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Abstract

Value factorisation is a useful technique for multi-agent reinforcement learning
(MARL) in global reward game, however, its underlying mechanism is not yet
fully understood. This paper studies a theoretical framework for value factorisa-
tion with interpretability via Shapley value theory. We generalise Shapley value
to Markov convex game called Markov Shapley value (MSV) and apply it as
a value factorisation method in global reward game, which is obtained by the
equivalence between the two games. Based on the properties of MSV, we derive
Shapley-Bellman optimality equation (SBOE) to evaluate the optimal MSV, which
corresponds to an optimal joint deterministic policy. Furthermore, we propose
Shapley-Bellman operator (SBO) that is proved to solve SBOE. With a stochastic
approximation and some transformations, a new MARL algorithm called Shapley
Q-learning (SHAQ) is established, the implementation of which is guided by the
theoretical results of SBO and MSV. We also discuss the relationship between
SHAQ and relevant value factorisation methods. In the experiments, SHAQ ex-
hibits not only superior performances on all tasks but also the interpretability that
agrees with the theoretical analysis. The implementation of this paper is placed on
https://github.com/hsvgbkhgbv/shapley-q-learning.

1 Introduction

Cooperative games are a critical research area in multi-agent reinforcement learning (MARL). Many
real-life tasks can be modeled as cooperative games, e.g. the coordination of autonomous vehicles
[1], autonomous distributed logistics [2] and distributed voltage control in power networks [3]. In
this paper, we consider global reward game (a.k.a. team reward game), an important subclass of
cooperative games, wherein agents aim to jointly maximize cumulative global rewards over time.
There are two categories of methods to solve this problem: (i) each agent identically maximizes
cumulative global rewards, i.e. learning with a shared value function [4–6]; and (ii) each agent
individually maximizes distributed values, i.e. learning with (implicit) credit assignments (e.g.
marginal contribution and value factorisation) [7–11].

By the view of non-cooperative game theory, global reward game are equivalent to Markov game [12]
with global reward (a.k.a. team reward). Its aim is to learn a stationary joint policy to reach a Markov
equilibrium so that no agent tends to unilaterally change its policy to maximize cumulative global
rewards. Standing by this view, learning with value factorisation cannot be directly explained [13]. In
∗Correspondence to Yunjie Gu who is also an honorary lecturer at Imperial College London.
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this paper, to clearly interpret the value factorisation, we take the perspective of cooperative game
theory [14], wherein agents are partitioned into coalitions and a payoff distribution scheme is found
to distribute optimal values to coalitions. The corresponding solution is called Markov core, whereby
no agent has an incentive to deviate. When all agents are partitioned into one coalition (called grand
coalition), the payoff distribution scheme naturally plays the role of value factorisation.

Wang et al. [13] extended convex game (i.e. a game model in cooperative game theory) [14] to
dynamic scenarios, which we name as Markov convex game in this paper. We construct the analytic
form of Shapley value for Markov convex game, and prove that it reaches the Markov core under the
grand coalition, named as Markov Shapley value. The optimal Markov Shapley value implies not
only the optimal global value but also that no agent has incentives to deviate from the grand coalition.
Additionally, Markov Shapley value enjoys the following properties: (i) identifiability of dummy
agents; (ii) efficiency; (iii) reflecting the contribution; and (iv) symmetry. These properties aid the
interpretation and validity of value factorisation in the global reward game, and such transparency
and reliability are critical to industrial applications [3].

Based on the efficiency property, we derive Shapley-Bellman optimality equation that is an extension
of Bellman optimality equation [15, 16]. Moreover, we propose Shapley-Bellman operator and prove
its convergence to the Shapley-Bellman optimality equation and its optimal joint deterministic policy.
With a stochastic approximation of Shapley-Bellman operator and some transformations, we derive
an algorithm called Shapley Q-learning (SHAQ). SHAQ learns to approximate the optimal Markov
Shapley Q-value (an equivalent form of the optimal Markov Shapley value). Moreover, we enable
SHAQ decentralised in order to fit the decentralised execution framework and this decentralisation
still remains the convergence condition of Shapley-Bellman operator.

The proposed method, SHAQ, is evaluated on two global reward games such as Predator-Prey
[17] and multi-agent StarCraft benchmark tasks [18]. In the experiments, SHAQ shows not only
generally good performances on solving all tasks but also the interpretability that is deficient in the
state-of-the-art baselines.

2 Markov Convex Game

We now formally define Markov convex game (MCG) that can be described as a tuple
⟨N ,S,A, T,Λ, π,Rt, γ⟩. N is the set of all agents. S is the set of states and A = ×i∈NAi is
the joint action set of all agents wherein Ai is each agent’s action set. T (s,a, s′) = Pr(s′∣s,a)
is defined as the transition probability between the successive states. CS = {C1, ...,Cn} is a coali-
tion structure, where Ci ⊆ N called a coalition is a subset of all agents. Λ is a collection of
coalition structures. ∅ and N are two special cases of coalitions i.e. the empty coalition and
the grand coalition respectively. Conventionally, it is assumed that Cm⋂Ck = ∅,∀Cm,Ck ⊆ N .
π = ×i∈Nπi is the joint policy of all agents. For any coalition C, it is equipped with a coalition
policy πC(aC ∣s) = ×i∈Cπi(ai∣s) defined over the coalition action set AC = ×i∈CAi. Therefore, π can
be seen as the grand coalition policy. Rt ∶ S ×AC → [0,∞) (i.e., a characteristic function) is the
coalition reward at time step t. Accordingly, Rt(s,a) is the grand coalition reward (i.e., equivalent
to the global reward) at time step t that is written as R(s,a) or R for conciseness in the rest of
paper. γ ∈ (0,1) is the discounted factor. The infinite long-term discounted cumulative coalition
rewards is defined as V πC(s) = EπC[∑

∞
t=1 γ

t−1Rt(s,aC) ∣ St = s] ∈ [0,∞), called a coalition value.
Moreover, the empty coalition value V π∅(s) = 0 and V π(s) denotes the grand coalition value (i.e.
also called the global value since the equivalence proof from [13]). The solution of MCG is to
find a tuple ⟨CS, (maxπi xi(s))i∈N ⟩, where (maxπi xi(s))i∈N indicates the payoff distributions (i.e.
credit assignments) under the optimal joint policy given a coalition structure. Under the assumption
Cm⋂Ck = ∅,∀Cm,Ck ⊆ N , the condition for MCG is as follows:

max
πC∪

V πC∪ (s) ≥max
πCm

V πCm (s) +max
πCk

V πCk (s), ∀Cm,Ck ⊆ N ,C∪ = Cm ∪ Ck. (1)

In MCG with the grand coalition i.e., CS = {N}, Markov core, a solution concept describing stability,
is defined as a set of payoff distribution schemes by which no agent has incentives to deviate from
the grand coalition to gain more profits. Mathematically, Markov core can be expressed as:

MarkovCore = {(max
πi

xi(s))i∈N ∣max
πC

x(s∣C) ≥max
πC

V πC(s),∀C ⊆ N , s ∈ S }, (2)
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where maxπC x(s∣C) = ∑i∈Cmaxπi xi(s). It aims to find a payoff distribution scheme (xi(s))i∈N
that can finally converge to Markov core under the optimal joint policy.

To assist the application on Q-learning, we similarly define coalition Q-value asQπC(s,aC) ∈ [0,+∞)
for all coalitions C ⊂ N . Following the above convention, the grand coalition Q-value (or the global
Q-value) can be written as Qπ(s,a). Moreover, the optimal coalition Q-value of C w.r.t. the optimal
joint policy of D ⊆ C (i.e., π∗D) and the suboptimal joint policy of C/D (i.e., πC/D) is defined as
Qπ∗D(s,aC). Therefore, the optimal coalition Q-value of C w.r.t. the optimal joint policy of C is
defined as Qπ∗C(s,aC). Accordingly, the optimal global coalition Q-value w.r.t. the optimal joint
policy of the grand coalition is denoted as Qπ∗(s,a).

3 Markov Shapley Value

By the view of cooperative game theory, the grand coalition is progressively formed by a permutation
of agents. Accordingly, marginal contribution is an implementation of the credit reflecting an agent’s
contribution. The formal definition is shown in Definition 1.
Definition 1. In Markov convex game, with a permutation of agents ⟨j1, j2, ..., j∣N ∣⟩,∀jn ∈ N forming
the grand coalition N , where n ∈ {1, ..., ∣N ∣}, ja ≠ jb if a ≠ b, the marginal contribution of an agent
i is defined as the following equation such that

Φi(s∣Ci) =max
πCi

V πCi∪{i}(s) −max
πCi

V πCi (s), (3)

where Ci = {j1, ..., jn−1} for jn = i is an arbitrary intermediate coalition where agent i would join
during the process of grand coalition formation.
Proposition 1. Agent i’s action marginal contribution can be derived as follows:

Φi(s, ai∣Ci) =max
aCi

Qπ∗Ci (s,aCi∪{i}) −max
aCi

Qπ∗Ci (s,aCi). (4)

As Proposition 1 shows, an agent’s action marginal contribution (analogous to Q-value) can be
derived according to Eq.4. It is usually more useful for solving MARL problems.

It is apparent that marginal contribution only considers one permutation to form the grand coalition.
By the viewpoint from Shapley [19], the fairness is achieved through considering how much the
agent i increases the optimal values (i.e. marginal contributions) of the coalitions in all possible
permutations when it joins in, i.e., maxπCi V

πCi∪{i}(s) −maxπCi V
πCi (s),∀Ci ⊆ N /{i}. Therefore,

we construct Shapley value under Markov dynamics based on the marginal contributions shown in
Definition 2, named as Markov Shapley value (MSV).
Definition 2. Markov Shapley value is represented as

V ϕ
i (s) = ∑

Ci ⊆ N /{i}

∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)!

∣N ∣!
⋅Φi(s∣Ci). (5)

With the deterministic policy, Markov Shapley value can be equivalently represented as

Qϕ
i (s, ai) = ∑

Ci ⊆ N /{i}

∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)!

∣N ∣!
⋅Φi(s, ai∣Ci). (6)

where Φi(s∣Ci) is defined in Eq.3 and Φi(s, ai∣Ci) is defined in Eq.4.

For convenience, we name Eq.6 as Markov Shapley Q-value (MSQ). Briefly, MSV calculates the
weighted average of marginal contributions. Since a coalition may repeatedly appear among all
permutations (i.e. ∣N ∣! permutations), the ratio between the occurrence frequency ∣Ci∣!(∣N ∣− ∣Ci∣−1)!
and the total frequency ∣N ∣! is used as a weight to describe the importance of the corresponding
marginal contribution. Besides, the sum of all weights is equal to 1, so each weight can be interpreted
as a probability distribution. Consequently, MSV can be seen as the expectation of marginal
contributions, denoted as ECi∼Pr(Ci∣N /{i}) [Φi(s∣Ci)]. Note that Pr(Ci∣N /{i}) is a bell-shaped
probability distribution. By the above relationship, Remark 1 is directly obtained.
Remark 1. Uniformly sampling different permutations is equivalent to directly sampling from
Pr(Ci∣N /{i}), since the coalition generation is from the permutation to form the grand coalition.
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Proposition 2. Markov Shapley value possesses properties as follows: (i) identifiability of dummy
agents: V ϕ

i (s) = 0; (ii) efficiency: maxπ V
π(s) = ∑i∈N maxπi V

ϕ
i (s); (iii) reflecting the contribu-

tion; and (iv) symmetry.

