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Abstract

Graph Neural Networks (GNNs) are attracting growing attention due to their effec-
tiveness and flexibility in modeling a variety of graph-structured data. Exiting GNN
architectures usually adopt simple pooling operations (e.g., sum, average, max)
when aggregating messages from a local neighborhood for updating node represen-
tation or pooling node representations from the entire graph to compute the graph
representation. Though simple and effective, these linear operations do not model
high-order non-linear interactions among nodes. We propose the Tensorized Graph
Neural Network (tGNN), a highly expressive GNN architecture relying on tensor
decomposition to model high-order non-linear node interactions. tGNN leverages
the symmetric CP decomposition to efficiently parameterize permutation-invariant
multilinear maps for modeling node interactions. Theoretical and empirical
analysis on both node and graph classification tasks show the superiority of tGNN
over competitive baselines. In particular, tGNN achieves the most solid results on
two OGB node classification datasets and one OGB graph classification dataset.

1 Introduction

Graph neural networks (GNNs) generalize traditional neural network architectures for data in the
Euclidean domain to data in non-Euclidean domains [26, 45, 34, 35]. As graphs are very general and
flexible data structures and are ubiquitous in the real world, GNNs are now widely used in a variety
of domains and applications such as social network analysis [20], recommender systems [49], graph
reasoning [55], and drug discovery [42].

Indeed, many GNN architectures (e.g., GCN [26], GAT [45], MPNN [16]) have been proposed. The
essential idea of all these architectures is to iteratively update node representations by aggregating
the information from their neighbors through multiple rounds of neural message passing. The final
node representations can be used for downstream tasks such as node classification or link prediction.
For graph classification, an additional readout layer is used to combine all the node representations to
calculate the entire graph representation. In general, an effective aggregation (or pooling) function is
required to aggregate the information at the level of both local neighborhoods and the entire graph. In
practice, some simple aggregation functions are usually used such as sum, mean, and max. Though
simple and effective in some applications, the expressiveness of these functions is limited as they
only model linear combinations of node features, which can limit their effectiveness in some cases.

A recent work, principled neighborhood aggregation (PNA) [13], aims to design a more flexible
aggregation function by combining multiple simple aggregation functions, each of which is associated
with a learnable weight. However, the practical capacity of PNA is still limited by simply combining
multiple simple aggregation functions. A more expressive solution would be to model high-order
non-linear interactions when aggregating node features. However, explicitly modeling high-order
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non-linear interactions among nodes is very expensive, with both the time and memory complexity
being exponential in the size of the neighborhood. This raises the question of whether there exists
an aggregation function which can model high-order non-linear interactions among nodes while
remaining computationally efficient.

In this paper, we propose such an approach based on symmetric tensor decomposition. We design
an aggregation function over a set of node representations for graph neural networks, which is
permutation-invariant and is capable of modeling non-linear high-order multiplicative interactions
among nodes. We leverage the symmetric CANDECOMP/PARAFAC decomposition (CP) [22, 29]
to design an efficient parameterization of permutation-invariant multilinear maps over a set of node
representations. Theoretically, we show that the CP layer can compute any permutation-invariant
multilinear polynomial, including the classical sum and mean aggregation functions. We also show
that the CP layer is universally strictly more expressive than sum and mean pooling: with probability
one, any function computed by a random CP layer cannot be computed using sum and mean pooling.

We propose the CP-layer as an expressive mean of performing the aggregation and update functions
in GNN. We call the resulting model a tensorized GNN (tGNN). We evaluate tGNN on both node
and graph classification tasks. Experimental results on real-world large-scale datasets show that
our proposed architecture outperforms or can compete with existing state-of-the-art approaches and
traditional pooling techniques. Notably, our proposed method is more effective and expressive than
existing GNN architectures and pooling methods on two citation networks, two OGB node datasets,
and one OGB graph dataset.

Summary of Contributions We propose a new aggregation layer, the CP layer, for pooling and
readout functions in GNNs. This new layer leverages the symmetric CP decomposition to efficiently
parameterize polynomial maps, thus taking into account high-order multiplicative interactions be-
tween node features. We theoretically show that the CP layer can compute any permutation-invariant
multilinear polynomial including sum and mean pooling. Using the CP layer as a drop-in replacement
for sum pooling in classical GNN architectures, our approach achieves more effective and expressive
results than existing GNN architectures and pooling methods on several benchmark graph datasets.

