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A Proof of Theorem 1

In order to prove this theorem, we first need the following lemma showing the existence of partially
symmetric CP decompositions.

Lemma 1. Any partially symmetric tensor admits a partially symmetric CP decomposition.

Proof. We show the results for 3-rd order tensors that are partially symmetric w.r.t. their two first
modes. The proof can be straightforwardly extended to tensors of arbitrary order that are partially
symmetric w.r.t. any subset of modes.

Let 7 € R™*™*™ be partially symmetric w.r.t. modes 1 and 2. We have that 7. . ; is a sym-
metric tensor for each ¢ € [n]. By Lemma 4.2 in [11], each tensor T..: admits a symmetric CP
decomposition:

T..i= [AD, AD], ie[n)]
where A() € R™*Fi and R; is the symmetric CP rank of T..i-

By defining R =1 | R;and A = [A() A@) ... A(W] € R™*R one can easily check that 7°
admits the partially symmetric CP decomposition 7~ = [A, A, A] where A € R™* is defined by

{1 fRi+ - +R_1<r<Ri+---+R;

Aiy = ,
or 0 otherwise.

)

We can now prove Theorem 1.

Theorem. The function computed by a CP layer (Eq. (1)) is permutation-invariant. In addition, any
permutation-invariant multilinear polynomial f : (R)* — R9 can be computed by a CP layer (with
linear activation function).

Proof. The fact that the function computed by a CP layer is permutation-invariant directly follows
from the definition of the CP layer and the fact that the Hadamard product is commutative.

We now show the second part of the theorem. Let f : (RF)* — R? be a permutation-invariant multi-
linear polynomial map. Then, there exists permutation-invariant univariate multilinear polynomials
Gij1, g fOr j1,--, jx € [F] and i € [d] such that

d d
f(X1> T axk)i = Z T Z Gij1,- ,jk((xl)jlﬂ T (Xk)jk)'
=1 jr=1
Moreover, by definition, each such polynomial satisfies

7117“7%) al gt i
Gij1,- (a17a27 @ § § Tl i 1Ay Ay

11=0 1, =0

(17]11 "
ik

flxq,---,x Z Z Z Z Z(i]l)"”;]k) Xl)jl (Xk);’;

Jj1=1 Jr=141=0 i =0
(7]1 Jk)

for some scalars 7;, k), Putting those two expressions together, we get

We can then group together the coefficients 7, corresponding to the same monomials

(x1)* -+ (xx)}*. E.g., the coefficients 7(10]1’ ;b’jk) all correspond to the same monomial (x1);,

for any values of js, j3,-- -, jx. Similarly, all the coefficients ’7'( L v’ ) all correspond to the

same monomial (X2)j, - -- (Xy);, for any values of j;. By grouping and summing together
these coefficients into a tensor 7~ € RUFFXx(F+1)xd where T, . . ; is equal to the sum

Z (Z,Jl, :' Jk) , we obtain

21, 1tk
ng[F]ng:FJrl/\ig:O

F+1 F+1 F+1

s S S () ), (),

Ji1=1j2=1 Je=1
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466 Since f is permutation-invariant, the tensor 7 is partially symmetric w.r.t. its first £ modes. Thus, by
467 Lemma 1, there exist matrices A € RE*F and B € R?* such that

Jx, - xk) =T x4 [)il] Xg e Xp [Xlk}

:[[Aa7AaB]] X1 |:X11:| Xg o X |:X1k:|
= T Xl ... T Xk
- 1] 1]
468 with o being the identity function, which concludes the proof.
469 O

a0 B Proof of Theorem 2

471 Theorem. A CP layer or rank F - k can compute the sum and mean aggregation functions for k
472 vectors in R

473 Consequently, for any k > 1 and any GNN N using mean or sum pooling with feature and embedding
474  dimensions bounded by F, there exists a GNN with CP layers of rank F' - k computing the same
475 function as N over all graphs of uniform degree k.

Proof. We will show that the function f : (RF )If — R defined by

k
Flxi,-xp) = ax;
i=1

476 where a € R, can be computed by a CP layer of rank F'k, which will show the first part of the
477 theorem. The second part of the theorem directly follows by letting av = 1 for the sum aggregation
478 and o = 1/k for the mean aggregation.