Proposition 2 shows four properties of MSV. The most important property is Property (ii) that aids the
formulation of Shapley-Bellman optimality equation. Property (iii) shows that MSV is a fundamental
index to quantitatively describe each agent’s contribution. Property (i) and (iii) play important roles
in interpretation for value factorisation (or credit assignment). Property (iv) indicates that if two
agents are symmetric, then their optimal MSVs should be equal, but the reverse does not necessarily
hold. All these properties that define the fairness are inherited from the original Shapley value [19].

4 Shapley Q-Learning

4.1 Definition and Formulation

Shapley-Bellman Optimality Equation. Based on the Bellman optimality equation [15] and the
following conditions (the interpretability of which are left to Section 4.2):

C.1. Efficiency of MSV (i.e. the result from Proposition 2);

C.2. Qϕ∗
i (s, ai) = wi(s, ai) Q

π∗(s,a) − bi(s), where wi(s, ai) > 0 and bi(s) ≥ 0 are bounded
and ∑i∈N wi(s, ai)

−1bi(s) = 0,

we derive Shapley-Bellman optimality equation (SBOE) for evaluating the optimal MSQ (an equiva-
lent form to optimal MSV) such that

Qϕ∗
(s,a) =w(s,a) ∑

s′∈S
Pr(s′∣s,a)[R + γ ∑

i∈N
max
ai

Qϕ∗
i (s

′, ai)] − b(s), (7)

where w(s,a) = [wi(s, ai)]
⊺ ∈ R∣N ∣+ ; b(s) = [bi(s)]⊺ ∈ R∣N ∣≥0 ; Qϕ∗(s,a) = [Qϕ∗

i (s, ai)]
⊺ ∈ R∣N ∣≥0

and Qϕ∗
i (s, ai) denotes the optimal MSQ. If Eq.7 holds, the optimal MSQ is achieved. Moreover,

it reveals an implication that for any s ∈ S and a∗i = argmaxai Q
ϕ∗
i (s, ai), we have a solution

wi(s, a
∗
i ) = 1/∣N ∣ (see Appendix E.4.1). Literally, the assigned credits would be equal and each

agent would receiveQπ∗(s,a)/∣N ∣ if performing the optimal actions. It is apparent that the efficiency
still holds under this situation, which can be interpreted as an extremely fair credit assignment such
that the credit to each agent should not be discriminated if all of them perform optimally, regardless of
their roles. The equal credit assignment was also revealed by Wang et al. [20] recently from another
perspective of analysis. Nevertheless, wi(s, ai) for ai ≠ argmaxai Q

ϕ∗
i (s, ai) needs to be learned.

Shapley-Bellman Operator. To find an optimal solution described by Eq.7, we now propose an
operator called Shapley-Bellman operator (SBO), i.e., Υ ∶ ×i∈NQϕ

i (s, ai)↦ ×i∈NQϕ
i (s, ai), which

is defined as follows:

Υ (×i∈NQϕ
i (s, ai)) =w(s,a) ∑

s′∈S
Pr(s′∣s,a)[R + γ ∑

i∈N
max
ai

Qϕ
i (s

′, ai)] − b(s), (8)

where wi(s, ai) = 1/∣N ∣ when ai = argmaxai Q
ϕ
i (s, ai). We prove that the optimal joint determinis-

tic policy can be achieved by recursively running SBO in Theorem 1.
Theorem 1. Shapley-Bellman operator is able to converge to the optimal Markov Shapley Q-value
and the corresponding optimal joint deterministic policy when maxs {∑i∈N maxai wi(s, ai)} <

1
γ

.

Shapley Q-Learning. For easy implementation, we conduct transformation for the stochastic
approximation of SBO and derive Shapley Q-learning (SHAQ) whose TD error is shown as follows:

∆(s,a, s′) = R + γ ∑
i∈N

max
ai

Qϕ
i (s

′, ai) − ∑
i∈N

δi(s, ai) Q
ϕ
i (s, ai), (9)

where

δi(s, ai) = {
1 ai = argmaxai Q

ϕ
i (s, ai),

αi(s, ai) ai ≠ argmaxai Q
ϕ
i (s, ai).

(10)
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Actually, the closed-form expression of δi(s, ai) is written as ∣N ∣−1wi(s, ai)
−1. If inserting the

condition that wi(s, ai) = 1/∣N ∣ when ai = argmaxai Q
ϕ
i (s, ai) as well as defining δi(s, ai) as

αi(s, ai) when ai ≠ argmaxai Q
ϕ
i (s, ai), Eq.10 is obtained. The term b(s) is cancelled in Eq.9

thanks to the condition such that ∑i∈N wi(s, ai)
−1bi(s) = 0. Note that the condition to wi(s, ai) in

Theorem 1 should hold for the convergence of SHAQ in implementation (see Appendix E.4.4).

4.2 Validity and Interpretability

In this section, we show the validity of SBOE and the interpretability of SHAQ, i.e., providing the
reasons why SBOE is valid to be formulated and SHAQ is an interpretable value factorisation method
for the global reward game.
Theorem 2. The optimal Markov Shapley value is a solution in the Markov core under Markov
convex game with the grand coalition.
Remark 2. For an arbitrary state s ∈ S, by C.2 it is not difficult to check that even if an arbitrary
agent i is dummy (i.e., Qϕ∗

i (s, ai) = 0 for some i ∈ N ), Qπ∗(s,a) and Qϕ∗
j (s, aj),∀j ≠ i would

not be zero if bi(s) ≠ 0. If the extreme case happens that for an arbitrary state s ∈ S all agents
are dummies, since ∑i∈N wi(s, ai)

−1bi(s) = 0 we are allowed to set bi(s) = 0,∀i ∈ N so that
Qπ∗(s,a) = 0 and efficiency such that maxaQ

π∗(s,a) = ∑i∈N maxai Q
ϕ∗
i (s, ai) is still valid.

First, we give a proof for showing that the optimal MSV is a solution in Markov core under the
grand coalition, as Theorem 2 shows. Since a solution in Markov core implies the optimal global
value (see Remark 5 in Appendix D.2.2), we can conclude that the optimal MSV can lead to the
optimal global value (a.k.a. social welfare), which links Condition C.1 to Markov core. As a result,
solving SBOE is equivalent to solving Markov core under the grand coalition and SHAQ is actually a
learning algorithm that reliably converges to Markov core. As per the definition in Section 2, we can
say that SHAQ leads to the result that no agents have incentives to deviate from the grand coalition,
which provides an interpretation of value factorisation for global reward game. Condition C.2 is a
condition that maintains the validity of the relationship between the optimal MSQ and the optimal
global Q-value even if there exist dummy agents (see Remark 2), so that the definition of SBOE is
valid for MCG and MSQ in almost every case, which preserves the completeness of the theory.

4.3 Implementations

We now describe a practical implementation of SHAQ for Dec-POMDP [21] (i.e. the global reward
game but with partial observations). First, the global state is replaced by the history of each agent
to guarantee the optimal deterministic joint policy [21]. Accordingly, Markov Shapley Q-value is
denoted as Qϕ

i (τi, ai), wherein τi is a history of partial observations of agent i. Since the paradigm
of centralised training decentralised execution (CTDE) [22] is applied, the global state (i.e. s) for
α̂i(s, ai) can be obtained during training.
Proposition 3. Suppose any action marginal contribution can be factorised to the form such that
Φi(s, ai∣Ci) = σ(s,aCi∪{i}) Q̂i(s, ai). With the condition such that

ECi∼Pr(Ci∣N /{i}) [σ(s,aCi∪{i})] = {
1 ai = argmaxai Q

ϕ
i (s, ai),

K ∈ (0,1) ai ≠ argmaxai Q
ϕ
i (s, ai),

we have

{
Qϕ

i (s, ai) = Q̂i(s, ai) ai = argmaxai Q̂i(s, ai),

αi(s, ai) Q
ϕ
i (s, ai) = α̂i(s, ai) Q̂i(s, ai) ai ≠ argmaxai Q̂i(s, ai),

(11)

where α̂i(s, ai) = ECi∼Pr(Ci∣N /{i}) [ψ̂i(s, ai;aCi)] and ψ̂i(s, ai;aCi) ∶= αi(s, ai) σ(s,aCi∪{i}).

Compatible with the decentralised execution, we use only one parametric function Q̂i(τi, ai) to
directly approximate Qϕ

i (τi, ai). By inserting Eq.11 into Eq.9, δi(s, ai) is transformed into the form
as follows:

δ̂i(s, ai) = {
1 ai = argmaxai Q̂i(s, ai),

α̂i(s, ai) ai ≠ argmaxai Q̂i(s, ai),
(12)
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where α̂i(s, ai) = ECi∼Pr(Ci∣N /{i}) [ψ̂i(s, ai;aCi)]. To solve partial observability, Q̂i(τi, ai) is
empirically represented as recurrent neural network (RNN) with GRUs [23]. ψ̂i(s, ai;aCi) is directly
approximated by a parametric function Fs + 1 and thus α̂i(s, ai) can be expressed as follows:

α̂i(s, ai) =
1

M

M

∑
k=1

Fs (Q̂Cki (τCki ,aCki ), Q̂i(τi, ai)) + 1, (13)

where Q̂Cki (τCki ,aCki ) =
1
∣Cki ∣ ∑j∈Cki Q̂j(τj , aj) and Cki is sampled M times from Pr(Ci∣N /{i}) (i.e.,

implemented as Remark 1 suggests) to approximate ECi∼Pr(Ci∣N /{i})[ψ̂i(s, ai;aCi)] using Monte
Carlo approximation; and Fs is a monotonic function, followed by an absolute activation function,
whose weights are generated from hyper-networks w.r.t. the global state. We show that Eq.13 satisfies
the condition to wi(s, ai) in Theorem 1 (see Appendix E.6.1), so it is a reliable implementation.

By using the framework of fitted Q-learning [24] to solve large number of states (i.e., could be usually
infinite) and plugging in the above designed modules, the practical least-square-error loss function
derived from Eq.9 is therefore stated as follows:

min
θ,λ

Es,τ,a,R,τ ′[ ( R + γ ∑
i∈N

max
ai

Q̂i(τ
′
i , ai; θ

−
) − ∑

i∈N
δ̂i(s, ai;λ) Q̂i(τi, ai; θ) )

2

], (14)

where all agents share the parameters of Q̂i(s, ai; θ) and α̂i(s, ai;λ) respectively; and Q̂i(s
′, ai; θ−)

works as the target where θ− is periodically updated. The general training procedure follows the
paradigm of DQN [25], with a replay buffer to store the online collection of agents’ episodes. To
depict an overview of the algorithm, the pseudo code is shown in Appendix A.

5 Related Work

Value Factorisation in MARL. To deal with the instability during training in global reward game
by independent learners [26], the centralised training and decentralised execution (CTDE) [22] was
proposed and it became a general paradigm for MARL. Based on CTDE, MADDPG [27] learns a
global Q-value that can be regarded as assigning the same credits to all agents during training [13],
which may cause the unfair credit assignment [28]. To avoid this problem, VDN [8] was proposed to
learn the factorised Q-value, assuming that any global Q-value equals to the sum of decentralised
Q-values. Nevertheless, this factorisation may limit the representation of the global Q-value. To
mitigate this issue, QMIX [9] and QTRAN [10] were proposed to represent the global Q-value with a
richer class w.r.t. decentralised Q-values, based on the assumption (called Individual-Global-Max)
of convergence to the optimal joint deterministic policy. Markov Shapley value proposed in this
paper belongs to the family of value factorisation, based on the game-theoretical framework called
MCG that enjoys the interpretability. From the conventional cooperative games (e.g., network flow
game [29], induced subgraph game [30] that can be used for modelling social networks, and facility
location game [31]), it is insightful that the coalition introduced in this paper exists. In many scenarios,
however, the information of coalition might be unknown. Therefore, the latent coalition is assumed,
and we only need to concentrate on the observable information, e.g., the global reward.