2 Preliminaries

2.1 Notation

We use bold font letters for vectors (e.g., v), capital letters (e.g., M,T ) for matrices and tensors
respectively, and regular letters for nodes (e.g., v). Let G = (V,E) be a graph, where V is the node
set and E is the edge set with self-loop. We use N(v) to denote the neighborhood set of node v, i.e.,
N(v) = {u : e

vu

2 E}. A node feature is a vector x 2 RF defined on V , where x
v

is defined on the
node v. We use ⌦ to denote the Kronecker product, � to denote the outer product, and � to denote
the Hadamard (i.e., component-wise) product between vectors, matrices, and tensors. For any integer
k, we use the notation [k] = {1, · · · , k}.

2.2 Tensors

We introduce basic notions of tensor algebra, more details can be found in [29]. A k-th order tensor
T 2 RN1⇥N2⇥...⇥Nk can simply be seen as a multidimensional array. The mode-i fibers of T
are the vectors obtained by fixing all indices except the i-th one: T

n1,n2,...,ni�1,:,ni+1,...,nk 2 RNi .
The i-th mode matricization of a tensor is the matrix having its mode-i fibers as columns and is
denoted by T (i), e.g., T (1) 2 RN1⇥N2···Nk . We use T ⇥

i

v 2 RN1⇥···⇥Ni�1⇥Ni+1⇥···⇥Nk to denote
the mode-i product between a tensor T 2 RN1⇥···⇥Nk and a vector v 2 RNi , which is defined
by (T ⇥

i

v)
n1,...,ni�1,ni+1,...,nk =

P
Ni

ni=1 T n1,...,nkvni . The following useful identity relates the
mode-i product with the Kronecker product:

T ⇥1 v1 ⇥2 · · ·⇥k�1 vk�1 = T (k)(vk�1 ⌦ · · ·⌦ v1). (1)

2.3 CANDECOMP/PARAFAC Decomposition

We refer to CANDECOMP/PARAFAC decomposition of a tensor as CP decomposition [24, 22].
A Rank R CP decomposition factorizes a k�th order tensor T 2 RN1⇥...⇥Nk into the sum of R
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Figure 1: Example of a rank R symmetric CP decomposition of a symmetric 3-order tensor T 2
RN⇥N⇥N such that T = ⌃R

r=1vr

� v
r

� v
r

.

rank one tensors as T =
P

R

r=1 v1r � v2r � · · · � vkr

, where � denotes the vector outer-product and
v1r 2 RN1 ,v2r 2 RN2 , ...,v

kr

2 RNk for every r = 1, 2, ..., R.

The decomposition vectors, v:r for r = 1, ..., R, are equal in length, thus can be naturally gathered
into factor matrices M1 = [v11, ...,v1R] 2 RN1⇥R, ...,M

k

= [v
k1, ...,vkR

] 2 RNk⇥R. Using the
factor matrices, we denote the CP decomposition of T as

T =
RX

r=1

v1r � v2r � · · · � vkr

= [[M1,M2, ...,Mk

]].

The k-th order tensor T is cubical if all its modes have the same size, i.e., N1 = N2 = ... = N
k

:= N .
A tensor T is symmetric if it is cubical and is invariant under permutation of its indices:

T
n�(1),...,n�(k)

= T
n1,...,nk , n1, · · · , nk

2 [N ]

for any permutation � : [k] ! [k]. A rank R symmetric CP decomposition of a symmetric tensor
T is a decomposition of the form T = [[M, · · · ,M]] with M 2 RN⇥R. It is well known that any
symmetric tensor admits a symmetric CP decomposition [12], we illustrate a rank R symmetric CP
decomposition in Fig. 1.

We say that a tensor T is partially symmetric if it is symmetric in a subset of its modes [28]. For
example, a 3-rd order tensor T 2 RN1⇥N1⇥N3 is partially symmetric w.r.t. modes 1 and 2 if it
has symmetric frontal slices; i.e., T :,:,k is a symmetric matrix for all k 2 [N3]. We prove the fact
that any partially symmetric tensor admits a partially symmetric CP decomposition in Lemma 1
in Appendix A, e.g., if T 2 RN1⇥N1⇥N3 is partially symmetric w.r.t. modes 1 and 2, there exist
M 2 RN1⇥R and W 2 RN3⇥R such that T = [[M,M,W]].

2.4 Graph Neural Networks and Pooling Functions

Given a graph G = (V,E), a graph neural network always aggregates information in a neighborhood
to give node-level representations. During each message-passing iteration, the embedding h

v

corresponding to node v 2 V is generated by aggregating features from N(v) [18]. Formally, at the
l-th layer of a graph neural network,

m

(l)
N(v) = AGGREGATE(l)({h(l�1)

u

, 8u 2 N(v)}),h(l)
v

= UPDATE(l)(h(l�1)
v

,m(l)
N(v)), (2)

where AGGREGATE(l)(·) and UPDATE(l)(·) are differentiable functions, the former being
permutation-invariant. In words, AGGREGATE(l)(·) first aggregates information from N(v), then
UPDATE(l)(·) combines the aggregated message and previous node embedding h

(l�1)
v

to give a new
embedding.