Lete;, - ,epy; be the canonical basis of RE+1 and let ey, - ,ep be the canonical basis of RYE,
We define the tensor T~ € R +1)x-x(F+1)xd by

d k
T = E E aép+10---0ép+10éjoép+1o---oéF+1oej
j=14=1

£—1 times k—£ times

479 where o denotes the outer (or tensor) product between vectors. We start by showing that contracting &
4g0  vectors in homogeneous coordinates along the first £ modes of 7™ results in the sum of those vectors

a8t weighted by o For any vectors x1, - - - , X3 € RF, we have
X X d k X
7-><1|:11i| X2"'Xk[1k]: ZZQéF+1O"'OéF+1OéjOéF+1O"'OéF+1oej X1|:11] X2"'><k|:
j=1t=1 £—1 times k—£ times
d k
=2 3o (eren [ ]) e [T ) o [V GEren [T+ (o [
: F+1, 1 F+1, 1 K 1 F+1, 1 F+1, 1
j=11¢=1
k
=> > (a-1--1-(xp,€;)-1---1) g
j=1/4=1

I
]
B

Q

&

o
~—

QC'D

Jj=1 \¢=1
k
= axp = f(x1,+,Xk)
=1

To show that f can be computed by a CP layer of rank F'k, it thus remains to show that 7~ admits a
partially symmetric CP decomposition of rank F'k. This follows from Corollary 4.3 in [45], which
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487

488
489
490
491
492
493
494

495

496
497

states that any kth order tensor A of CP rank less than & has symmetric CP rank bounded by k.
Indeed, consider the tensors

k
AV :ZaéFJrlo...oéF+loéjoéF+1o...oéF+1
=1 £—1 times k—¢ times
for j € [d]. They are all k-th order tensor of CP rank bounded by k. Thus, by Corollary 4.3 in [45],
they all admit a symmetric CP decomposition of rank at most &, from which it directly follows that

the tensor T~ = Zle AV o e; admits a partially symmetric CP decomposition of rank at most
FEk. O

C Proof of Theorem 3

Theorem. With probability one, any function fop : (RF)* — R? computed by a CP layer (of any
rank) whose parameters are drawn randomly (from a continuous distribution) cannot be computed
by a function of the form

k
i (o (o wn ] )
i=1

where M € R>*E W € REXE and o, o are component-wise activation function.

Proof. Let fop : (RF)k — R be the function computed by a random CP layer. Le.,

et = (87 [3]) o (a7 [1])

where the entries of the matrices B € R(V+1D>E and A € RM*F are identically and independently
drawn from a distribution which is continuous w.r.t. the Lebesgue measure. It is well know that
since the entries of the two parameter matrices are drawn from a continuous distribution, all the
entries of A and B are non-zero and distinct with probability one. It follows that all the entries
of the vector fop(xy,- -+ ,Xy) are k-th order multilinear polynomials of the entries of the input
vectors X1, - - - , X), which, with probability one, have non trivial high-order interactions that cannot
be computed by a linear map. In particular, with probability one, the map fop cannot be computed

by any map of the form g, : x1,- -+ ,Xg — o’ (M (a (Zle WTx,»))) since the sum pooling

aggregates the inputs in a way that prevents modeling independent higher order multiplicative
interactions, despite the non-linear activation functions. O
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s D Efficiency Study

499 We study efficiency by comparing tGNN with models on Cora on a CPU over 10 runtimes, and
s00 compare the number of model paramterts, number of training epochs per second, and accuracy.
s01  Sampling means we sample *3’ neighbors for each node or we use "Full’ neighborhood.

Table 4: Study of Efficiency vs. Performance on Cora. tGNN in comparison with GNN architectures.