Relationship to VDN. By setting δi(s, ai) = 1 for all state-action pairs, SHAQ degrades to VDN
[8]. Although VDN tried to tackle the problem of dummy agents, Sunehag et al. [8] did not give
a theoretical guarantee on identifying it. The Markov Shapley value theory proposed in this paper
well addresses this issue from both theoretical and empirical aspects. These aspects show that VDN
is a subclass of SHAQ. The theoretical framework proposed in this paper answers to why VDN
works well in most scenarios but performs poorly in some scenarios (i.e., δi(s, ai) = 1 in Eq.9 was
incorrectly defined over the suboptimal actions).

Relationship to COMA. Compared with COMA [7], each agent i’s credit assignment Q̄i(s, ai) is
mathematically expressed as follows:

Q̄i(s, ai) = Q̄
π
(s,a) − Q̄π−i(s,a−i),

Q̄π−i(s,a−i) =∑
ai

πi(ai∣s)Q̄
π
(s, (a−i, ai)) ,

where subscript −i indicates the agents excluding i. Q̄i(s, ai) can be seen as the action marginal
contribution between the grand coalition Q-value and the coalition Q-value excluding the agent i,
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under some permutation to form the grand coalition wherein agent i is located at the last position.
The efficiency is obviously violated (i.e., the sum of optimal action marginal contributions defined
here is unlikely to be equal to the optimal grand coalition Q-value). In contrast to COMA, SHAQ
considers all permutations to form the grand coalition to preserve the efficiency.

Relationship to Independent Learning. Independent learning (e.g. IQL [26]) can be also seen
as a special credit assignment, however, the credit assigned to each agent is still with no intuitive
interpretation. Mathematically, suppose that Q̄i(s, ai) is the independent Q-value of agent i, we can
rewrite it in the form consisting of action marginal contributions such that

Q̄i(s, ai) = ECi∼Pr(Ci∣N /{i}) [Φ̄i(s, ai∣Ci)] .

It is intuitive to see that the independent Q-value is a direct approximation of MSQ, ignoring coalition
formation, while SHAQ considers coalition formation in approximation. This gives an explanation
for why independent learning works well in some cooperative tasks [32]. Nevertheless, it encounters
the same issue as in COMA, the loss of properties led by the coalition formation.

Relationship to SQDDPG. We now discuss the relationship between SQDDPG [13] and SHAQ. In
terms of algorithms, SQDDPG belongs to policy gradient methods (i.e. an approximation of policy
iteration) while SHAQ belongs to value based methods (i.e. an approximation of value iteration).
Since policy iteration (with one-step policy evaluation) is equivalent to value iteration [33] (at least
under a finite state space and a finite action space), the theory behind SHAQ directly fills the gap in
SQDDPG on theoretical guarantees of convergence to optimal joint policy. Specifically, the learning
procedure of SQDDPG iteratively performs the following two stages:

Stage 1: min
θ

Es,a,R,s′[ ( R + γ ∑
i∈N

Q̂ϕ
i (s

′, a′i; θ
−
) − ∑

i∈N
Q̂ϕ

i (s, ai; θ) )
2

].

Stage 2: πi(s) ∈ argmax
ai

Q̂ϕ
i (s, ai; θ).

It can be observed that both SQDDPG and SHAQ ideally converge to the same optimal MSQs w.r.t.
the optimal actions such that

Es,s′[ ( max
a
R(s,a) + γ ∑

i∈N
max
a′i

Q̂ϕ∗
i (s

′, a′i) − ∑
i∈N

max
ai

Q̂ϕ∗
i (s, ai) )

2

] = 0.

However, about suboptimal actions, SQDDPG does not provide any theoretical guarantee, whereas
SHAQ does with specific implementations as shown in Eq.13 to match the theoretical results shown
in this paper. Note that this is critical to reliable interpretations of the optimal MSQ w.r.t. suboptimal
actions (e.g., for detecting adversarial attacks on controllers if deployed in industry [34]).

6 Experiments

In this section, we show the experimental results of SHAQ on Predator-Prey [17] and various tasks in
StarCraft Multi-Agent Challenge (SMAC) 2. The baselines that we select for comparison are COMA
[7], VDN [8], QMIX [9], MASAC [36], QTRAN [10], QPLEX [37] and W-QMIX (including CW-
QMIX and OW-QMIX) [35]. The implementation details of our algorithm are shown in Appendix
B.1, whereas the implementation of baselines are from [35] 3. We also compare SHAQ with SQDDPG
[13] 4, which is shown in Appendix C.3. For all experiments, we use the ϵ-greedy exploration strategy,
where ϵ is annealed from 1 to 0.05. The annealing time steps vary among different experiments.
For Predator-Prey, we apply 1 million time steps for annealing, following the setup from [37]. For
the easy and hard maps in SMAC, we apply 50k time steps for annealing, the same as that in [18];
while for the super-hard maps in SMAC, we apply 1 million time steps for annealing to obtain more
explorations so that more state-action pairs can be visited. About the replay buffer size, we set as
5000 for all algorithms that is the same as that in [35]. To fairly evaluate all algorithms, we run
each experiment with 5 random seeds. All graphs showing experimental results are plotted with the

2The version that we use in this paper is SC2.4.6.2.69232 rather than the newer SC2.4.10. As reported from
[35], the performance is not comparable across versions.

3The source code of baseline implementation is from https://github.com/oxwhirl/wqmix.
4The code of SQDDPG is implemented based on https://github.com/hsvgbkhgbv/SQDDPG.
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median and 25%-75% quartile shading. About the interpretability of algorithms, we evaluate the
algorithms with both both ϵ-greedy policy (i.e., ϵ = 0.8) for obtaining mixed optimal and suboptimal
actions and greedy policy for obtaining pure optimal actions. The ablation study of SHAQ is shown
in Appendix C.4.

6.1 Predator-Prey

We firstly run the experiments on a partially-observable task called Predator-Prey [17], wherein 8
predators that are feasible to be controlled aim to capture 8 preys with random policies in a 10x10
grid world. Each agent’s observation is a 5x5 sub-grid centering around it. If a prey is captured by
coordination of 2 agents, predators will be rewarded by 10. On the other hand, each unsuccessful
attempt by only 1 agent will be punished by a negative reward p. In this experiment, we study the
behaviors of each algorithm under different values of p (that describes different levels of coordination).
As [35] reported, only QTRAN and W-QMIX can solve this task, while [37] found that the failure
was primarily due to the lack of explorations. As a result, we apply the identical epsilon annealing
schedule (i.e. 1 million time steps) adopted in [37].
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(b) p=-1.
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(c) p=-2.

Figure 1: Median test return for Predator-Prey with different values of p.

Performance Analysis. As Figure 1 shows, SHAQ can always solve the tasks with different values
of p. With the epsilon annealing strategy from [37], W-QMIX does not perform as well as reported in
[35]. The reason could be its poor robustness to the increased explorations [35] for this environment
(see the evidential experimental results in Appendix C.6). The good performance of VDN validates
our analysis in Section 5, whereas the performance of QTRAN is surprisingly almost invariant to the
value of p. The performances of QPLEX and QMIX become obviously worse when p=-2. The failure
of MASAC and COMA could be due to that relative overgeneralisation5 prevents policy gradient
methods from better coordination [39].

(a) SHAQ: ϵ-greedy. (b) SHAQ: greedy.

Figure 2: Visualisation of the evaluation for SHAQ on Predator-Prey: each red square is a controllable
agent, whereas each green square indicates a prey. Each agent’s factorised Q-value is reported in the
bubble in blue and the symbols within the squares indicate the action of each agent (i.e., arrows imply
the movement direction, “S” implies staying and “C” implies capturing a prey that is valid only when
the agent is around a prey).

Interpretability of SHAQ. To verify that SHAQ possesses the interpretability, we show its credit
assignment on Predator-Prey. As we see from Figure 2b, all agents are around and capture a prey, so

5Relative overgeneralisation is a common game theoretic pathology that the suboptimal actions are preferred
when matched with arbitrary actions from the collaborating agents [38].
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both of them perform the optimal actions and deserve almost the equal optimal credit assignment
as 4.2927 and 4.0644, which verifies our theoretical claim. From Figure 2a, it can be seen that two
agents are far away from preys, so they receive low credits as 2.4709 and 2.8435. On the other hand,
the other two agents are around a prey, but they do not perform the optimal action “capture”, so
they receive less credits than the two agents in Figure 2b. Nevertheless, they are around a prey, so
they perform better than those agents that are far away from preys and receive comparatively greater
credits as 3.2933 and 3.1159. The coherent credit assignments in both Figure 2a and 2b implies that
the assigned credits reflect agents’ contributions (verifying (iii) in Proposition 2) , i.e., each agent
receives the credit that is consistent with its decision.

6.2 StarCraft Multi-Agent Challenge

We next evaluate SHAQ on the more challenging SMAC tasks, the environmental settings of which
are the same as that in [18]. To broadly compare the performance of SHAQ with baselines, we
select 4 easy maps: 8m, 3s5z, 1c3s5z and 10m_vs_11m; 3 hard maps: 5m_vs_6m, 3s_vs_5z and
2c_vs_64zg; and 4 super-hard maps: 3s5z_vs_3s6z, Corridor, MMM2 and 6h_vs_8z. All training is
through online data collection. Due to the limited space, we only show partial results in the main part
of paper and leave the rest in Appendix C.1.

Performance Analysis. It shows in Figure 3 that SHAQ outperforms all baselines on all maps, except
for 6h_vs_8z. On 6h_vs_8z, SHAQ can beat all baselines except for CW-QMIX. VDN performs
well on 4 maps but bad on the other 2 maps, which still verifies our analysis in Section 5. QMIX
and QPLEX perform well on the most of maps, except for 3s_vs_5z, 2c_vs_64zg and 6h_vs_8z. As
for COMA, MADDPG and MASAC, their poor performances could be due to the weak adaptability
to challenging tasks. Although QTRAN can theoretically represent the complete class of the global
Q-value [10], its complicated learning paradigm could impede the convergence to the value function
for challenging tasks and therefore result in the poor performance. Although W-QMIX performs well
on some maps, owing to lacking a law on hyperparameter tuning [35] it is difficult to be adapted for
all scenarios (see Appendix C.2).
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(b) 3s_vs_5z.
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(c) 2c_vs_64zg.
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(d) 3s5z_vs_3s6z.
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(e) Corridor.
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(f) 6h_vs_8z.

Figure 3: Median test win % for hard (a-c), and super-hard (d-f) maps of SMAC.

Interpretability of SHAQ. To further show the interpretability of SHAQ, we also conduct a test on
3m (i.e. a simple task in SMAC). As seen from Figure 4a, Agent 3 faces the direction opposite to
enemies, meanwhile, the enemies are out of its attacking range. It can be understood as that Agent 3
does not contribute to the team and thus it is almost a dummy agent. Its MSQ is 0.84 (around 0) that
correctly catch the manner of a dummy agent (verifying (i) in Proposition 2). In contrast, Agent 1
and Agent 2 are attacking enemies, while Agent 1 suffers from more attacks (with lower health) than
Agent 2. As a result, Agent 1 contributes more than Agent 2 and therefore its MSQ is greater, which
implies that the credits reflect agents’ contributions (verifying (iii) in Proposition 2). On the other
hand, we can see from Figure 4e that with the optimal policies all agents receive almost identical
MSQs (verifying the theoretical results in Section 4.1). The above results well verify the theoretical
analysis that we deliver before.
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(a) SHAQ: ϵ-greedy.
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(b) VDN: ϵ-greedy.
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(d) QPLEX: ϵ-greedy.
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2 5.54292 5.5429

(e) SHAQ: greedy.
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(f) VDN: greedy.
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2 2.62392 2.6239

(g) QMIX: greedy.
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3.73233 3.73233

2 3.60672 3.6067

(h) QPLEX: greedy.

