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Abstract

Full waveform inversion (FWI) is widely used in geophysics to reconstruct high-
resolution velocity maps from seismic data. The recent success of data-driven
FWI methods results in a rapidly increasing demand for open datasets to serve
the geophysics community. We present OPENFWI, a collection of large-scale
multi-structural benchmark datasets, to facilitate diversified, rigorous, and repro-
ducible research on FWI. In particular, OPENFWI consists of 12 datasets (2.1TB
in total) synthesized from multiple sources. It encompasses diverse domains in
geophysics (interface, fault, CO2 reservoir, etc.), covers different geological sub-
surface structures (flat, curve, etc.), and contains various amounts of data samples
(2K - 67K). It also includes a dataset for 3D FWI. Moreover, we use OPENFWI to
perform benchmarking over four deep learning methods, covering both supervised
and unsupervised learning regimes. Along with the benchmarks, we implement
additional experiments, including physics-driven methods, complexity analysis,
generalization study, uncertainty quantification, and so on, to sharpen our under-
standing of datasets and methods. The studies either provide valuable insights into
the datasets and the performance, or uncover their current limitations. We hope
OPENFWI supports prospective research on FWI and inspires future open-source
efforts on AI for science. All datasets and related information (including codes)
can be accessed through our website at https://openfwi-lanl.github.io/

1 Introduction

Understanding subsurface velocity structures is critical to a myriad of subsurface applications, such
as carbon sequestration, reservoir identification, subsurface energy exploration, earthquake early
warning, etc [1]. They can be reconstructed from seismic data with full waveform inversion (FWI),
which is governed by partial differential equations (PDEs) and can be formulated as a non-convex
optimization problem. FWI has been intensively studied in the paradigm of physics-driven ap-
proaches [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Negative complications of these approaches include high
computation consumption, cycle-skipping, and ill-posedness issues.

With the advance in deep learning techniques, researchers have been actively exploring data-driven
solutions for complicated FWI problems [13, 14, 15, 16, 17]. Recently, data-driven approaches have
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Figure 1: Gallery of OPENFWI, which contains one example of velocity maps from each dataset in OPENFWI.

witnessed exploration for FWI, especially on network architectures such as multilayer perceptron
(MLP) [18, 19], encoder-decoder based convolutional neural networks (CNNs) [17, 20, 21, 22, 23],
recurrent networks [24, 25, 26], generative adversarial networks (GANs) [27, 28, 29], etc. [30]
extended data-driven FWI from 2D to 3D. UPFWI [31] leverages the governing acoustic wave
equation to shift the learning paradigm from supervised to unsupervised. [32] provides a detailed
survey on purely deep learning-based FWI and [33] gives a thorough overview of physics-guided
data-driven FWI approaches.

Data is the oxygen for data-driven approaches, and public datasets figure prominently in developing
cutting-edge machine learning algorithms. However, the FWI community currently experiences a
lack of large public datasets. The existing seismic datasets [34, 35, 18, 17, 36, 37] have not been
released to the public. As a result, it is difficult to perform fair comparisons among different methods.

Table 1: Existing datasets for data-driven FWI. The top row corresponds to our OPENFWI dataset. The
symbols!and% indicate that the dataset has or does not have the corresponding feature, respectively.

Dataset Public Multi-scale
Domains Geological Structures

2D 3D Interface Fault Salt body CO2 storage Natural structure

OPENFWI ! ! ! ! ! ! % ! !

Wang and Ma [34] % % ! % % % % % !

Liu et al. [35] % % ! % ! ! ! % %

Araya-Polo et al. [18] % % ! % ! % ! % %

Yang and Ma [17] % % ! % ! % ! % %

Ren et al. [36] % % % ! ! ! ! % %

Geng et al. [37] % % % ! ! ! % % %

Here, we present OPENFWI, the first large-scale collection of open-access multi-structural seismic
FWI datasets based on our knowledge. It contains 12 datasets, each pairs seismic data with velocity
maps for different subsurface structures. Examples of velocity maps are shown in Figure 1. A
comparison between OPENFWI datasets and other existing datasets for data-driven FWI is listed
in Table 1. In contrast to previous datasets, our OPENFWI datasets are open-source, covering both
2D and 3D scenarios, capturing more geological structures on multiple scales. We emphasize our
datasets have the following favorable characteristics:

• Multi-scale: OPENFWI covers multiple scales of datasets, in terms of the number of data
samples and the file size. The smallest 2D dataset has 15K data samples while the largest
one contains 60K samples. Four of the 2D datasets take 43GB of space each, which supports
training without massive computational power. The 3D dataset occupies 1.4TB of space,
therefore is usually trained in the distributed setting, further expediting the development of
scalable algorithms for deep learning-based FWI.
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Figure 2: Schematic illustration of data-driven FWI and forward modeling. Neural networks are employed
to infer velocity maps from seismic data while forward modeling is to calculate the seismic data using governing
wave equations with velocity map provided.