The node representation h

(L)
v

of node v from the last GNN layer L can be used for predicting relevant
properties of the node. For graph classification, an additional READOUT(·) function aggregates
node representations from the final layer to obtain a graph representation h

G

of graph G as,

h

G

= READOUT({h(L)
v

|v 2 V }), (3)

where READOUT(·) can be a simple permutation-invariant function (e.g., sum, mean, etc.) or a more
sophisticated graph pooling function [50, 48].

In the general design of GNNs, it is important to have an effective pooling function to aggregate
messages from local neighborhoods and update node representations (see Eq. equation 2), and to
combine node representations to compute a representation at the graph level (see Eq. equation 3).
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3 Meaning of High-Order of tGNN

In our paper, high-order refers to multi-dimensional feature products between nodes in a neighborhood.
[38, 43] are previous works on high-dimensional feature products, and introduce how to use tensor
methods to achieve those products. They have stated the importance of having high-order products
in physics and geometries. For example, if we have x1 and x2, a simple GNN layer can result in
a vector of [x1, x2, x1 + x2], but our high-order layer result in a vector of [x1, x2, x1 + x2, x1x2]
with another term x1x2. And if we have we have x1, x2, and x3, a simple low-order GNN layer will
result in [x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3] while the high-order layer will result
in a vector of [x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3, x1x2, x1x3, x2x3, x1x2x3] with
extra 4 terms at a higher feature dimension. In general content of GNNs, high-order will normally
refer to the ability of capturing long-range dependencies, the interactions between long-range nodes
[48, 2, 46], but ours refers to the multi-dimensional node feature products. However, the CP layer is
able to capture stacking long-range dependencies by stacking layers like other simple GNNs [26, 45].

One may raise a question on why we need to compute multi-dimensional feature products. The idea
is fairly easy if one thinks the multi-dimensional feature space. Take a molecular graph dataset as
an example, and blood pressure could be one feature. Many studies analyze the impact of blood
pressure on one’s health. Blood pressure is the feature in this case. So, one could try to predict life
expectancy using blood pressure as a feature, but you can imagine that this might not be sufficient.
You really need more information. So you could add age, exercise frequency, and body fat to see if
you can predict a person’s life expectancy. Those additional measurements are also features and now
every individual has a multi-dimensional feature vector consisting of these measurements. However,
a simple GNN with one-dimensional feature interactions may not capture the correlation between
age, exercise frequency, and body fat. There could be some correlation between the three factors
to predict life expectancy. A simple GNN that does age+exercise frequency+body fat is not able to
capture the correlation between those factors. Still, our multi-dimensional feature product can capture
age⇥exercise frequency, age⇥body fat, exercise frequency⇥body fat, age⇥exercise frequency⇥body
fat, all the correlations to predict life expectancy. So in molecular graph case, high-dimensional
feature products are importantly needed to make a prediction as most features are correlated (like in
atom graphs, atom charge, and atom mass), and our model shows some significant improvements on
molecular datasets in Sec.6. And the high-dimensional feature products might also be important for
other networks and applications [38, 43].

4 Tensorized Graph Neural Network
In this section, we introduce the CP-layer and tensorized GNNs (tGNN). For convenience, we let
{x1,x2, ...,xk

} denote features of a node v and its 1-hop neighbors N(v) such that |{v}[N(v)| = k.

4.1 Motivation and Method

We leverage the symmetric CP decomposition to design an efficient parameterization of permutation-
invariant multilinear maps for aggregation operations in graph neural networks, Tensorized Graph
Neural Network (tGNN), resulting in a more expressive high-order node interaction scheme. We
visualize the CP pooling layer and compare it with sum pooling in Fig. 2.

Let T 2 RN⇥N⇥···⇥N⇥M of order k + 1 be a tensor which is partially symmetric w.r.t. its first
k modes. We can parameterize T using a rank R partially symmetric CP decomposition (see
Section 2.3): T = [[W, · · · ,W,M]] where W 2 RN⇥R and M 2 RM⇥R. Such a tensor naturally
defines a map from (RN )k to RM using contractions over the first k modes:

f(x1, · · · ,xk

) = T ⇥1 x1 ⇥2 · · ·⇥k

x

k

= [[W, · · · ,W| {z }
k times

,M]]⇥1 x1 ⇥2 · · ·⇥k

x

k

. (4)

This map satisfies two very important properties for GNNs: it is permutation-invariant (due to
the partial symmetry of T ) and its number of parameters is independent of k (due to the partially
symmetric CP parameterization). Thus, using only two parameter matrices of fixed size, the map in
Eq. equation 4 can be applied to sets of N -dimensional vectors of arbitrary cardinality. In particular,
we will show that it can be leveraged to replace both the AGGREGATE and UPDATE functions in
GNNs.