Figure 4: Visualisation of the test for SHAQ and baselines on 3m in SMAC: each colored circle is
the centered attacking range of a controllable agent (in red), and each agent’s factorised Q-value is
reported on the right. We mark the direction that each agent face by an arrow for clearness.

To justify that the MSQs learned by SHAQ are non-trivial, we also show the results of VDN, QMIX
and QPLEX. It is surprising that the Q-values of these baselines are also almost identical among
agents for the optimal actions (however, the property disappears in more complicated scenarios
as shown in Appendix C.5 while the property of SHAQ is still valid). Since VDN is a subclass
of SHAQ and possesses the same form of loss function for optimal actions, it is reasonable that
it obtains the similar results to SHAQ. As for the suboptimal actions, VDN does not possess an
explicit interpretation as SHAQ due to the incorrect definition of δi(s, ai) = 1 over suboptimal actions
(verifying the statement in Section 5). The values of QMIX and QPLEX are difficult to be explained.

7 Conclusion

Summary. This paper generalises Shapley value to Markov convex game, called Markov Shapley
value. Markov Shapley value inherits a number of properties: (i) identifiability of dummy agents;
(ii) efficiency; (iii) reflecting the contribution and (iv) symmetry. Based on Property (ii), we derive
Shapley-Bellman optimality equation, Shapley-Bellman operator and SHAQ. We prove that solving
Shapley-Bellman optimality equation is equivalent to solving the Markov core (i.e., no agent has
incentives to deviate from the grand coalition). Markov convex game with the grand coalition
is equivalent to global reward game [13], wherein Markov Shapley value plays the role of value
factorisation. Since SHAQ is a stochastic approximation of Shapley-Bellman operator that is proved
to solve Shapley-Bellman optimality equation, global reward game with value factorisation becomes
valid standing by the cooperative game theoretical framework (i.e. solving Markov core). Property (i)
and (iii) in Proposition 2 are demonstrated in the experiments showing the interpretability of SHAQ.

Limitation and Future Work. The value of Markov convex game is not limited to solving problems
with the grand coalition, though in this paper we design SHAQ that only focuses on the scenario
with the grand coalition. By removing the condition of supermodularity (see Eq.1), this framework
can be used to study more general coalition games where different coalitions of agents as units may
compete/cooperate with each other. Since the grand coalition and Markov Shapley value is not a
solution in Markov core yet, the learning process becomes more complicated to converge to Markov
core. A possible research direction in future is to investigate dynamically forming the coalition
structure and conducting credit assignments simultaneously.
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A Algorithm of Shapley Q-learning

In this section, we present the pseudo code of Shapley Q-learning in Algorithm 1. The general
paradigm can be divided into such parts: (1) collecting samples through ϵ-greedy strategy and store
the collected samples to a replay buffer for training; (2) sampling a batch of episodes of samples
from the replay buffer; (3) calculating Q̂i(τ

t+1
i , at+1i ; θ−), α̂i(s

k, aki ;λ) and Q̂i(τ
t
i , a

t
i; θ); and (4)

constructing a loss of Shapley Q-learning and updating parameters to minimise the loss.

Algorithm 1 Shapley Q-learning
1: Initialise a set of agents N and set N = ∣N ∣
2: Initialise Q̂i(τi, ai; θ) with the shared parameters among agents
3: Initialise α̂i(s, ai;λ) with the shared parameters among agents
4: Initialise Q̂i(τi, ai; θ

−) by copying Q̂i(τi, ai; θ) with the shared parameters among agents
5: Initialise a replay buffer B
6: repeat
7: Initialise a container E for storing an episode
8: Observe an initial global state s1 and each agent’s partial observation o1

i from an environment
9: for t=1:T do

10: Get τ ti = (o
m
i )m=1∶t for each agent

11: For each agent i , select an action

at
i = {

a random action with probability ϵ
argmaxai Q̂

∗
i (τ

t
i , ai; θ) otherwise

12: Execute at
i of each agent to get the global reward Rt, st+1 and each agent’s ot+1

i

13: Store ⟨st, (oti)i=1∶N , (a
t
i)i=1∶N ,R

t, st+1, (ot+1i )i=1∶N ⟩ to E
14: end for
15: Store E to B
16: Sample a batch of episodes with batch size B from B
17: for each sampled episode do
18: for k=1:T do
19: Get each transition ⟨sk, (oki )i=1∶N , (a

k
i )i=1∶N ,R

k, sk+1, (ok+1i )i=1∶N ⟩
20: For each agent i , get τki = (o

m
i )m=1∶k

21: For each agent i , calculate Q̂i(τ
k
i , a

k
i ; θ)

22: For each agent i , calculate αi(s
k, aki ;λ) by Algorithm 2

23: For each agent i , calculate δi(sk, aki ;λ) as follows:

δ̂i(s
k, aki ;λ) = {

1 aki = argmaxai Q̂i(s
k, ai; θ)

α̂i(s
k, aki ;λ) aki ≠ argmaxai Q̂i(s

k, ai; θ) (via Algorithm 2)

24: For each agent i , get τk+1i = (omi )m=1∶k+1
25: For each agent i , get ak+1

i by argmaxai Q̂i(τ
k+1
i , ai; θ)

26: For each agent i , calculate Q̂i(τ
k+1
i , ak+1i ; θ−)

27: end for
28: end for
29: Construct a loss as follows:

min
θ,λ

1

B

B

∑
k=1
[ ( Rk

+ γ ∑
i∈N

max
ak
i

Q̂i(τ
k+1
i , ak+1i ; θ−) − ∑

i∈N
δ̂i(s

k, aki ;λ) Q̂i(τ
k
i , a

k
i ; θ) )

2
]

30: Update θ and λ through the above loss
31: Periodically update θ− by copying θ
32: until Q̂i(τi, ai; θ) converges

Implementation of Sampling from Pr(Ci∣N /{i}) (Line 4 in Algorithm 2). As introduced in
Remark 1, the analytic form of Pr(Ci∣N /{i}) is ∣Ci∣!(∣N ∣−∣Ci∣−1)!∣N ∣! that is actually the occurrence
frequency of correlated coalition Ci. Since each coalition is formed by different permutations, it
can be instead sampled from permutations directly with uniform distribution where 1

∣N ∣! is as the
probability distribution over each permutation. It is not difficult to find that these two sampling
strategy induce the same probability distribution for obtaining Ci, so they are equivalent. In practice,
we sample multiple permutations (saying M ) from the uniform distribution in parallel. From each
sampled permutation, we extract the the relevant Ci for each agent i. Afterwards, to each agent i, M
coalitions are obtained to calculate α̂i(s, ai).
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Algorithm 2 Calculating α̂i(s, ai)

1: Input: s, (Q̂i(τi, ai; θ))i=1∶N , M
2: Output: (α̂i(s, ai))i=1∶N
3: for each agent i do
4: Sample M preceding coalitions Cki ∼ Pr(Ci∣N /{i})
5: for k=1:M do
6: Get Q̂Cki (τCki ,aCki ) =

1
∣Cki ∣ ∑j∈Cki Q̂j(τj , aj)

7: end for

8: Get α̂i(s, ai) =
1

M

M

∑
k=1
Fs(Q̂Cki (τCki ,aCki ), Q̂i(τi, ai)) + 1

9: end for

B Experimental Setups

B.1 Implementation Details of Shapley Q-learning

We now provide the additional implementation details that are omitted from the main part of paper.
First, Fs(⋅, ⋅) is a 3-layer network (consecutively with two affine transformation and an activation
of absolute), where the hidden-layer dimension is 32. The parameters of each affine transformation
are generated by hyper-networks [40] with input as the global state, whose details are shown in
Table 1. The architecture of each agent’s Q-value is a RNN with GRUs cell [23], whose hidden-
layer dimension is 64. The input dimension is state dimension and the output dimension is action
dimension.

Table 1: Table of specifications for Fs(⋅, ⋅).

NETWORK STRUCTURE

1ST WEIGHT MATRIX [ LINEAR(STATE_DIM, 64), RELU, LINEAR(64, 32*2), ABSOLUTE ]
1ST BIAS [ LINEAR(STATE_DIM, 64) ]
2ND WEIGHT MATRIX [ LINEAR(STATE_DIM, 64), RELU, LINEAR(64, 32), ABSOLUTE ]
2ND BIAS [ LINEAR(STATE_DIM, 32), RELU, LINEAR(32, 1) ]

Taking the lessons of training two coupling modules from GANs [41], we take separate learning
rates for α̂i(s, ai) and Q̂i(s, ai). The learning rate for Q̂i(s, ai) is fixed at 0.0005 for all tasks.
Nevertheless, the learning rate for α̂i(s, ai) is dependent on the number of controllable agents. We
use RMSProp optimizer for training in all tasks. All models are implemented in PyTorch 1.4.0 and
each experiment is run on Nvidia GeForce RTX 2080Ti for 4 to 26 hours with a single process of
environment.

B.2 Hyperparameters of Baselines

The hyperparameters of all baselines except for SQDDPG [13] are consistent with Rashid et al. [35]
and Wang et al. [37]. The hyperparamers of SQDDPG are shown as follows: (1) The policy network
is consistent with the other baselines, while the critic network is with 3 hidden layers and each layer
is with 64 neurons. (2) The policy network is updated every 2 time steps, while the critic network is
updated each time step. (3) The multiplier of the entropy of policy is 0.005. The rest of settings are
identical with other baselines.

B.3 Predator-Prey for Modelling Relative Overgeneralisation

We give the experimental setups of Predator-Prey [17] in Table 2.

B.4 StarCraft Multi-Agent Challenge

The StarCraft Multi-Agent Challenge (SMAC) [18] is a popular testbed for multi-agent reinforce-
ment learning (MARL) algorithms. The main difficulties are (1) challenging dynamics, (2) partial
observability and (3) high-dimensional observation space. During training, both the global state of the
environment and each agent’s local observation are able to be obtained; however, during execution,
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Table 2: Table of experimental setups of Predator-Prey.

HYPERPARAMETERS VALUE DESCRIPTION

BATCH SIZE 32 THE NUMBER OF EPISODES FOR EACH UPDATE
DISCOUNT FACTOR γ 0.99 THE IMPORTANCE OF FUTURE REWARDS
REPLAY BUFFER SIZE 5,000 THE MAXIMUM NUMBER OF EPISODES TO STORE IN MEMORY
EPISODE LENGTH 200 MAXIMUM TIME STEPS PER EPISODE
TEST EPISODE 16 THE NUMBER OF EPISODES FOR EVALUATING THE PERFORMANCE
TEST INTERVAL 10,000 THE TIME STEP FREQUENCY FOR EVALUATING THE PERFORMANCE
EPSILON START 1.0 THE START EPSILON ϵ VALUE FOR EXPLORATION
EPSILON FINISH 0.05 THE FINAL EPSILON ϵ VALUE FOR EXPLORATION
EXPLORATION STEP 1,000,000 THE NUMBER OF STEPS FOR LINEARLY ANNEALING ϵ
MAX TRAINING STEP 1,000,000 THE NUMBER OF TRAINING STEPS
TARGET UPDATE INTERVAL 200 THE UPDATE FREQUENCY FOR TARGET NETWORK
LEARNING RATE 0.0001 THE LEARNING RATE FOR δi(s, ai)

α FOR W-QMIX VARIANTS 0.1 THE WEIGHT FOR CW-QMIX AND OW-QMIX
SAMPLE SIZE 10 THE SAMPLE SIZE FOR COALITION SAMPLING

Table 3: Introduction of maps and characters in SMAC.