• Multi-domain: OPENFWI empowers the research on both 2D and 3D scenarios of FWI. The
datasets include velocity maps that are representative of realistic subsurface applications,
such as time-lapse imaging, subsurface carbon sequestration, geologic faults detection, etc.

• Multi-subsurface-complexity: OPENFWI encompasses a wide range of subsurface struc-
tures from simple to complex, such as interfaces, faults, CO2 storages and natural structures
from natural images. The complexity is primarily measured by Shannon entropy. It supports
researchers to start with moderate datasets and refine their methods for more challenging
ones.

OPENFWI enables fair comparison among different methods over multiple datasets. We evaluate
three representative methods (InversionNet [20], VelocityGAN [27], and UPFWI [31]) over 2D
datasets, and assess InversionNet3D [30] on the 3D Kimberlina-V1 dataset. We hope these results
provide a baseline for future work. For attempts on reproducibility, please refer to the resources listed
in Section 1 of the supplementary materials, and the licenses therein.

OPENFWI also facilitates other related studies, such as complexity analysis, uncertainty quantifica-
tion, generalization and so on. Limited by space, we briefly summarize the results of these studies
and provide details in the supplementary materials. In particular, good generalizability is considered
an important property of data-driven FWI, as a utopian method is expected to learn the physics rules
of inversion, thus induces small errors when tested with unseen data. However, our empirical study
shows existing methods suffer non-negligible degradation in terms of generalization, and it is related
to the complexity of subsurface structures of the target datasets.

The rest of the paper is organized as follows: Section 2 introduces the physics background of FWI.
Section 3 presents the datasets’ properties concerned by domain interests. It follows in Section 4
to briefly introduce four deep learning methods for benchmarking, and demonstrate the inversion
performance on each dataset. In Section 6, we initiate a discussion on the complexity of subsurface
structure, the generalization performance, and uncertainty quantification, then move forward to future
challenges. Finally, Section 7 concludes the paper.

2 Seismic FWI and Forward Modeling

Figure 2 provides a concise illustration of 2D data-driven FWI and the relationship between velocity
maps and the seismic data therein. The governing equation of the acoustic wave forward modeling in
an isotropic medium with a constant density is as follows:

∇2p− 1

c2
∂2p

∂t2
= s, (1)
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where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , c is velocity map, p is pressure field and s is source term. Velocity
map c depends on the spatial location (x, y, z) while pressure field p and source term s depend on
the spatial location and time (x, y, z, t). In this study, we focus on controlled source methods, thus
the source term s is given. Forward modeling of acoustic wave propagation entails calculating the
pressure field p by Equation 1 given velocity c. For simplicity, we denote the forward modeling
problems expression as p = f(c), where f(·) represents the highly nonlinear forward mapping.
Data-driven FWI leverages neural networks to learn the inverse mapping as [32]: c = f−1(p).

3 OPENFWI Datasets and Domain Interests

OPENFWI datasets contain diverse subsurface structures covering multiple domains, thus supporting
the study motivated by geophysics domain interests. The basic information and physical meaning of
all datasets in OPENFWI is summarized in Table 2 and Table 3, including 11 2D datasets and one for
3D FWI.

The datasets are divided into four groups: “Vel Family”, “Fault Family”, “Style Family” and “Kimber-
lina Family”, to address five potential topics below. The first three families cover two versions: easy
(A) and hard (B), in terms of the complexity of subsurface structures. Details on the measurement of
dataset complexity can be found in Section 5.1.

Domain interests supported by OPENFWI datasets include:

• Interfaces that outline the subsurface structures and bound the velocity properties of rock
layers [38]. To detect the interfaces, “Vel Family” provides velocity maps comprised of flat
and curved layers that have clear interfaces. The velocity value within the layers gradually
increases with depth in version A and is randomly distributed in version B.