4



CP Layer

   W

Input Features
x y z

   
1 1 1

W W W

Product 
Pooling 
Layer 

x’ y’ z’

1
 W

x’

 
1

W

y’

1
 W

z’

Activation

M

Linear 
Transformation  

via M

Linear 
Transformation  

via W

=

Output Representation 
of 27 Elements

If Linear Activation

=
=

4-th Order  
Symmetric Tensor T 

}

y

} z

}

x

Figure 2: (Left) Sum pooling followed by a FC layer: the output takes individual components of the
input into account. (Right) The CP layer can be interpreted as a combination of product pooling with
linear layers (with weight matrices W and M) and non-linearities. The weight matrices of a CP layer
corresponds to a partially symmetric CP decomposition of a weight tensor T = [[W,W,W,M]].
It shows that the output of a CP layer takes high-order multiplicative interactions of the inputs’
components into account (in contrast with sum pooling that only considers 1st order terms).

There are several way to interpret the map in Eq. equation 4. First, from Eq. equation 1 we have

f(x1, · · · ,xk

) = T ⇥1 x1 ⇥2 · · ·⇥k

x

k

= T (k+1)(xk

⌦ x

k�1 ⌦ · · ·⌦ x1),

where T (k+1) 2 RM⇥N

k

is the mode-(k + 1) matricization of T . This shows that each element of
the output f(x1, · · · ,xk

) is a linear combinations of terms of the form (x1)i1(x2)i2 · · · (xk

)
ik (k-th

order multiplicative interactions between the components of the vectors x1, · · · ,xk

). That is, f is a
multivariate polynomial map of order k involving only k-th order interactions. By using homogeneous
coordinates, i.e., appending an entry equal to one to each of the input tensors x

i

, the map f becomes
a more general polynomial map taking into account all multiplicative interactions between the x

i

up
to the k-th order:

f(x1, · · · ,xk

) = T ⇥1

h
x

k

1

i
⇥2 · · ·⇥k

h
x1

1

i
= T (k+1)

⇣h
x

k

1

i
⌦ · · ·⌦

h
x1

1

i⌘

where T is now of size (N+1)⇥ · · ·⇥(N+1)⇥M and can still be parameterized using the partially
symmetric CP decomposition T = [[W, · · · ,W,M]] with W 2 R(N+1)⇥R and M 2 RM⇥R. With
this parameterization, one can check that

f(x1, · · · ,xk

) = M

✓✓
W

>

x1

1

�◆
� · · ·�

✓
W

>

x

k

1

�◆◆

where � denotes the component-wise product between vectors. The map f can thus be seen as the
composition of a linear layer with weight W, a multiplicative pooling layer, and another linear map
M. Since it is permutation-invariant and can be applied to any number of input vectors, this map can
be used as both the aggregation, update, and readout functions of a GNN using non-linear activation
functions, which leads us to introduce the novel CP layer for GNN.
Definition 1. (CP layer) Given parameter matrices M 2 Rd⇥R and W 2 RF+1⇥R and activation
functions �,�0, a rank R CP layer computes the function f

CP

: [
i�1(RF )i ! Rd defined by

fCP(x1, · · · ,xk

) = �0
✓
M

✓
�

✓
W

>

x1

1

�
� · · ·�W

>

x

k

1

�◆◆◆

for any k � 1 and any x1, · · · ,xk

2 RF .

The rank R of a CP layer is a hyperparameter controlling the trade-off between parameter efficiency
and expressiveness. Note that the CP layer computes AGGREGATE and UPDATE (see Eq. 2) in
one step. One can think of the component-wise product of the W

>[x
i

1]> as AGGREGATE, while
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the UPDATE corresponds to the two non-linear activation functions and linear transformation M.
We observed in our experiments that the non-linearity � is crucial to avoid numerical instabilities
during training caused by repeated products of W. In practice, we use Tanh for � and ReLU for �0.
Fig. 2 graphically explains the computational process of a CP layer, comparing it with a classical
sum pooling operation. We intuitively see in this figure that the CP layer is able to capture high order
multiplicative interactions that are not modeled by simple aggregation functions such as the sum or
the mean. In the next section, we theoretically formalize this intuition.

Complexity Analysis The sum, mean and max poolings result in O(F
in

(N +F
out

)) time complex-
ity, while CP pooling is O(R(NF

in

+F
out)), where N denotes the number of nodes, F

in

is the input
feature dimension, F

out

is out feature dimension, and R is the CP decomposition rank. In Sec. 6.3,
we experimentally compare tGNN and CP pooling with various GNNs and pooling techniques to
show the model efficiency with limited computation and time budgets.