MAP NAME ALLY UNITS ENEMY UNITS CATEGORIES

3S5Z 3 STALKERS & 5 ZEALOTS 3 STALKERS & 5 ZEALOTS EASY
1C3S5Z 1 COLOSSI & 3 STALKERS & 5 ZEALOTS 1 COLOSSI & 3 STALKERS & 5 ZEALOTS EASY

8M 8 MARINES 8 MARINES EASY
10M_VS_11M 10 MARINES 11 MARINES EASY

5M_VS_6M 5 MARINES 6 MARINES HARD
3S_VS_5Z 3 STALKERS 5 ZEALOTS HARD

2C_VS_64ZG 2 COLOSSI 64 ZERGLINGS HARD
3S5Z_VS_3S6Z 3 STALKERS & 5 ZEALOTS 3 STALKERS & 6 ZEALOTS SUPER-HARD

MMM2 1 MEDIVAC, 2 MARAUDERS & 7 MARINES 1 MEDIVAC, 3 MARAUDERS & 8 MARINES SUPER-HARD
6H_VS_8Z 6 HYDRALISKS 8 ZERGLINGS SUPER-HARD
CORRIDOR 6 ZEALOTS 24 ZERGLINGS SUPER-HARD

only each agent’s local observation can be observed. For this reason, SMAC fits the centralised
training and decentralised execution (CTDE) paradigm. In each micromanagement task, the ally
units are controlled by agents and the enemy units are controlled by the built-in game AI. The agents
need to learn a strategy to solve some challenging combat scenarios and defeat their opponents with
maximum win rate.

In this paper, we evaluate the proposed SHAQ on 11 typical combat scenarios in SMAC that can
be classified into three categories: easy (8m, 3s5z, 1c3s5z and 10m_vs_11m), hard (5m_vs_6m,
3s_vs_5z and 2c_vs_64zg), and super-hard (3s5z_vs_3s6z, Corridor, MMM2 and 6h_vs_8z). More
details of these tasks are provided in Table 3. The specific experimental setups for SMAC are shown
in Table 4 and 5.

Table 4: Table of experimental setups for SMAC.

HYPERPARAMETERS EASY HARD SUPER HARD DESCRIPTION

BATCH SIZE 32 32 32 THE NUMBER OF EPISODES FOR EACH UPDATE
DISCOUNT FACTOR γ 0.99 0.99 0.99 THE IMPORTANCE OF FUTURE REWARDS
REPLAY BUFFER SIZE 5,000 5,000 5,000 THE MAXIMUM NUMBER OF EPISODES TO STORE IN MEMORY
MAX TRAINING STEP 2,000,000 2,000,000 5,000,000 THE NUMBER OF TRAINING STEPS
TEST EPISODE 32 32 32 THE NUMBER OF EPISODES FOR EVALUATION
TEST INTERVAL 10,000 10,000 10,000 THE TIME STEP FREQUENCY FOR EVALUATING THE PERFORMANCE
EPSILON START 1.0 1.0 1.0 THE START EPSILON ϵ VALUE FOR EXPLORATION
EPSILON FINISH 0.05 0.05 0.05 THE FINAL EPSILON ϵ VALUE FOR EXPLORATION
EXPLORATION STEP 50,000 50,000 1,000,000 THE NUMBER OF STEPS FOR LINEARLY ANNEALING ϵ
TARGET UPDATE INTERVAL 200 200 200 THE UPDATE FREQUENCY FOR TARGET NETWORK
α FOR OW-QMIX 0.5 0.5 0.5 THE WEIGHT FOR OW-QMIX
α FOR CW-QMIX 0.75 0.75 0.75 THE WEIGHT FOR CW-QMIX
SAMPLE SIZE 10 10 10 THE SAMPLE SIZE FOR COALITION SAMPLING
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Table 5: The learning rate for training α̂i(s, ai) of SHAQ for various maps in SMAC.

MAP NAME NUMBER OF AGENTS LEARNING RATE FOR α̂i(s, ai)

2C_VS_64ZG 2 0.002
3S_VS_5Z 3 0.001
5M_VS_6M 5 0.0005
6H_VS_8Z 6 0.0005
CORRIDOR 6 0.0005

8M 8 0.0003
3S5Z 8 0.0003

3S5Z_VS_3S6Z 8 0.0003
1C3S5Z 9 0.0002

10M_VS_11M 10 0.0001
MMM2 10 0.0001

C Extra Experimental Results

C.1 Experimental Results on Extra SMAC Maps

To thoroughly compare the performance of SHAQ with baselines, we also run experiments on 5 extra
maps in SMAC as Figure 5 shows. 8m, 3s5z, 1c3s5z and 10m_vs_11m are an easy maps and MMM2
is a super-hard map. The strategy of epsilon annealing is consistent with the previous experiments for
SMAC. It is obvious that SHAQ also performs generally well on these 5 maps.
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(a) 3s5z.
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(b) 1c3s5z.
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(c) 10m_vs_11m.
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(d) 8m.
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(e) MMM2.

Figure 5: Median test win % for 5 extra maps in SMAC.

C.2 Extra Experimental Results on W-QMIX with α = 0.1

To show the significance of tuning α for W-QMIX, we also run W-QMIX with α = 0.1 in addition to
the best α reported in [35]. We can observe from Figure 6 that the performances of W-QMIX are
not comparatively identical for each choice of α. As a result, W-QMIX suffers from the separate
tuning of α for each scenario. Unfortunately, Rashid et al. [35] did not provide an empirical law for
selecting α, while SHAQ enjoys an empirical law to select α̂i(s, ai) as Figure 8b shows.

C.3 Comparison with SQDDPG

To emphasize the improvement of SHAQ from SQDDPG [13], we exclusively compare these two
algorithms on 3 maps in SMAC. As Figure 7 shows, the performance of SHAQ surpasses that of
SQDDPG on all 3 maps, while SQDDPG can only learn on the simplest map 3m. The most possible
reason for the failure of SQDDPG to complicated tasks is its sample complexity inefficiency for
permutations of agents as discussed in Section 5 that leads to the difficulty in learning. Apparently,
the implementation of coalition invariance of SHAQ mitigates this weakness so that it is able to solve
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(a) 3s5z.
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(b) 1c3s5z.
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(c) 10m_vs_11m.
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(d) 5m_vs_6m.
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(e) 3s_vs_5z.
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(f) 2c_vs_64zg.

Figure 6: Median test win % for easy (1st row) and hard (2nd row) maps of SMAC for W-QMIX
with different α.

more challenging tasks. We also show the results for SQDDPG on Predator-Prey with the same
setups (i.e., the epsilon annealing steps are 1 mil), as Figure 10a shows. It is apparent that SHAQ can
still outperform SQDDPG.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

SHAQ
SQDDPG

(a) 3m.
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(b) 3s5z.
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(c) 3s_vs_5z.

Figure 7: Median test win % for 3 maps of SMAC to compare SHAQ with SQDDPG.

C.4 Ablation Study

We also conduct ablation study of SHAQ, such as the sample size M for approximating α̂i(s, ai),
the empirical selection law on the learning rate of α̂i(s, ai), and the demonstration of the necessity
of learning α̂i(s, ai) rather than manual setting. These results show that SHAQ is an easy-to-use
algorithm that is potential to be applied to other scenarios with less efforts on tuning hyperparameters.

Sample Size M for Approximating α̂(s, ai). To study the impact of sample size M on the perfor-
mance of SHAQ, we conduct an ablation study as Figure 8a shows. We observe that the small M is
able to achieve fast convergence rate but with high variance, while the large M is with low variance
but comparatively slow convergence rate. The observations are consistent with the conclusions from
stochastic optimisation [42, 43]. As a result, we select M = 10 in practice, to trade off between
convergence rate and variance.
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(a) Comparison among different values of M on
5m_vs_6m. The [⋅] indicates the value of M.
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Figure 8: The figures of 3 ablation studies of SHAQ on SMAC.

An Empirical Law on Selecting the Learning Rate of α̂i(s, ai). To provide an empirical law on
selecting the learning rate of α̂i(s, ai), we statistically fit a curve of the learning rate w.r.t. the number
of controllable agents by the experimental results on SMAC that is shown in Figure 8c. It is seen
that the learning rate of α̂i(s, ai) is generally negatively related to the number of agents. In other
words, as the number of agents grows the learning rate of α̂i(s, ai) is recommended to be smaller.
For example, if the number of agents is more than 10, the learning rate of α̂i(s, ai) is recommended
to be 0.0001 as the guidance from Figure 8c.

The Necessity of Learning α̂i(s, ai). Some readers may be concerned about the necessity of learning
α̂i(s, ai). To answer this question, we study the necessity of learning α̂i(s, ai) on 5m_vs_6m. Since
the learned α̂i(s, ai) finally converges to 1.1029, we grid search the fixed values of α̂i(s, ai) around
this number. As Figure 8b shows, α̂i(s, ai) with manually preset fixed value cannot work as well as
the learned α̂i(s, ai). Therefore, we demonstrate the necessity of learning α̂i(s, ai) here.

C.5 More Visualisation for Interpretability of SHAQ

(a) SHAQ: ϵ-greedy. (b) VDN: ϵ-greedy. (c) QMIX: ϵ-greedy.

1

3

2

-1.59061 -1.59061

-1.20552 -1.20552
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(d) QPLEX: ϵ-greedy.

(e) SHAQ: greedy. (f) VDN: greedy. (g) QMIX: greedy. (h) QPLEX: greedy.

Figure 9: Visualisation of the evaluation for SHAQ and baselines on 3s5z_vs_3s6z in SMAC: each
colored circle is the centered attacking range of a controllable agent (in red), and each agent’s
factorised Q-value is reported on the right. We mark the direction that each moving agent face by an
arrow.
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To verify our theoretical results more firmly, we show the Q-values on a more complicated scenario
in SMAC, i.e. 3s5z_vs_3s6z during test in Figure 9. First, we take a look into the optimal actions.
SHAQ can still demonstrate the equal credit assignment as we claimed before. Unfortunately, VDN
does not explicitly show equal credit assignment. The possible reason is that part of parameters of
Q-value are shared between optimal actions and suboptimal actions. Therefore, the parametric effects
of the mistakes conducted on suboptimal actions to the optimal actions by VDN during learning may
be exaggerated when the number of agents increases. About QMIX and QPLEX, the Q-values of
optimal actions are difficult to be interpreted in this complicated scenario. For both algorithms, the
agent who is responsible for kiting 6 (i.e. Agent 3 for QMIX and Agent 2 for QPLEX) receives the
lowest credit, however, it is an important role to the team in a combat tactic. Next, we focus on the
demonstration of the suboptimal actions. As for SHAQ, Agent 1 and Agent 3 are participating into
the battle, so deserving almost the equal credit assignment. However, Agent 2 drops teammates and
escapes from the center of battle, so it contributes almost nothing to the team. As a result, it can be
seen as a dummy agent and thus obtains the credit near 0. This again agrees with our theoretical
analysis. About VDN, it coincidentally receives near 0 for the dummy agent (i.e. Agent 3) in this
scenario. Nevertheless, the low credit assignments to the other 2 agents who participate in the battle
are difficult to be interpreted. About QMIX, the agents who participate in the battle (i.e. Agent 2
and Agent 3) receive the lowest credits, while the agent (i.e. Agent 1) who escapes from the battle
receives the highest credit. For QPLEX, the agents’ behaviours are difficult to be interpreted.