• Faults caused by shifted rock layers can trap fluid hydrocarbons and form reservoirs [39].
Fault detection is crucial for identifying, characterizing, and locating the reservoirs. “Fault
Family” includes discontinuity caused by the faults in the velocity maps, which enables the
fault identification. Version B presents more discontinuities and severer velocity changes
than version A.

• Field data from different survey areas with high diversity and complexity, which have a
significant effect on the inversion accuracy [40]. “Style Family” enriches the diversity of
the dataset by generating the velocity maps from diversified natural images, which enables
the inversion of field data in general cases. Version B has the high-resolution velocity maps
while those in version A are smoothed by a Gaussian filter and the corresponding seismic
data contains fewer events.

• CO2 storage, one of the most promising methods to achieve significant reductions in atmo-
spheric CO2 emissions [41] by injecting CO2 into the reservoirs for long-term storage. The
“Kimberlina Family” has two datasets simulated with high fidelity through a geologic carbon
sequestration (GCS) reservoir [42]. “Kimberlina-CO2” describes the spatial and temporal
migration of the supercritical CO2 plume within the reservoir, which is accompanied by
timestamps within a time frame of 200 years, and can be used for CO2 storage problems,
such as leakage detection and measurement.

• 3D seismic techniques that attract increasing attention as 3D surveys have been widely
implemented since [43]. The “3D Kimberlina-V1” dataset is the first large-scale public
3D FWI dataset. It is generated by multiple institutions [44] and supported under the US
Department of Energy (DOE)-SMART Initiative [45]. It is designed and specified for
the development of such techniques (not restricted to FWI). It contains a large amount of
high-resolution 3D velocity maps and seismic data.

Remarkably, the velocity maps are generated from three sources: math functions, natural images,
and geological reservoirs. This property enhances the diversity and generality of the velocity maps
significantly. The details of the velocity map and seismic data generation pipeline are elaborated
in Section 2 and Section 3 of the supplementary materials, respectively. Moreover, we provide
thorough instructions on the data format, loading, and all necessary information in Section 4 of the
supplementary materials.
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Table 2: Dataset summary. Explanation of data size: Velocity maps follow (depth × width × length); seismic
data represents (#source × time × #receiver in width × #receiver in length).

Group Dataset Size #Train/#Test Seismic Data Size Velocity Map Size

Vel
Family

FlatVel-A/B 43GB 24K / 6K 5× 1000× 1× 70 70× 1× 70

CurveVel-A/B 43GB 24K / 6K 5× 1000× 1× 70 70× 1× 70

Fault
Family

FlatFault-A/B 77GB 48K / 6K 5× 1000× 1× 70 70× 1× 70

CurveFault-A/B 77GB 48K / 6K 5× 1000× 1× 70 70× 1× 70

Style Family Style-A/B 95GB 60K / 7K 5× 1000× 1× 70 70× 1× 70

Kimberlina
Family

Kimberlina-CO2 96GB 15K / 4430 9× 1251× 1× 101 141× 1× 401

3D Kimberlina-V1 1.4TB 1664 / 163 25× 5001× 40× 40 350× 400× 400

Table 3: Physical Meaning of OPENFWI dataset

Dataset
Grid

Spacing

Velocity Map

Spatial Size

Source

Spacing

Source Line

Length

Receiver Line

Spacing

Receiver Line

Length

Time

Spacing

Recorded

Time

“Vel, Fault and Style” Family 10 m 0.7 × 0.7 km2 140 m 0.7 km 10 m 0.7 km 0.001 s 1 s

Kimberlina-CO2 10 m 1.4 × 4 km2 400 m 3.6 km 40 m 4 km 0.002 s 2.5 s

3D Kimberlina-V1 10 m 3.5 × 4 × 4 km3 800 m (4 km, 4 km) 100 m (4 km, 4 km) 0.001 s 5 s

4 OPENFWI Benchmarks

4.1 Deep Learning Methods for FWI

We introduce four deep learning-based methods, InversionNet, VelocityGAN, and UPFWI for 2D
FWI as well as InversionNet3D for 3D FWI, and report the inversion results as the initial benchmark.
As mentioned above, UPFWI is an unsupervised learning method while the rest fall in the classical
supervised learning regime. We provide a summary of each method separately as follows.

