 90.3 ± 1.1 75.8 ± 0.6 62.5 ± 1.6 84.5 ± 0.2 71.9 ± 1.0 47.7 ± 0.3
GNTK [17] 90.0 ± 8.5 75.6 ± 4.2 67.9 ± 6.9 84.2 ± 1.5 76.9 ± 3.6 52.8 ± 4.6

GCN [39] 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0 74.0 ± 3.4 51.9 ± 3.8
GraphSAGE [21] 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5 72.3 ± 5.3 50.9 ± 2.2
PatchySAN [49] 92.6 ± 4.2 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9 71.0 ± 2.2 45.2 ± 2.8
GIN [67] 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8

QS-CNN [70] 93.1 ± 4.7 78.2 ± 4.6 66.0 ± 4.4 81.4 ± 2.6 72.1 ± 3.7 46.2 ± 4.2

AttentionGNTK 90.0 ± 8.5 76.2 ± 3.8 66.2 ± 5.1 84.1 ± 1.2 76.9 ± 3.2 52.9 ± 3.5
GraphQNTK 88.4 ± 6.5 71.1 ± 3.2 62.9 ± 5.0 77.2 ± 2.7 73.3 ± 3.6 48.1 ± 4.3

O(log(nd)log(1/∆)/ϵ) time. Other quantum operations including estimation of the inner prod-
uct, estimation of the GNTK within the neighborhood aggregation and the fully-connected feature
updating and quantum readout are totally unitary operations which can be efficiently performed
under the regime of quantum computing. For estimating GNTK of each pairs of the graphs (G,G′)
where G,G′ ∈ G, each element of GraphQNTK Θ̄ can be generated simultaneously by introducing
auxiliary index registers. The quantum runtime is O(log(Nnd)). However, evaluating GNTK of the
infinite-width-limit attention requires computing the kernel where the input is two same graphs, which
can be implemented in time O(N). The result should be stored in QRAM in advance which will be
used to update GNTK corresponding the multi-head attention as described in Eq. 14. Therefore, it
takes O(N log(Nnd)) time to train the proposed quantum graph learning model, which achieves
quadratic speedup compared to the existing GKs and completed approaches with O(N2) time.

3 Experiments

We evaluate our method for both GNTK and GraphQNTK with attention mechanism on several
graph classification datasets involving either discrete or continuous attributes. All the experiments
are performed on a workstation with a single machine with 1TB memory, one physical CPU with 28
cores Intel(R) Xeon(R) W-3175X CPU @ 3.10GHz, and a single GPU (Nvidia Quadro RTX 8000).
For our method and all the compared models, We follow the same setting as [17, 67], and report the
average test accuracy and its standard deviation over a 10-fold cross validation on each dataset.

3.1 Experiments Setup

Datasets. For graph with discrete attributes, the benchmark datasets include four bioinformatics
datasets MUTAG, PTC, NCI1, PROTEINS and three social network datasets IMDB-BINARY, IMDB-
MULTI. For each graph, the input attributes is category of the node and they are transformed to
one-hot encoding representations. For datasets where the graphs have no node features, i.e. only
graph structure matters, we use degrees as input node features. For graph with continuous attributes,
we selcect four benchmark datasets including ENZYMES, PROTEINS full, BZR, COX2. All the
datasets can be found in [38]. The statistic information of the datasets are given in Tab. 3 in Appendix.

Compared baselines. We compare our method with state-of-the-art GKs such as WL kernel [57],
AWL [30], RetGK [69], GNTK [17], WWL [62], and GNNs including GCN [39], PatchySAN [49],
GCKN [10], GraphSAGE [21] and GIN [67]. For quantum graph learning, there are very few baseline
available. We report the performance of the quantum walk based subgraph convolutional neural
network (QS-CNN) developed by [70]. The data separation we use is the same as [67] for graph
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Table 2: Classification accuracies on graphs with continuous attributes. The accuracies of other
models are taken from [10]. We only take the results of GCKN under the supervised learning for
a fail comparison. We utilize the similar settings that preprocess the continuous node features to a
normalized feature vector as in [62] for fair comparison (Note that the data encoded into the QRAM
requires normalization, thus it is reasonable to use this data-prepossessing operation).

Dataset ENZYMES PROTEINS BZR COX2

RBF-WL [62] 68.4 ± 1.5 75.4 ± 0.3 81.0 ± 1.7 75.5 ± 1.5
HGK-WL [47] 63.0 ± 0.7 75.9 ± 0.2 78.6 ± 0.6 78.1 ± 0.5
HGK-SP [47] 66.4 ± 0.4 75.8 ± 0.2 76.4 ± 0.7 72.6 ± 1.2
WWL [62] 73.3 ± 0.9 77.9 ± 0.8 84.4 ± 2.0 78.3 ± 0.5
GNTK [17] 69.6 ± 0.9 75.7 ± 0.2 85.5 ± 0.8 79.6 ± 0.4
GCKN [10] 72.8 ± 1.0 77.6 ± 0.4 86.4 ± 0.5 81.7 ± 0.7

AttentionGNTK 69.2 ± 1.1 76.8 ± 1.2 86.7 ± 1.3 82.1 ± 0.4
GraphQNTK 64.8 ± 0.7 72.5 ± 0.3 80.1 ± 1.7 74.3 ± 1.9

datasets with discrete attributes. For graph dataset with continuous attributes, we follow the same
protocol as used in [62] to normalize the input feature vectors for a fair comparison.

3.2 Experiment Results

We apply different hyper-parameter settings to L ∈ {2, 4, 6, 8} and R ∈ {1, 2, 3} and select the
model with the best averaged accuracy. We test the kernel regression using SVM classifier and
the regularization parameter is determined using the search protocol which is the same as the [17].
We report the performance of the quantum approximate GNTK before and after the matrix sparsity
and conditioning operations. The numerical results are listed in Tab. 1 for datasets with discrete
attributes and Tab. 2 for datasets with continuous attributes. The attention method we integrate to
the infinite-width GNNs brings to an improvement in the performance of the model. The results
show that the GNTK with attention mechanism achieves better classification accuracy for graph data
with medium number of nodes and edges. It is demonstrated that the infinite-width-limit attention
captures global node similarity semantics and learns effective structure of the provided graph, which
brings an remarkable accuracy improvement of the model compared with the vanilla GNTK [17].
Moreover, our model performs better than QS-CNN on more than 60% of the datasets with discrete
attributes, given the caveat that QS-CNN is a hybrid graph learning model where the contribution of
the classic components (CNNs, spatial message passing) in their model cannot be ignored. While the
matrix sparsity and conditioning operations have a great influence on the model’s performance, it
can be found that the classification performance of GNTK evaluated by quantum algorithms is still
comparable with that of GKs and vanilla GNNs, where a tradeoff exists between the performance of
the model and the quantum computational efficiency.

4 Conclusion and Broader Impact

This paper has presented a quantum graph learning model to characterize the structural information
while using quantum parallelism to improve computing efficiency. We propose quantum algorithm to
approximately estimate the neural tangent kernel of the underlying graph neural network where a
multi-head quantum attention mechanism is introduced to incorporate semantic similarity of nodes.
Empirical results on graph classification tasks as well as theoretical analysis show the superiority of
our method. The limitation of the paper is that currently it only addresses graph-level embedding and
we leave node-level quantum learning for future work. Our work may raise concerns for encryption,
privacy protection etc. when the quantum hardware become more feasible.
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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