C.6 Extra Experimental Results of Predator-Prey

In Figure 10b and Figure 10c, we show the results of W-QMIX with the annealing steps as 50k to
support that the poor performance of W-QMIX on Predator-Prey is due to its poor robustness to the
increased explorations.
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(a) SQDDPG.
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(b) CW-QMIX.
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(c) OW-QMIX.

Figure 10: Median test return for SQDDPG and W-QMIX (including OW-QMIX and CW-QMIX) on
Predator-Prey.

D Additional Background

D.1 Value Factorisation in MARL

Although there are lots of works on value factorisation in MARL, most of them are based on an
assumption called Individual-Global-Max (IGM) [10] that is defined in Definition 3.

6https://en.wikipedia.org/wiki/Glossary_of_video_game_terms.
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Definition 3. For a joint Q-value Qπ(s,a) with a deterministic policy, if the following equation is
assumed to hold such that

argmax
a
Qπ
(s,a) = (argmax

ai

Qi(s, ai))
i=1,2,...,∣N ∣

, (15)

then we say that (Qi(s, ai))i=1,2,...,∣N ∣ satisfies Individual-Global-Max (IGM) and Qπ(s,a) can be

factorised by (Qi(s, ai))i=1,2,...,∣N ∣.

There are 3 popular frameworks that are followed by most of works implementing the IGM, called
VDN [8], QMIX [9] and QTRAN [10].

VDN. VDN linearly factorises a global value function such that
Qπ
(s,a) = ∑

i∈N
Qi(s, ai), (16)

so that Eq.15 holds.

QMIX. QMIX learns a monotonic mixing function fs ∶ ×i∈NQi(s, ai) × s ↦ R to implement the
factorisation such that

Qπ
(s,a) = fs (Q1(s, a1), ...,Q∣N ∣(s, a∣N ∣)) , (17)

so that Eq.15 holds. Although QMIX has a richer functional class of factorisation than that of VDN, it
meets a problem that maxaQ

π(s,a) = ∑i∈N maxai Qi(s, ai) does not necessarily hold, which may
lead to the bias on Q-value estimation [10] and affect the learning process to achieve the optimal joint
policy. Theoretically, VDN does not possess the problem discussed above, however, the functional
class of the simply additive factorisation is so restrictive [9].

QTRAN. QTRAN gives a sufficient condition for value factorisation that satisfies IGM such that

∑
i∈N

Qi(s, ai) −Q
π
(s,a) + V π

(s) = {
0 a = ā,

≥ 0 a ≠ ā,
(18)

wherein
V π
(s) =max

a
Qπ
(s,a) − ∑

i∈N
Qi(s, āi).

In Eq.18, a = ×i∈Nai; and ā = ×i∈N āi where āi = argmaxai Qi(s, ai) because of IGM. Additionally,
Son et al. [10] showed that the above condition also holds for affine transformation on Qi,∀i ∈ N

such that wiQi + bi. For this reason, an additional transformed global Q-value such that Qπ′(s,a) =
∑i∈N Qi(s, ai) by setting wi = 1 and ∑i∈N bi = 0 is used to represent the value factorisation. It is
forced to fit the above condition with a learned global Q-value Qπ(s,a) and V π(s). Son et al. [10]
argued that finding the factorisation of Qπ′(s,a) is equivalent to finding [Qi]i∈N to satisfy IGM.
Therefore, a value factorisation for obtaining decentralised Q-values that satisfies IGM is found.

D.2 Interpretation of Definitions in Markov Convex Game

D.2.1 Condition of Markov Convex Game

Eq.1 implies a fact existing in most real-life scenarios that a larger coalition results in the greater
payoff distributions (see Remark 3) and therefore the greater optimal global value in cooperation,
which directly increases the agents’ incentives for joining the grand coalition. This can be seen as
an insight into the global reward game with value factorisation. This interpretation for the dynamic
scenario in this paper is consistent with the static scenario given by [44], also known as the snowball
effect.
Remark 3. Suppose there are two coalitions T ,S such that T ⊂ S ⊂ N and an agent i ∈ N /S . For
convenience, we denote C1 = T ∪ {i} and C2 = S, and thus C∩ = C1 ∩ C2 = (T ∪ {i}) ∩ S = T
and C∪ = C1 ∪ C2 = (T ∪ {i}) ∪ S = S ∪ {i}. By Eq.1, we can write the following inequalities
such that

max
πS∪{i}

V πS∪{i}(s) −max
πS

V πS (s) =max
πC∪

V πC∪ (s) −max
πC2

V πC2 (s)

≥max
πC1

V πC1 (s) −max
πC∩

V πC∩ (s)

= max
πT ∪{i}

V πT ∪{i}(s) −max
πT

V πT (s).

(19)

It is intuitive to see that each agent can gain more payoffs if the size of the coalition grows.
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D.2.2 Insight into Markov Core

In Eq.2, (maxπi xi(s))i∈N indicates the payoff distribution scheme for the grand coalition.
maxπC x(s∣C) = ∑i∈Cmaxπi xi(s) indicates the sum of payoff distributions (for the grand coalition)
of the agents who is under evaluation within coalition C. By Remark 4 and 5, it is obvious that Eq.2
indicates that the optimal global value obtained by the payoff distribution scheme in the Markov
core (under the grand coalition) is no less than that they can achieve with other coalition structures,
which is called the maximal social welfare in the prior work [13]. It can be regarded as an intuitive
interpretation of Markov core (under the grand coalition).
Remark 4. Suppose that a coalition structure is written as CS = {C1,C2, ...,Cn}, where ⋃n

k=1 Ck =
N and each Ck is mutually exclusive (i.e., Cm ∩ Cn = ∅, if m ≠ n), the optimal global value with
respect to CS is represented as maxπ V

π(s) = ∑
n
k=1maxπCk V

πCk (s).
Remark 5. Suppose that the condition of Markov core holds for the grand coalition (i.e., N )
with some payoff distribution scheme (maxπi xi(s))i∈N . For an arbitrary coalition structure
CS = {C1,C2, ...,Cn} other than {N}, where ⋃n

k=1 Ck = N and each Ck is mutually exclusive, we
can write down the equation such that

max
πCk

x(s∣Ck) ≥max
πCk

V πCk (s), ∀Ck ∈ CS. (20)

If we sum up Eq.20 for all coalitions in CS , we can get the following equation such that

∑
Ck∈CS

max
πCk

x(s∣Ck) ≥ ∑
Ck∈CS

max
πCk

V πCk . (21)

Recall that maxπCk x(s∣Ck) = ∑j∈Ck maxπi xi(s). The LHS of Eq.21 can be written as follows:

∑
Ck∈CS

max
πCk

x(s∣Ck) = ∑
Ck∈CS

∑
j∈Ck

max
πj

xj(s) = ∑
j∈N

max
πj

xj(s) =max
π

V̂ π
(s), (22)

wherein maxπ V̂
π(s) is denoted as the optimal global value obtained by the payoff distribution

scheme in the Markov core. By the result in Remark 4, the RHS of Eq.21 can be written as follows:

∑
Ck∈CS

max
πCk

V πCk =max
π

V π
(s), (23)

where maxπ V
π(s) is the optimal global value obtained by an arbitrary coalition structure other

than {N}. By inserting Eq.22 and 23 into Eq.21, we can get that

max
π

V̂ π
(s) ≥max

π
V π
(s).

Therefore, we have shown that the solution in the Markov core under the grand coalition is equivalent
to the optimal global value.

E Complete Mathematical Proofs

E.1 Assumptions

Assumption 1. In this paper, we consider a finite Markov convex game, wherein both the state space
and the joint action space are finite.
Assumption 2. For the ease of analysis, in this paper we assume that each agent’s policy will not be
affected by the coalition formation. In other words, each agent’s policy is regarded as its inherent
feature, invariant throughout the interaction with other agents (e.g. joining a coalition).
Assumption 3. Any coalition policy can be factorised to a permutation of decentralised (i.e. disjoint)
policies, i.e., πC = ×i∈Cπi, where πi is agent i’s policy. Each πC uniquely corresponds to a V πC(s) as
a characteristic function (i.e. a set-valued function).
Assumption 4. If an agent i is a dummy for an arbitrary state s ∈ S, it will not provide any
contribution to any coalition Ci ⊆ N /{i} such that V πC(s) = V πC∪{i}(s). Additionally, no members
in coalition Ci will react in different manners after agent i joins.
Assumption 5. If agents i and j are symmetric for an arbitrary state s ∈ S , V πC∪{i}(s) = V πC∪{j}(s)
to any coalitions C ⊆ N /{i, j}. Literally, the contributions of i and j are equal to any coalition C.
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Assumption 6. For any agent i ∈ N and any s ∈ S, its optimal Markov Shapley value denoted as
maxπi V

ϕ
i (s) satisfies the following equation such that

max
πi

V ϕ
i (s) = ∑

Ci ⊆ N /{i}

∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)!

∣N ∣!
⋅max

πi

Φi(s∣Ci),

where πi is agent i ’s policy.

Assumption 1 is the common assumption in the Markov decision process for the ease of analysis.
Assumption 2 is a technical assumption for the ease of analysis. Assumption 3 is natural to hold
given the chain rule in probability theory, the independence of each agent’s policy and the definition
of value function in reinforcement learning. Assumption 4 and 5 directly inherit the definitions from
cooperative game theory [14]. Assumption 6 inherits the definition from Shapley value [19] with
extra consideration of agent i’s policy, an underlying condition of which is that the maximizer (i.e.,
πi) of each Φi(s ∣ Ci) ∈ {Φi(s∣Ci)∣Ci ⊆ N /{i}} needs to be identical, for any s ∈ S. In other words,
it implies that different permutations correspond to different long-term rewards probably encoding
some unexpected events (i.e., each permutation maps to a marginal contribution of agent i), but with
the same optimal policy as solutions, which is a sufficient condition for Assumption 2. Thereby,
learning through Markov Shapley value is primarily for fair credit assignments, with no changes to
each agent’s optimal policy. We would argue for the existence of this condition by Example 1.

Example 1. Suppose that there are two agents in total (i.e., ∣N ∣ = 2), and we consider an
arbitrary agent i belonging to N whose action set is defined as Ai = {0,0.15,0.25}. There-
fore, there are only two intermediate coalitions for agent i to join and therefore two marginal
contributions. To ease life, we only discuss a two-stage scenario and the result can be natu-
rally extended to long-horizon scenarios. Agent i’s policy can be expressed as a sequence of
actions such that πi = ⟨a0i , a

1
i ⟩. The set of marginal contributions of agent i is supposed to

be {Φi(s∣{−i}) ∶= −(a
0
i + a

1
i − 0.5)

2 + 1 + ∣∣s∣∣2,Φi(s∣∅) ∶= sin(a
0
i + a

1
i ) + ∣∣s∣∣2}. Since V ϕ

i (s) =
1
2
(Φi(s∣{−i}) +Φi(s∣∅)), it is easy to observe that Assumption 6 holds.