InversionNet [20] proposed a fully-convolutional network to model the seismic inversion process.
With the encoder and the decoder, the network was trained in a supervised scheme by taking 2D (time
× # of receivers) seismic data from multiple sources as the input and predicting 2D (depth × length)
velocity maps as the output.

VelocityGAN [27] employed a GAN-based model to solve FWI. The generator is an encoder-decoder
structure performing like the InversionNet, while the discriminator is a CNN designed to classify
the real and fake velocity maps. It further used network-based deep transfer learning to improve the
model’s robustness and generalization.

UPFWI [31] connected the forward modeling and a CNN in a loop to achieve unsupervised learning
without the ground truth velocity maps for training. The velocity maps are predicted by CNN from
the seismic data and then fed into the differentiable forward modeling to reconstruct the seismic
data. Eventually, the loop is closed by calculating the loss between the input seismic data and the
reconstructed ones.

InversionNet3D [30] extended InversionNet into 3D domain. In order to reduce the memory footprint
and improve computational efficiency (i.e., two of the most challenging barriers in 3D inversion), the
network utilized group convolution in the encoder and employed a partially reversible architecture
via invertible layers based on additive coupling [46].

4.2 Inversion Benchmarks

This section demonstrates the baseline results. We show the performance of three 2D deep learning
methods in Table 4 and InversionNet3D for 3D FWI separately in Table 6. The network architectures
of these methods and the hyper-parameters are provided in Section 5 of the supplementary materials.
We consider three metrics: mean absolute error (MAE), rooted mean squared error (RMSE) and
structural similarity (SSIM) [47]. MAE and RMSE both capture the numerical difference between
the predicted and true velocity maps. SSIM measures the perceptual similarity between two images.
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Table 4: Quantitative results of three benchmarking methods on 2D FWI datasets.

Dataset Loss
InversionNet VelocityGAN UPFWI

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

FlatVel-A
ℓ1 0.0143 0.0257 0.9909 0.0118 0.0178 0.9916

0.0621 0.1233 0.9565
ℓ2 0.0124 0.0200 0.9901 0.0605 0.0783 0.9453

FlatVel-B
ℓ1 0.0304 0.0680 0.9356 0.0329 0.0807 0.9521

0.0677 0.1493 0.8874
ℓ2 0.0361 0.0751 0.9273 0.0328 0.0787 0.9556

CurveVel-A
ℓ1 0.0590 0.1231 0.8345 0.0482 0.1034 0.8624

0.0805 0.1411 0.8443
ℓ2 0.0574 0.1116 0.8494 0.0510 0.0976 0.8758

CurveVel-B
ℓ1 0.1448 0.3111 0.6630 0.1268 0.2618 0.7111

0.1777 0.3179 0.6614
ℓ2 0.1658 0.3166 0.6406 0.1428 0.2611 0.6962

FlatFault-A
ℓ1 0.0128 0.0351 0.9834 0.0868 0.1485 0.9313

0.0876 0.2060 0.9340
ℓ2 0.0196 0.0360 0.9830 0.0319 0.0531 0.9798

FlatFault-B
ℓ1 0.0965 0.1636 0.7323 0.0925 0.1600 0.7476

0.1416 0.2220 0.6937
ℓ2 0.1038 0.1637 0.7220 0.0946 0.1553 0.7552

CurveFault-A
ℓ1 0.0303 0.0766 0.9448 0.0258 0.0606 0.9613

0.0500 0.0966 0.9495
ℓ2 0.0331 0.0734 0.9427 0.0216 0.0505 0.9687

CurveFault-B
ℓ1 0.1705 0.2635 0.6137 0.1571 0.2427 0.5996

0.3452 0.5010 0.3941
ℓ2 0.1745 0.2507 0.6130 0.1583 0.2336 0.6033

Style-A
ℓ1 0.0625 0.1024 0.8859 0.0612 0.1000 0.8883

0.1429 0.2342 0.7846
ℓ2 0.0531 0.0857 0.9094 0.0645 0.1025 0.8882

Style-B
ℓ1 0.0669 0.1615 0.6327 0.0697 0.1108 0.6953

0.1702 0.2609 0.6102
ℓ2 0.0557 0.0860 0.7667 0.0649 0.0979 0.7249

Kimberlina-CO2

ℓ1 0.0061 0.0374 0.9872 0.0122 0.0574 0.9716 \ \ \
ℓ2 0.0098 0.0400 0.9798 0.0119 0.0387 0.9527

Table 5: Training time by each benchmarking method on OPENFWI datasets. Notice that the training of
UPFWI and InversionNet3D occupied 32 GPUs, the rest used a single GPU.