Dropout LR Weight Decay Hidden Rank Head Sampling #Params Time(s) Epoch  Epoch/s  Acc Std
tGNN 0 0.005 5.00E-05 32 8 _ 3 58128 290.9774 1389  4.7736 85.55 1.33
tGNN 0 0.005 5.00E-05 32 32 3 94272 790.0373 1321 1.6721  86.25 0.58
tGNN 0 0.005 5.00E-05 32 64 _ 3 142464  383.2255 1343 35045 86.06 1.08
tGNN 0 0.005 5.00E-05 32 128 _ 3 238848  999.1514 1247 | 12481 86.76 1.19
tGNN 0 0.005 5.00E-05 32 256 _ 3 431616  1193.7131 1272 | 1.0656 86.97 1.24
tGNN 0 0.005 5.00E-05 32 512 _ 3 817152  1621.9083 1332 | 0.8213 87.33 1.83
tGNN 0 0.005 5.00E-05 32 1024 3 1588224 2377.5139 1265 | 0.5321  87.62 1.63
GCN 0 0.005 5.00E-05 32 _ _ 3 46080 212.3576 1509 [ 7.1059 8429 1.02
GCN 0 0.005 5.00E-05 32 _ _ Full 46080 205.0601 1276 | 6.2226 8524 1.69
GCN 0 0.005 5.00E-05 64 _ _ 3 92160 316.6461 1240 3916  85.12 2.11
GCN 0 0.005 5.00E-05 64 _ _ Full 92160 3183962 1161  3.6464 8559 2.03
GAT 0 0.005 5.00E-05 32 _ 1 3 92238 605.3269 1998  3.3007 | 83.66 | 1.54
GAT 0 0.005 5.00E-05 32 _ 1 Full 92238 548.7319 1638 29851 84.79 226
GAT 0 0.005 5.00E-05 32 _ 8 3 762992  1491.5643 1594 1.069 8626 1.35
GAT 0 0.005 5.00E-05 32 _ 8 Full 762992  1524.4348 1276 0.837 87.07 1.64
GAT 0 0.005 5.00E-05 64 _ 1 3 184462  626.4011 1740 27778 84.15 129
GAT 0 0.005 5.00E-05 64 _ 1 Full 184462 6827776 1465  2.1456 86.07 2.55
GAT 0 0.005 5.00E-05 64 _ 8 3 1525872 2164.689 1348 | 0.6227 8532 1.31
GAT 0 0.005 5.00E-05 64 _ 8 Full 1525872 2143.036 1105 | 0.5156 87.01 0.96
GCN2 0 0.005 5.00E-05 32 _ _ 3 48128 256.9575 1708 6.647 8317 1.5
GCN2 0 0.005 5.00E-05 32 _ _ Full 48128 210.7702 1302 | 6.1773 84.38 2.03
GCN2 0 0.005 5.00E-05 64 _ _ 3 100352 353.0055 1581 44787 847 1.13
GCN2 0 0.005 5.00E-05 64 _ _ Full 100352 307.7913 1219 39605 84.79 1.64
GCN2 0 0.005 5.00E-05 Input Dim _ _ 3 4117009 3013.6082 1051 [ 0.3488 ° 86.72 1.82
GCN2 0 0.005 5.00E-05 Input Dim _ _ Full 4117009 3091.4392 1013 [ 0.3277  87.54 1.66

Table 5: Study of Efficiency vs. Performance on Cora. CP pooling in comparison with classical
pooling techniques.

Dropout LR  Weight Decay Hidden Rank Sampling #Params Time(s) Epoch Epoch/s Acc  Std
tGNN 0 0.005 5.00E-05 32 8 3 58128  290.9774 1389  4.7736 | 85.55 1.33
Mean 0 0.005 5.00E-05 32 _ Full 460807 449.2177 2352 [W512358" 83.26 | 1.06
Mean 0 0.005 5.00E-05 64 _ Full 92160  398.3229 1496 | 3.7747  83.88 1.77
Max 0 0.005 5.00E-05 32 _ Full 46080 | 464.0722 2371 | 5.0655 8333  1.96
Max 0 0.005 5.00E-05 64 _ Full 92160  394.1546 1496 | 3.7955 83.68 2.13

ss2 E  Dataset

503 A more detailed statistics of real-world datasets.

Table 6: Statistics of node graphs.

Dataset #Nodes #Edges #Node Features | #Edge Features | #Classes
Cora 2,708 5,429 1,433 / 7
Citeseer 3,327 4,732 3,703 / 6
Pubmed 19,717 44,338 500 / 3
PRODUCTS | 2,449,029 | 61,859,140 100 / 47
ARXIV 169,343 1,166,243 128 / 40
PROTEINS 132,534 | 9,561,252 8 8 112

s« F Hyperparameter

s05 For experiments on real-world datasets, we use NVIDIA P100 Pascal as our GPU computation
506 resource.
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Table 7: Statistics of graph datasets

Dataset #Graphs | #Node Features | #Classes
ZINC 12,000 28 /
CIFARIO 60,000 5 10
MNIST 70,000 3 10
MolHIV 41,127 9 2

507 And the searching hyperparameter includes the learning rate, weight decay, dropout, decomposition
s08 rank R.

Table 8: Hyperparameter searching range corresponding to Section 5.

Hyperparameter Searing Range

learning rate {0.01, 0.001, 0.0001, 0.05, 0.005, 0.0005, 0.003}
weight decay {5e-5 ,5e-4, 5e-3, 1e-5, le-4, 1e-3, 0}
dropout {0,0.1,0.3,0.5,0.7,0.8, 0.9}

R {32, 64, 128, 256, 512, 25, 50, 75, 100, 200}

Table 9: Hyperparameters for tGNN corresponding to Section 5.

Dataset learning rate | weight decay | dropout | R

Cora 0.001 5.00E-05 0.9 | 512
Citeseer 0.001 1.00E-04 0| 512
Pubmed 0.005 5.00E-04 0.1 | 512
PRODUCTS 0.001 5.00E-05 0.3 | 128
ARX1V 0.003 5.00E-05 0] 512
PROTEINS 0.0005 5.00E-04 09| 50
ZINC 0.005 5.00E-04 0| 100
CIFARIO 0.005 1.00E-04 0| 100
MNIST 0.005 5.00E-05 0] 75
MolHIV 0.001 5.00E-05 0.8 | 100
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