E.2 Mathematical Proofs of The Marginal Contribution

Proposition 4. ∀Ci ⊆ N and ∀s ∈ S, Eq.1 is satisfied if and only if maxπi Φi(s∣Ci) ≥ 0.

Proof. ∀Ci ⊆ N and ∀s ∈ S, given that Eq.1 is satisfied, with the fact that Ci ∩ {i} = ∅ we can get
the equation such that

max
πCi∪{i}

V πCi∪{i}(s) ≥max
πCi

V πCi (s) +max
πi

V πi(s). (24)

Since maxπi V
πi(s) ≥ 0 by the definition in Markov convex game, we can easily get the equation

such that

max
πCi∪{i}

V πCi∪{i}(s) −max
πCi

V πCi (s) ≥ 0. (25)

Therefore, we can get the equation such that

max
πi

Φi(s∣Ci) ≥ 0. (26)

With the same conditions, the reverse direction of proof apparently holds by going through from Eq.26
to 24. By Definition 2, Eq.26 determines the range of Markov Shapley value, which is consistent
with the range of the coalition value defined in Section 2.

Proposition 5. In Markov convex game with the grand coalition, marginal contribution satisfies the
efficiency property: maxπ V

π(s) = ∑i∈N maxπi Φi(s∣Ci).

Proof. For any Ci ⊆ N /{i} and i ∈ N , according to Eq.3 we can get the equation such that

max
πi

Φi(s∣Ci) = max
πCi∪{i}

V πCi∪{i}(s) −max
πCi

V πCi (s), (27)
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where maxπCi∪{i} V
πCi (s) =maxπCi V

πCi (s), since the decision of agent i will not affect the value
of Ci (i.e., the coalition excluding agent i ). Given the definition that V π∅(s) = 0 and the result from
Eq.27, by Assumption 3 we can get the equations such that

max
π

V π
(s)

=max
π{j1}

V π{j1}(s) −max
π∅

V π∅(s)

+ max
π{j1,j2}

V π{j1}(s) −max
π{j1}

V π{j1}(s)

+ ⋮

+max
π

V π
(s) − max

πN/{jn}
V πN/{jn}(s)

= ∑
i∈N

max
πi

Φi(s∣Ci). (28)

Lemma 1. The optimal marginal contribution is a solution in the Markov core under Markov convex
game with the grand coalition.

Proof. The complete proof is as follows.

Firstly, if we would like to prove that the optimal marginal contribution is a payoff distribution
scheme in the Markov core (with the grand coalition), we just need to prove that for any intermediate
coalition C ⊆ N , the following condition is satisfied such that

max
πC

Φ(s∣C) ≥max
πC

V πC(s), ∀s ∈ S, (29)

where maxπC Φ(s∣C) = ∑i∈Cmaxπi Φi(s∣Ci).

Suppose for the sake of contradiction that we have maxπC Φ(s∣C) <maxπC V
πC(s) for some s ∈ S

and some coalition C = {j1, j2, ..., j∣C∣} ⊆ N , where jn ∈ C and n ∈ {1,2, ..., ∣C∣}. We can assume
without the loss of generality that the coalition C is generated by the permutation ⟨j1, j2, ..., j∣C∣⟩,
i.e., the agents joins in C following the order j1, j2, ..., j∣C∣. Now, for each n ∈ {1,2, ..., ∣C∣}, we have
{j1, j2, ..., jn−1} ⊆ {1,2, ..., jn − 1}. Following Eq.1, we can write out the inequality as follows:

max
πCn∪

V πCn∪ (s) +max
πCn∩

V πCn∩ (s) ≥max
πCnm

V πCnm (s) +max
πCn

k

V
πCn

k (s),

C
n
k = {1,2, ..., jn − 1},

C
n
m = {j1, j2, ..., jn},

C
n
∩ = C

n
m ∩ Cnk = {j1, j2, ..., jn−1},

C
n
∪ = C

n
m ∪ Cnk = {1,2, ..., jn}.

(30)

Next, we rearrange Eq.30 and the following inequality is obtained such that

max
πCn∪

V πCn∪ (s) −max
πCn

k

V
πCn

k (s) ≥max
πCnm

V πCnm (s) −max
πCn∩

V πCn∩ (s), (31)

Since we can express maxπC V
πC(s) as follows:

max
πC

V πC(s) =max
πj1

V πj1 (s) −max
π∅

V π∅(s)

+ max
π{j1,j2}

V π{j1,j2}(s) −max
πj1

V πj1 (s)

+ ⋮

+max
πC

V πC(s) − max
πC/{jn}

V πC/{jn}(s). (32)

By Definition 1 we can obviously get the following equations such that

Φi(s∣Ci) = Φi(s∣C
n
k ) =max

πCn
k

V πCn∪ (s) −max
πCn

k

V
πCn

k (s). (33)
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By taking the maximum operator over πi to Eq.33, we can get that

max
πi

Φi(s∣Ci) =max
πi

Φi(s∣C
n
k ) =max

πCn∪
V πCn∪ (s) −max

πCn
k

V
πCn

k (s). (34)

By adding up these inequalities in Eq.31 for all C ⊆ N and inserting the results from Eq.32 and 34,
we can directly obtain a new inequality such that

∑
i∈C

max
πi

Φi(s∣Ci) =max
πC

Φ(s∣C) ≥max
πC

V πC(s). (35)

It is obvious that Eq.35 contradicts the suppose, so we have showed that Eq.29 always holds for any
coalition C ⊆ N . For this reason, we can get the conclusion that marginal contribution is a solution
in Markov core of Markov convex game with the grand coalition.

E.3 Mathematical Proofs of The Markov Shapley Value

Proposition 1. Agent i’s action marginal contribution can be derived as follows:

Φi(s, ai∣Ci) =max
aCi

Qπ∗Ci (s,aCi∪{i}) −max
aCi

Qπ∗Ci (s,aCi). (36)

Proof. The complete proof is as follows.

We now rewrite maxπCi V
πCi∪{i}(s) as follows:

max
πCi

V πCi∪{i}(s) =max
πCi

∑
aCi∪{i}

πCi∪{i}(aCi∪{i}∣s) Q
πCi∪{i}(s,aCi∪{i})

(Since πCi∪{i} is a deterministic joint policy, we can have the following equation.)

=max
aCi

max
πCi

QπCi∪{i}(s,aCi∪{i})

(We write max
πCi

QπCi∪{i}(s,aCi∪{i}) as Qπ∗Ci (s,aCi∪{i}) )

=max
aCi

Qπ∗Ci (s,aCi∪{i}). (37)

Similarly, we rewrite maxπCi V
πCi (s) as follows:

max
πCi

V πCi (s) =max
aCi

max
πCi

QπCi (s,aCi) =max
aCi

Qπ∗Ci (s,aCi). (38)

Since maxπCi V
πCi (s) is irrelevant to ai, by Eq.37 and 38 we can get that

Φi(s, ai∣Ci) =max
aCi

Qπ∗Ci (s,aCi∪{i}) −max
aCi

Qπ∗Ci (s,aCi). (39)

By Eq.39, we can also get Agent i’s optimal action marginal contribution such that

Φ∗i (s, ai∣Ci) =max
πi

Φi(s, ai∣Ci)

=max
πi

{max
aCi

Qπ∗Ci (s,aCi∪{i}) −max
aCi

Qπ∗Ci (s,aCi)}

=max
πi

{max
aCi

max
πCi

QπCi∪{i}(s,aCi∪{i}) −max
aCi

max
πCi

QπCi (s,aCi)}

=max
πi

max
aCi

max
πCi

QπCi∪{i}(s,aCi∪{i}) −max
aCi

max
πCi

QπCi (s,aCi)

=max
aCi

max
πCi∪{i}

QπCi∪{i}(s,aCi∪{i}) −max
aCi

max
πCi

QπCi (s,aCi)

=max
aCi

Qπ∗Ci∪{i}(s,aCi∪{i}) −max
aCi

Qπ∗Ci (s,aCi). (40)

The proof is completed.
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Proposition 2. Markov Shapley value possesses properties as follows: (i) identifiability of dummy
agents: V ϕ

i (s) = 0; (ii) efficiency: maxπ V
π(s) = ∑i∈N maxπi V

ϕ
i (s); (iii) reflecting the contribu-

tion; and (iv) symmetry.

Proof. The complete proof is as follows.

The marginal contribution is an implementation reflecting an agent’s contribution and Markov Shapley
value is defined as the weighted average of all marginal contributions. Therefore, this definition can
still reflect an agent’s contribution to the grand coalition by considering all permutations of agents to
form the grand coalition and (iii) holds. We will next prove the (i), followed by (ii) and (iv). For any
agent i ∈ N and any state s ∈ S , its Markov Shapley value denoted as V ϕ

i (s).

Proof of (i): Let us define Π(N ) as the set of all permutations of agents. Suppose that an arbitrary
agent i is a dummy agent for an arbitrary state s ∈ S. For any permutation m ∈ Π(N ) of agents
to form the grand coalition, by Assumption 4 we have maxπCm

i
V

πCm
i (s) = maxπCm

i
V

πCm
i
∪{i}(s),

thereby Φi(s∣C
m
i ) = 0, where Cmi denotes the intermediate coalition generated from permutation m

that agent i would join. Also, the above analysis is valid for all permutations of agents to form the
grand coalition. By Definition 2, it is not difficult to see that the dummy agent’s Markov Shapley
value will be 0 such that V ϕ

i (s) = 0. The proof of (i) completes.

Proof of (ii): The objective is proving that Markov Shapley value satisfies the following equation
such that

max
π

V π
(s) = ∑

i∈N
max
πi

V ϕ
i (s), ∀s ∈ S.

By the result from Proposition 5 and Assumption 3, for an arbitrary permutation m ∈ Π(N ) we can
get the equation such that

max
π

V π
(s) = ∑

i∈N
max
πi

Φi(s∣C
m
i ), ∀s ∈ S,

where Cmi denotes the intermediate coalition generated from permutation m that agent i would join
and Φi(s∣C

m
i ) is the corresponding marginal contribution. If we consider all possible permutations of

agents to form the grand coalition and add all these inequalities, we can get the following equation
such that

∑
m∈Π(N )

max
π

V π
(s) = ∑

m∈Π(N )
∑
i∈N

max
πi

Φi(s∣C
m
i ), ∀s ∈ S.

By dividing ∣N ∣! on the both sides, we can get that

1

∣N ∣!
∑

m∈Π(N )
max
π

V π
(s) =

1

∣N ∣!
∑
i∈N

∑
m∈Π(N )

max
πi

Φi(s∣C
m
i ), ∀s ∈ S. (41)

Next, to ease life we start from the LHS of Eq.41. We directly get the following equation such that

1

∣N ∣!
∑

m∈Π(N )
max
π

V π
(s) =

1

∣N ∣!
⋅ ∣N ∣! ⋅max

π
V π
(s) =max

π
V π
(s). (42)

Now, we start processing the RHS of Eq.41. By rearranging it, we can get the equations such that

1

∣N ∣!
∑
i∈N

∑
m∈Π(N )

max
πi

Φi(s∣C
m
i ) = ∑

i∈N

1

∣N ∣!
∑

m∈Π(N )
max
πi

Φi(s∣C
m
i )

(The identical Cmi in different permutations is written as Ci
and we can rearrange the equation as follows.)

=∑
i∈C

1

∣N ∣!
∑

Ci⊆N /{i}
∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)! ⋅max

πi

Φi(s∣Ci)

= ∑
i∈N

∑
Ci⊆N /{i}

∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)!