Vel Family Fault Family Style Family Kimberlina-CO2 3D Kimberlina-V1
InversionNet 2h 4h 5.5h 3.5h 5.5h
VelocityGAN 8.6h 16h 30h 32h N.A.

UPFWI 30h 60h 60h N.A. N.A.

4.2.1 2D FWI Benchmarks

The training parameters are identical for all 2D datasets, and the model architecture only varies a
little when training using the Kimberlina-CO2 dataset, noticing that its data has different input and
output shapes. Two most commonly used loss functions, ℓ1-norm and ℓ2-norm, are adopted as the
metrics in InversionNet and VelocityGAN while UPFWI uses a combination of ℓ1-norm, ℓ2-norm
and perceptual loss as in [31]. All the experiments are implemented on NVIDIA Tesla P100 GPUs.
Table 4 shows the inversion performance of three models on all 2D datasets, and Table 5 shows the
estimated training time by each method on OPENFWI datasets. Note that UPFWI is not evaluated on
Kimberlina-CO2 because of its high computational cost. The examples of inverted velocity maps and
the ground truth are demonstrated in Figure 3, where we show both successful inversion results and
those unpromising. The details of training configuration and more inversion results can be found in
Section 6 and 7 of the supplementary materials, respectively.

From Table 4, we observe that all three methods perform well on simple datasets such as FlatVel-A
and FlatFault-A. However, there exists considerable space for improvement on difficult datasets
(CurveFault-B, Style-B, etc.). Notably, VelocityGAN outperforms InversionNet on the majority of
datasets by a small margin and shows comparable results on the rest. It is worth mentioning that it
would take much more training time for VelocityGAN to obtain better results than InversionNet. The
performance of the UPFWI velocity maps is lower than the supervised methods to a small degree
because of the limited frequency band in seismic data [48]. The noticeable performance degradation
for CurveFault-B indicates additional improvement on the UPFWI method would be needed.
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(InversionNet)
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Ground Truth
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(InversionNet)

Figure 3: First two rows: Illustration of good predicted velocity maps by InversionNet and ground truth on
four datasets (from left to right): CurveVel-B, FlatFault-A, Style-B, and Kimberlina-CO2. Last two rows:
Illustration of bad predicted velocity maps by InversionNet and ground truth on four datasets (from left to right):
CurveVel-A, CurveFault-A, Style-A, and Kimberlina-CO2.

4.2.2 3D FWI Benchmarks

Kimberlina 3D-V1 is a recently generated experimental dataset, on which only the performance of
InversionNet3D [30] has been reported. In Table 6 we include the performance of InversionNet3Dx1,
the shallowest version of the network, on three-channel distributions, one of which is randomly
selected and the other two are symmetrical. Figure 4 explains the serial number allocation of 25
sources (channels) in the seismic data. Compared to ℓ1 loss, ℓ2 loss leads to a degradation on SSIM
of 3%. More details and analysis can be found in [30].

Figure 4: Spatial Placement of
Sources. Each source is the input
seismic data of one channel.

Table 6: Quantitative results of InversionNet3D on 3D Kimberlina-V1 dataset
with different channel selection strategies of seismic input.

Training Loss Selected Channels MAE ↓ RMSE ↓ SSIM ↑

ℓ1

[1, 2, 14, 15, 16, 20, 23, 24] 0.0108 0.0286 0.9838

[6, 7, 8, 11, 13, 16, 17, 18] 0.0105 0.0276 0.9838

[0, 2, 4, 10, 14, 20, 22, 24] 0.0107 0.0282 0.9835

ℓ2

[1, 2, 14, 15, 16, 20, 23, 24] 0.0154 0.0306 0.9482

[6, 7, 8, 11, 13, 16, 17, 18] 0.0152 0.0302 0.9476

[0, 2, 4, 10, 14, 20, 22, 24] 0.0158 0.0312 0.9427

5 Ablation Study

In this section, we conduct intensive ablation studies including subsurface complexity analysis,
generalization test, and uncertainty quantification. Each study brings insights on sharpening our
understanding of OPENFWI. Moreover, We discover the current limitation of generalizability is
closely related to the subsurface complexity. Limited by space, other additional experiments are
described in the supplementary materials.
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5.1 Velocity Map Complexity Analysis