4.2 Theoretical Analysis

We now analyze the expressive power of CP layers. In order to characterize the set of functions that
can be computed by CP layers, we first introduce the notion of multilinear polynomial. A multilinear
polynomial is a special kind of vector-valued multivariate polynomial in which no variables appears
with a power of 2 or higher. More formally, we have the following definition.
Definition 2. A function g : Rk ! R is called a univariate multilinear polynomial if it can be written
as

g(a1, a2, · · · , ak) =
1X

i1=0

· · ·
1X

ik=0

⌧
i1i2···ika

i1
1 ai22 · · · aik

k

where each ⌧
i1i2···ik 2 R. The degree of a univariate multilinear polynomial is the maximum number

of distinct variables occurring in any of the non-zero monomials ⌧
i1i2···ina

i1
1 ai22 · · · aik

k

.

A function f : (Rd)k ! Rp is called a multilinear polynomial map if there exist univariate
multilinear polynomials g

i,j1,··· ,jn for j1, · · · , jk 2 [d] and i 2 [p] such that

f(x1, · · · ,xk

)
i

=
dX

j1,··· ,jk=1

g
i,j1,··· ,jk((x1)j1 , · · · , (xk

)
jk)

for all x1, · · · ,xk

2 Rd and all i 2 [p]. The degree of f is the highest degree of the multilinear
polynomials g

i,j1,··· ,jk .

Figure 3: Visualization
of relations of
{permutation-invariant
function space} ◆ {CP
function space} ◆
{permutation-invariant
multilinear polynomial
space} ◆ {sum and mean
aggregation functions}.

The following theorem shows that CP layers can compute any
permutation-invariant multilinear polynomial map. We also visually rep-
resent the expressive power of CP layers in Fig. 3, showing that the class
of functions computed by CP layer subsumes multilinear polynomials
(including sum and mean aggregation functions).
Theorem 1. The function computed by a CP layer (Eq. equation 1) is
permutation-invariant. In addition, any permutation-invariant multilinear
polynomial f : (RF )k ! Rd can be computed by a CP layer (with a
linear activation function).

Note also that in Fig. 3 the CP layer is strictly more expressive than
permutation invariant multilinear polynomials due to the non-linear ac-
tivation functions in Def. 1. Since the classical sum and mean pooling
aggregation functions are degree 1 multilinear polynomial maps, it readily
follows from the previous theorem that the CP layer is more expressive
than these standards aggregation functions. However, it is natural to ask
how many parameters a CP layer needs to compute sums and means. We
answer this question in the following theorem.
Theorem 2. A CP layer of rank F · k can compute the sum and mean
aggregation functions over k vectors in RF .

Consequently, for any k � 1 and any GNN N using mean or sum pooling
with feature and embedding dimensions bounded by F , there exists a GNN with CP layers of rank
F · k computing the same function as N over all graphs of uniform degree k.
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It follows from this theorem that a CP layer with 2F 2k can compute sum and mean aggregation over
sets of k vectors. While Theorem 2 shows that any function using sum and mean aggregation can be
computed by a CP layer, the next theorem shows that the converse is not true, i.e., the CP layer is a
strictly more expressive aggregator than using the mean or sum.
Theorem 3. With probability one, any function f

CP

: (RF )k ! Rd computed by a CP layer (of
any rank) whose parameters are drawn randomly (from a distribution which is continuous w.r.t. the
Lebesgue measure) cannot be computed by a function of the form

gsum : x1, · · · ,xk

7! �0

 
M

 
�

 
kX

i=1

W

>
x

i

!!!

where M 2 Rd⇥R, W 2 RF⇥R and �, �0 are component-wise activation function.

This theorem not only shows that there exist functions computed by CP layers that cannot be computed
using sum pooling, but that this is the case for almost all functions that can be computed by (even
rank-one) CP layers.

From an expressive power viewpoint, we showed that a CP layer is able to leverage both low and high-
order multiplicative interactions. However, from a learning perspective, it is clear that the CP layer has
a natural inductive bias towards capturing high-order interactions. We are not enforcing any sparsity
in the tensor parameterizing the polynomial, thus the number and magnitude of weights corresponding
to high-order terms will dominate the result (intuitively, learning a low order polynomial would imply
setting most of these weights to zero). In order to counterbalance this bias, we complement the CP
layer with simple but efficient linear low-order interactions (reminiscent of the idea behind residual
networks [21]) when using it in tGNN:

f(x1, · · · ,xk

) = �0
✓
M

✓
�

✓
W

>
1


x1

1

�
� · · ·�W

>
1


x

k

1

�◆◆◆
+�00(W>

2 x1+...+W

>
2 xk

) (5)

where the first term corresponds to the CP layer and the second one to a standard sum pooling
layer (with �, �0 and �00 being activation functions).