Recall that the first step of data generation is to synthesize velocity maps from different priors,
simulating various geological subsurface structures (interfaces, layers, faults, etc). Therefore, the
velocity maps encompass different levels of complexity. We employ three standard metrics: Shannon
entropy, spatial information, and gradient sparsity index to compare the relative model complexity of
all 2D datasets. The spatial information captures the average boundary magnitude, and the gradient
sparsity index measures the percentage of non-smooth pixels. Their math formulation is presented in
Section 8 of the supplementary materials, where we also include numerical results and illustrations.

Our aim is to explore the connection between geological subsurface and performance. Therefore we
demonstrate their relationship with three complexity metrics and the SSIM of three 2D benchmark
methods on eight datasets in the Vel and Fault family. The reason for selecting these two families is
that they follow the same generation strategy. The scatter plots and the line plots obtained from linear
regression can be found in Figure 5, which indicates that the inversion performance is negatively
related to the velocity map complexity, corresponding to the numerical results in Table 4. The
conclusion is not surprising due to a straightforward intuition: complex velocity maps should be
more difficult to be inverted from the seismic data.

Figure 5: From left to right: three complexity metrics (spatial information, gradient sparsity index, Shannon
entropy) versus SSIM. Three 2D benchmark methods (InversionNet, VelocityGAN and UPFWI) are colored in
blue, orange and green, respectively. The blue line is obtained from the linear regression on the average SSIM.

5.2 Generalization Study

We perform pair-wise generalization tests across 10 datasets in the “Vel”, “Fault” and “Style” families.
Specifically, we select the best-trained models by VelocityGAN on each dataset ([27] claims that
it shows better generalization results than InversionNet) and tested with the rest 9 datasets. The
generalization performance is measured by the SSIM metric, and we obtain a 10×10 matrix illustrated
in the heatmap of Figure 6, darker color indicates better generalization. We extract the relationship
between these ten datasets based on the generalization performance, shown on the right of Figure 6.
The results are analyzed in two-fold: intra-domain and cross-domain.

FFAFVA CVA CFA
Source
Dataset

STB

FVB CVB FFB CFB STA STB
Target Dataset

Shannon Entropy

Sh
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n 
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FlatFault-B

CurveFault-A
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Style Family
Fault Family
Vel Family

1

0

SSIM

Figure 6: Heatmap (Left) and graph (Right) of the generalization performance . “FVA” is short for “FlatVel-
A”, same applies to the rest datasets. The arrow “X → Y ” implies the SSIM metric is above 0.6 for model
trained on X and tested on Y .
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Figure 7: Uncertainty visualization. The uncertainty is higher on the boundaries compared with other regions.

Intra-domain: Focusing on the 3 diagonal blocks on the heatmap (enclosed with dashed rectangles
of different colors for each data family) in Figure 6, we observe that the lower-triangle entries always
have larger values than those in the upper triangle, implying that generalization from harder datasets
to easier ones is more promising than the other way.

Cross-domain: When the source dataset is fixed, the generalization drops on the target dataset as
the complexity increases. From the graph, we also observe that the degree of nodes on datasets with
“A” is always higher than those with “B”. The Style-B dataset has no incoming or outcoming edges
to datasets in other families, thus can be regarded as a challenging dataset for generalization. More
discussions on the generalization study are given in Section 9 of the supplementary materials.

5.3 Uncertainty Quantification

We conduct experiments on CurveVel-A to quantify uncertainty in InversionNet as a case study. As
shown in Figure 7, the uncertainty on boundaries is higher than in other regions, which implies the
prediction around the boundaries is more sensitive. We also observe that the uncertainty increases
gradually when increasing the noise levels. Moreover, the uncertainty values of cross datasets are
much higher than training and testing on the same dataset, which indicates that domain shifts lead
to an increase in uncertainty. Experiment details and more results are provided in Section 10 of the
supplementary materials.

5.4 Additional Experiments

We have conducted more experiments including the robustness test, the comparison between physics-
driven methods and data-driven methods, the comparison between InversionNet and InversionNet3D
and a demonstration of choosing a dataset for the target in the real scenario. All above tasks answer
for major concerns in the data-driven FWI community. Limited by the space, we briefly present
our findings from these experiments, more details are provided in Section 11, 12, 13, and 14 of
supplementary material, respectively.