5 Related Work and Discussion

We now discuss relevant work on the parameterization of tensors on graph neural networks. In
general, our work relates to three areas of deep learning: (1) aggregation functions, (2) universal
approximator for set aggregation, (3) high-order pooling, and (4) tensor methods for deep learning.

GNN & Aggregation Scheme [26] successfully define convolutions on graph-structured data
by averaging node information in a neighborhood. [48] prove the incomplete expressivity of mean
aggregation to distinguish nodes, and further propose to use sum aggregation to differentiate nodes
with similar properties. [13] further generalize this idea and show that mean aggregation can be
a particular case of sum aggregation with a linear multiplier, and further propose an architecture with
multiple aggregation channels to adaptively learn low-order information. Most GNNs use low-order
aggregation schemes for learning node representations. To the best of our knowledge, tGNN is the
first GNN architecture that adopts high-order multiplicative interactions in aggregation.
Universal Approximator & Permutation-invariant NN Universal approximators for set aggre-
gation functions have been previously proposed and studied. [51] show that sum pooling is enough
provided that it is combined with two universal approximators. [48] further discuss the limitations of
non-injective set function. [25] propose a generalization of transformers to permutation-invariant sets.
Most universal approximation results for GNN relies on combining simple aggregation functions
(e.g. sum, mean) with universal approximators for the feature and output maps. In contrast, the CP
layer achieves the same goal of being an universal approximator but using a different mean: explicit
computation of multilinear polynomials (in an effective manner using the CP parameterization).
While the approaches might be expressively similar, they may differ from a learning aspect, i.e., how
easy it is for these models to learn a function from data.
High-order Pooling [2] formulate the pooling problem as a multiset encoding problem with
auxiliary information about the graph structure, and propose an attention-based pooling layer that
captures the interaction between nodes according to their structural dependencies. [46] apply second-
order statistic methods because the use of second-order statistics takes advantage of the Riemannian
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geometry of the space of symmetric positive definite matrices. However, high-order in CP pooling
refers to high-dimensional multiplicative feature products, which is different than previous literature.
Tensor Methods Tensor methods allow one to define meaningful geometries to build more expres-
sive models. Authors in [52, 30] define geometries of tensor networks on complex or hypercomplex
manifolds, their models encompass greater freedom in the choice of the product between the algebra
elements. [7] develop a general framework for both probabilistic and neural models for tree-structured
data with a tensor-based aggregation function. [6] leverages permutation-invariant CP-based aggre-
gation function to capture high-order interactions in NLP tasks. Using multiplicative interactions
as a powerful source of non-linearities in neural network models have been studied previously for
convolutional [11, 10, 32] and recurrent networks [41, 44, 47]. The connection between such multi-
plicative interactions with tensor networks have been leveraged both from theoretical and practical
perspectives. The CP layer can be seen as a graph generalization of the convolutional and recurrent
arithmetic circuits considered in [10] and [31], respectively.

6 Experiments on Real-World Datasets
In this section, we evaluate Tensorized Graph Neural Net on real-world node- and graph-level
datasets. We introduce experiment setup in 6.1, compare tGNN with the state-of-the-arts models in
6.2, and conduct ablation study on model performance and efficiency in 6.3. The hyperparameter and
computing resources are attached in Appendix K. Dataset information can be found in Appendix J.

6.1 Experiment Setup
In this work, we conduct experiments on three citation networks (Cora, Citeseer, Pubmed) and
three OGB datasets (PRODUCTS, ARXIV, PROTEINS) [23] for node-level tasks, one OGB dataset
(MolHIV) [23] and three benchmarking datasets (ZINC, CIFAR10, MNIST) [14] for graph-level tasks.

Training Procedure For three citation networks (Cora, Citeseer, Pubmed), we run experiments 10
times on each dataset with 60%/20%/20% random splits used in [9], and report results in Tab. 1. For
data splits of OGB node and graph datasets, we follow [23], run experiments 5 times on each dataset
(due to training cost), and report results in Tab. 1, 2. For benchmarking datasets, we run experiments
5 times on each dataset with data split used in [14], and report results in Tab. 2. To avoid numerical
instability and floating point exception in tGNN training, we sample 5 neighbors for each node. For
graph datasets, we do not sample because the training is already in batch thus numerical instability
can be avoided, and we apply the CP pooling at both node-level aggregation and graph-level readout.

Model Comparison tGNN has two hyperparameters, hidden unit and decomposition rank, we fix
hidden unit and explore decomposition rank. For citation networks, we compare 2-layer GNNs with
32 hidden units. And for OGB and benchmarking datasets, we use 32 hidden units for tGNN, and the
results for all other methods are reported from the leaderboards and corresponding references.

Particularly, tGNN and CP pooling are more effective and expressive than existing pooling techniques
for GNNs on two citation networks, two OGB node datasets, and one OGB graph dataset in Tab. 1, 2.

6.2 Real-world Datasets
In this section, we present tGNN performance on node- and graph-level tasks. We compare tGNN
with several classic baseline models under the same training setting. For three citation networks, we
compare tGNN with several baselines including GCN [26], GAT [45], GraphSAGE [19], H2GCN
[54], GPRGNN [9], APPNP [27] and MixHop [1]; for three OGB node datasets, we compare tGNN
with MLP, Node2vec [17], GCN [26], GraphSAGE [19] and DeeperGCN [33]. And for graph-level
tasks, we compare tGNN with several baselines including MLP, GCN [26], GIN [48], DiffPool [50],
GAT [45], MoNet [37], GatedGCN [4], PNA [13], PHMGNN [30] and DGN [3]. The model choice
is because we propose a new pooling method and want to mainly compare tGNN with other poolings
in standard GNN architectures. Current leading models on OGB leaderboards [23] adopt transformer,
equivariant, fingerprint, C&S, or others, which are more complex than standard GNNs. We visualize
the performance boost and comparisons with GNNs and pooling techniques in Tab. 1,2.

From Tab. 1, we can observe that tGNN outperforms all classic baselines on Cora, Pubmed, PROD-
UCTS and ARXIV, and have slight improvements on the other datasets but underperforms GCN on
Citeseer and DeeperGCN on PROTEINS. On the citation networks, tGNN outperforms others on 2
out of 3 datasets. Moreover, on the OGB node datasets, even when tGNN is not ranked first, it is still
very competitive (top 3 for all datasets). We believe it is reasonable and expected that tGNN does not
outperform all methods on all datasets. But overall tGNN shows very competitive performance and
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Table 1: Results of node-level tasks. Left Table: tGNN in comparison with GNN architectures on
citation networks. Right Table: tGNN in comparison with GNN architectures on OGB datasets.

DATASET Cora Citeseer Pubmed
MODEL Acc Acc Acc

GCN 0.8778±0.0096 0.8139±0.0123 0.8890±0.0032
GAT 0.8686±0.0042 0.6720±0.0046 0.8328±0.0012

GraphSAGE 0.8658±0.0026 0.7624±0.0030 0.8658±0.0011
H2GCN 0.8752±0.0061 0.7997±0.0069 0.8778±0.0028

GPRGNN 0.7951±0.0036 0.6763±0.0038 0.8507±0.0009
APPNP 0.7941±0.0038 0.6859±0.0030 0.8502±0.0009
MixHop 0.6565±0.1131 0.4952±0.1335 0.8704±0.0410
tGNN 0.8808±0.0131 0.80.51±0.0192 0.9080±0.0018

DATASET PRODUCTS ARXIV PROTEINS
MODEL Acc Acc AUC

MLP 0.6106±0.0008 0.5550±0.0023 0.7204±0.0048
Node2vec 0.7249±0.0010 0.7007±0.0013 0.6881±0.0065

GCN 0.7564±0.0021 0.7174±0.0029 0.7251±0.0035
GraphSAGE 0.7850±0.0016 0.7149±0.0027 0.7768±0.0020
DeeperGCN 0.8098±0.0020 0.7192±0.0016 0.8580±0.0017

tGNN 0.8179±0.0054 0.7538±0.0015 0.8255±0.0049

deliver significant improvement on challenging graph benchmarks compared to popular commonly
used pooling methods (with comparable computational cost).

Table 2: Results of tGNN on graph-level tasks
in comparison with GNN architectures.

DATASET ZINC CIFAR10 MNIST MolHIV

MODEL
No edge No edge No edge No edge
features features features features
MAE Acc Acc AUC

MLP 0.710±0.001 0.560±0.009 0.945±0.003
Dwivedi GCN 0.469±0.002 0.545±0.001 0.899±0.002 0.761±0.009

et al. GIN 0.408±0.008 0.533±0.037 0.939±0.013 0.756±0.014
and Hu DiffPool 0.466±0.006 0.579±0.005 0.950±0.004
et al. GAT 0.463±0.002 0.655±0.003 0.956±0.001

MoNet 0.407±0.007 0.534±0.004 0.904±0.005
GatedGCN 0.422±0.006 0.692±0.003 0.974±0.001

Corso et al. PNA 0.320±0.032 0.702±0.002 0.972±0.001 0.791±0.013
Le et al. PHM-GNN 0.793±0.012

Beaini et al. DGN 0.219±0.010 0.727±0.005 0.797±0.009
Ours tGNN 0.301±0.008 0.684±0.006 0.965±0.002 0.799±0.016

Table 3: Results of the tGNN ablation study on
two node- and one graph-level tasks. tGNN in
comparison with high-order CP pooling and low-
order linear sum pooling.