• Robustness test: Models are trained on 2D clean datasets but tested on noisy seismic data
over multiple noise levels. Not surprisingly, degradation appears as the noise increases. We
also find InversionNet is the most sensitive model.

• Comparison between data-driven methods and physics-driven methods: We compare
two methods with respect to accuracy and computational cost. The inversion results of
Data-driven methods are better by a large margin, and faster when the ratio between the
number of training and test samples is less than 62.

• Comparison between 3D simulation and 2D slices: We train an InversionNet with 2D
velocity/seismic data slices of the 3D Kimberlina-V1 dataset and compare with the Inversoin-
Net3D benchmark. The results are comparable, though InversionNet3D slightly performs
better (0.9652 compared to 0.9838).

• Choosing a dataset in the real scenario: We choose a real velocity map in [49] and
generate its seismic data, then apply all twenty models trained across ten OPENFWI datasets.
Only for this case, the best model trained using ℓ1 loss is from the FlatVel-B dataset and the
best model trained using ℓ2 loss is from the Style-A dataset.
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6 Discussion

6.1 Future Challenges

In light of the results demonstrated so far, we envisage four future challenges for data-driven FWI as
listed below, where OPENFWI should be able to empower the related studies.

Inversion for complex velocity maps: The deteriorated performance on datasets with high subsurface
complexity necessitates more advanced methods, especially those without reliance on more data.

Generalization of data-driven methods: The field data is usually different from the training dataset
and thus good generalization is crucial for the data-driven FWI in field applications. However, the
existing methods suffer non-negligible degradation on generalization. We expect more robust methods
to handle data from different domains.

Computational efficiency: Based on our experience, UPFWI and InversionNet3D suffer from the
high computational cost, which limits their potential applications. Especially for InversionNet3D, the
training data is down-sampled with several channels, which may lead to the loss of information and
affect its performance. More efficient algorithms are expected for these directions.

Passive seismic imaging: The benchmark results in this paper mainly cover the controlled/active
seismic source imaging problems, but passive seismic problems is also a big sub-field. How to
solve the passive imaging issues using data-driven and FWI methods requires further study and
development. We conduct a preliminary test on event picking for passive data, which can be found in
Section 15 of the supplementary material, to serve as a kick-off experiment for future studies.

6.2 Broader Impact

Data-driven FWI: FWI is a typical scientific problem being studied with physics-driven approaches
for decades, with the rapid development of deep learning, we have seen a myriad of data-driven
approaches. OPENFWI embraces this junction and brings the community with the potential of:
(1) Unified Evaluation, (2) Further Improvement and (3) Re-producibility and Integrity, which
are essential as the study on this topic evolves. We also envision OPENFWI supporting domain
experts attempting to explore deep learning methods with a smooth beginning, and machine learning
professionals pursuing further improvement on the current limitations.

Future Developments: We plan to maintain OPENFWI meticulously by releasing new datasets, and
new benchmarks and serving the community with follow-up questions. There will be workshops
with future updates about OPENFWI, and data competitions with more challenging data/tasks at
the appropriate junction. We also appreciate any feedback from both the geophysics and machine
learning communities on improving OPENFWI.

AI for science: Scientific machine learning (SciML) is demonstrating its great potential in various
disciplines including geoscience. Compared to other fields in machine learning (such as computer
vision and natural language processing), serious data challenges remain - sparse direct measurements,
unbalanced data distribution, inevitable noise, etc. Our effort would hopefully shed some light on
how to overcome those data challenges for SciML to enable exciting progress in typical science-rich
and data-starved scientific fields.

7 Conclusion

In this paper, we introduced OPENFWI, an open-source platform containing twelve datasets and
benchmarks on four deep learning methods. The released datasets have various scales, encompass
diverse domains in geophysics, and have simulated multiple scenarios of subsurface structures. The
current benchmarks showed promising results on some datasets, while the rest may need further
improvement. In addition, we also include complexity analysis, generalization study, and uncertainty
quantification to demonstrate the favorable properties of our datasets and benchmarks. Last, we
discussed existing challenges that can be studied with these datasets and conceived the future
advancement as OPENFWI evolves.
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