DATASET Cora Pubmed ZINC
MODEL Acc Acc MAE

Non-Linear CP Pooling 0.8655±0.0375 0.8679±0.0103 0.407±0.025
Linear Sum Pooling 0.8623±0.0107 0.8531±0.0009 0.440±0.010

Non-Linear CP + Linear Sum 0.8780±0.0158 0.9018±0.0015 0.301±0.008

In Tab. 2, we present tGNN performance on graph property prediction tasks. tGNN achieves state-
of-the-arts results on MolHIV, and have slight improvements on other three Benchmarking graph
datasets. Overall tGNN achieves more effective and accurate results on 5 out of 10 datasets comparing
with existing pooling techniques, which suggests that high-order CP pooling can leverage a GNN to
generalize better node embeddings and graph representations.

6.3 Ablation and Efficiency Study

In the ablation study, we first investigate the effectiveness of having the high-order non-linear CP
pooling and adding the linear low-order transformation in Tab. 3, then investigate the relations of
the model performance, efficiency, and tensor decomposition rank in Fig. 4. Moreover, we compare
tGNN with different GNN architectures and aggregation functions to show the efficiency in Tab. 5, 7
by showing the number of model parameters, computation time, and accuracy.

In Tab. 3, we test each component, high-order non-linear CP pooling, low-order linear sum pooling,
and two pooling techniques combined, separately. We fix 2-layer GNNs with 32 hidden unit and 64
decomposition rank, and run experiments 10 times on Cora and Pubmed with 60%/20%/20% random
splits used in [9], run ZINC 5 times with 10,000/1,000/1,000 graph split used in [14].

From the results, we can see that adding the linear low-order interactions helps put essential weights
on them. Ablation results show that high-order CP pooling has the advantage over low-order linear
pooling for generating expressive node and graph representations, moreover, tGNN is more expressive
with the combination of high-order pooling and low-order aggregation. This illustrates the necessity
of learning high-order components and low-order interactions simultaneously in tGNN.

Computational Aspect In Fig. 4, we compare model performance with computation costs. We
fix a 2-layer tGNN with 32 hidden channels with 8,16,...,2048,4096 rank, and 2-layer baselines
with 8,16,...,2048,4096 hidden dim. We run 10 times on each citation network with the same
60%/20%/20% random splits for train/validation/test and draw the relations of average test accuracy,
rank/hidden dim, and computation costs. From the figure, we can see that the model performance
can be improved with higher ranks (i.e., Tensor T is more accurately computed as the rank R gets
larger), but training time is also increased, thus it is a trade-off between classification accuracy and
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Figure 4: Results of node classification with increasing rank dimension on three citation datasets.
Left Figure: Left axis shows accuracy, right axis shows #training epochs second, and horizontal axis
indicates rank dim of tGNN or hidden dim of baselines. Right Figure: Left axis shows accuracy,
right axis shows #training epochs second, and horizontal axis indicates rank dim of tGNN.

computation efficiency. And in comparison with baselines, tGNN still has marginal improvements
with higher ranks while the baselines stop improving with larger hidden dimensions.

In Sec. 4.1, we theoretically discuss the time complexity of tGNN. In Appendix H, we experimentally
assess model efficiency by comparing tGNN with GCN [26], GAT [45], GCN2 [8], and mean, max
poolings on Cora on a CPU over 10 runtimes, and compare the number of model parameters, training
epochs per second, and accuracy. The experiments show that tGNN is more competitive in terms of
running time and better accuracy with a fixed number of parameters and the same time budget.

7 Conclusion and Future Work

In this paper, we theoretically develop a high-order permutation-invariant multilinear map for node
aggregation and graph pooling via tensor parameterization. We show its powerful ability to compute
any permutation-invariant multilinear polynomial including sum and mean pooling functions. Experi-
ments demonstrate that tGNN is more effective and accurate on 5 out of 10 datasets, showcasing the
relevance of tensor methods for high-order graph neural network models.

For future work, one interesting direction is to augment various GNN architectures with non-linear
high-order CP layers. Most of the existing GNN models adopt low-order aggregation and pooling
functions, it would be interesting to equip current state-of-the-art models with high-order pooling
functions for a potential performance boost. Another interesting direction is to enhance tGNN with
an adaptive channel mixing mechanism. In tGNN with high-order and low-order pooling functions,
one node receives two channels of information combined in a linear way. The linear combination
may not be sufficient to balance and extract high-order components and low-order components, so it
would be interesting to design an adaptive channel mixing tGNN model for learning from different
node-wise components.
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