∣N ∣!
⋅max

πi

Φi(s∣Ci). (43)
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By Assumption 6, we can get the following equations such that

∑
i∈N

∑
Ci⊆N /{i}

∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)!

∣N ∣!
⋅max

πi

Φi(s∣Ci) = ∑
i∈N

max
πi

V ϕ
i (s) (44)

Inserting the results from Eq.42 and 44 to Eq.41, we can get the equation such that

max
π

V π
(s) = ∑

i∈N
max
πi

V ϕ
i (s), ∀s ∈ S.

Therefore, the proof for (ii) completes.

Proof of (iv): We would like to prove that if two agents are symmetric for an arbitrary state s ∈ S,
then their optimal Markov Shapley values should be equal. As Assumption 5 illustrates, suppose that
agents i and j are symmetric for an arbitrary state s ∈ S , V πC∪{i}(s) = V πC∪{j}(s) for any coalitions
C ⊆N /{i, j}. Given an arbitrary permutation m ∈ Π(N ), let m′ denote the permutation obtained by
exchanging i and j such that Cmi = C

m′
j , Cm

′
i = C

m
j and Cm

′
l = C

m
l ,∀l ≠ i, j. Next, we aim to prove

that maxπi Φi(s∣C
m
i ) =maxπj Φj(s∣C

m′
j ), for the state s.

We first suppose that i precedes j in m. Then we have Cmi = C
m′
j . Setting C = Cmi = C

m′
j , for the state

s we can obtain that

max
πi

Φi(s∣C
m
i ) = max

πC∪{i}
V πC∪{i}(s) −max

πC
V πC(s),

max
πj

Φj(s∣C
m′
j ) = max

πC∪{j}
V πC∪{j}(s) −max

πC
V πC(s).

By symmetry, we have V πC∪{i}(s) = V πC∪{j}(s), which directly implies that maxπi Φi(s∣C
m
i ) =

maxπj Φj(s∣C
m′
j ).

Second, we suppose that j precedes i in m. Setting C = Cmi /{j}, for the state s we have

max
πi

Φi(s∣C
m
i ) = max

πC∪{j}∪{i}
V πC∪{j}∪{i}(s) − max

πC∪{j}
V πC∪{j}(s),

max
πj

Φj(s∣C
m′
j ) = max

πC∪{j}∪{i}
V πC∪{j}∪{i}(s) − max

πC∪{i}
V πC∪{i}(s).

Since C ⊆ N /{i, j}, by symmetry we have V πC∪{j}(s) = V πC∪{i}(s) and thus maxπi Φi(s∣C
m
i ) =

maxπj Φj(s∣C
m′
j ). Therefore, we have proved that maxπi Φi(s∣C

m
i ) = maxπj Φj(s∣C

m′
j ) for any

m ∈ Π(N ). It is not difficult to observe that m ↦ m′ is a one-to-one mapping, so Π(N ) =
{m′ ∣m ∈ Π(N )}.

By Assumption 6, for an arbitrary state s ∈ S wherein agents are symmetric, we can directly have

max
πi

V ϕ
i (s) = ∑

Ci ⊆ N /{i}

∣Ci∣!(∣N ∣ − ∣Ci∣ − 1)!

∣N ∣!
⋅max

πi

Φi(s∣Ci)

=
1

∣N ∣!
∑

m∈Π(N )
max
πi

Φi(s∣C
m
i )

=
1

∣N ∣!
∑

m′∈Π(N )
max
πj

Φj(s∣C
m′
j )

= ∑
Cj ⊆ N /{j}

∣Cj ∣!(∣N ∣ − ∣Cj ∣ − 1)!

∣N ∣!
⋅max

πj

Φj(s∣Cj)

=max
πj

V ϕ
j (s).

The proof of (iv) completes.

28



E.4 Mathematical Proofs and Derivations for Shapley Q-Learning

E.4.1 Derivation of Shapley-Bellman optimality equation.

First, according to Bellman’s principle of optimality [15, 16] we can write out Bellman optimality
equation for the optimal global Q-value such that

Qπ∗
(s,a) =∑

s′
Pr(s′∣s,a) [R + γmax

a
Qπ∗
(s′,a)] . (45)

For convenience, we only consider the finite state space and action space here. By the efficiency
property (i.e. (ii) in Proposition 2), we can get the approximation of the optimal global Q-value w.r.t.
optimal actions such that

max
a
Qπ∗
(s′,a) = ∑

i∈N
max
ai

Qϕ∗
i (s

′, ai). (46)

Suppose that for all s ∈ S and ai ∈ Ai, for each agent i there exists bounded wi(s, ai) > 0 and
bi(s) ≥ 0 that can project Qπ∗(s,a) onto the space of Qϕ∗

i (s, ai) such that

Qϕ∗
i (s, ai) = wi(s, ai) Q

π∗
(s,a) − bi(s). (47)

If we denote w(s,a) = [wi(s, ai)]
⊺ ∈ R∣N ∣>0 , b(s) = [bi(s)]⊺ ∈ R∣N ∣≥0 and Qϕ∗(s,a) = [Qϕ∗

i (s, ai)]
⊺ ∈

R∣N ∣≥0 , given Eq.47 we can write that

Qϕ∗
(s,a) =w(s,a) Qπ∗

(s,a) − b(s). (48)

Besides, we suppose that ∑i∈N wi(s, ai)
−1bi(s) = 0.

Combined with Eq.46 and 48, we can rewrite Eq.45 to the equation as follows:

Qϕ∗
(s,a) =w(s,a)∑

s′
Pr(s′∣s,a) [R + γ ∑

i∈N
max
ai

Qϕ∗
i (s

′, ai)] − b(s). (49)

From Eq.47, we know that wi(s, ai) > 0. Therefore, we can rewrite Eq.47 to the following equation
such that

wi(s, ai)
−1
(Qϕ∗

i (s, ai) + bi(s)) = Q
π∗
(s,a). (50)

If we sum up Eq.50 for all agents, we can obtain that

∑
i∈N

wi(s, ai)
−1
(Qϕ∗

i (s, ai) + bi(s)) = ∣N ∣ Q
π∗
(s,a). (51)

Since ∑i∈N wi(s, ai)
−1bi(s) = 0, we can get the following equation such that

∑
i∈N

1

∣N ∣ wi(s, ai)
Qϕ∗

i (s, ai) = Q
π∗
(s,a). (52)

Inserting Eq.46 into Eq.52, we can get the following equation such that

max
a
∑
i∈N

1

∣N ∣ wi(s, ai)
Qϕ∗

i (s, ai) = ∑
i∈N

max
ai

Qϕ∗
i (s, ai). (53)

Since a = ×i∈Nai, we can get that

∑
i∈N

max
ai

1

∣N ∣ wi(s, ai)
Qϕ∗

i (s, ai) = ∑
i∈N

max
ai

Qϕ∗
i (s, ai). (54)

It is apparent that ∀s ∈ S and a∗i = argmaxai Q
ϕ∗
i (s, ai), we have a solution wi(s, a

∗
i ) = 1/∣N ∣.

7

7Note that it exists other solutions rather than the one that we deduce between maxai
1

∣N ∣ wi(s,ai)
Qϕ∗

i (s, ai)

and maxai Q
ϕ∗
i (s, ai). Nevertheless, the result obtained in this paper is the one that exactly matches and

explains the finding in the previous works [20]. As for the reason why the solution is the most likely to be
achieved in empirical results is deserved to be studied in the future work.
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E.4.2 Proof of Theorem 1

Lemma 2 ( Dales et al. [45] ). A set of real matricesM with a sub-multiplicative norm is a Banach
Algebra and a non-empty complete metric space where the metric is induced by the sub-multiplicative
norm. A sub-multiplicative norm ∣∣ ⋅ ∣∣ is a norm satisfying the following inequality such that

∀A,B ∈M ∶ ∣∣AB∣∣ ≤ ∣∣A∣∣ ∣∣B∣∣.

Lemma 3. For a set of real matricesM, given an arbitrary matrix A = [aij] ∈ Rm×n, ∣∣A∣∣1 =
max1≤j≤n∑1≤i≤m ∣aij ∣ is a sub-multiplicative norm.

Proof. The complete proof is as follows.

First, we select two arbitrary matrices belonging toM, i.e. A = [aik] ∈ Rm×r and B = [bkj] ∈ Rr×n.
Then, we start proving that ∣∣ ⋅ ∣∣1 is a sub-multiplicative norm as follows:

∣∣AB∣∣1 = ∣∣[ ∑
1≤k≤r

aikbkj]∣∣
1

= max
1≤j≤n ∑1≤i≤m

∣ ∑
1≤k≤r

aikbkj∣

(By triangle inequality, we can obtain the following inequality.)

≤ max
1≤j≤n ∑1≤i≤m

∑
1≤k≤r

∣aikbkj ∣

= max
1≤j≤n ∑1≤i≤m

∑
1≤k≤r

∣aik∣ ∣bkj ∣

= max
1≤j≤n ∑

1≤k≤r
∣bkj ∣ ∑

1≤i≤m
∣aik∣

≤ ∣∣B∣∣
1
max
1≤k≤r ∑1≤i≤m

∣aik∣

= ∣∣B∣∣
1
∣∣A∣∣

1

= ∣∣A∣∣
1
∣∣B∣∣

1
.

Therefore, we have proven that given an arbitrary real matrix A = [aij] ∈ Rm×n, ∣∣A∣∣1 =
max1≤j≤n∑1≤i≤m ∣aij ∣ is a sub-multiplicative norm.

Lemma 4. For all s ∈ S and a ∈ A, Shapley-Bellman operator is a contraction mapping in a
non-empty complete metric space when maxs {∑i∈N maxai wi(s, ai)} <

1
γ

.

Proof. The complete proof is as follows.

To ease life, we firstly define some variables that will be used for proof such that

Qϕ
= ×i∈NQ

ϕ
i ∈ R

∣N ∣×∣S∣∣A∣,

w ∈ R∣N ∣×∣S∣∣A∣,

P r ∈ R∣S∣∣A∣×∣S∣,
1 = [1,1, ...,1]⊺,

where A = ×i∈NAi. Then, for an arbitrary matrix A ∈ Rm×n, we define the ∣∣ ⋅ ∣∣1 for the induced
matrix norm such that

∣∣A∣∣1 = max
1≤j≤n ∑1≤i≤m

∣aij ∣,

where aij is an arbitrary element in A. By Lemma 3, ∣∣ ⋅ ∣∣1 defined here is a sub-multiplicative
norm. By Lemma 2, the set of real matrices R∣N ∣×∣S∣∣A∣ with the norm ∣∣ ⋅ ∣∣1 is a Banach algebra and a
non-empty complete metric space with the metric induced by ∣∣ ⋅ ∣∣1.

To show that the operator Υ is a contraction mapping in the supremum norm, we just need to
show that for any Qϕ

1 = ×i∈N (Q
ϕ
i )1
∈ R∣N ∣×∣S∣∣A∣ and Qϕ

2 = ×i∈N (Q
ϕ
i )2
∈ R∣N ∣×∣S∣∣A∣, we have
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∣∣ΥQϕ
1 −ΥQϕ

2 ∣∣1 ≤ δ∣∣Q
ϕ
1 −Q

ϕ
2 ∣∣1, where δ ∈ (0,1).

∣∣ΥQϕ
1 −ΥQϕ

2 ∣∣1

=max
s,a

1⊺∣w(s,a) ∑
s′∈S

Pr(s′∣s,a)[R(s,a) + γ ∑
i∈N

max
ai

(Qϕ
i )1
(s′, ai)] − b(s)

−w(s,a) ∑
s′∈S

Pr(s′∣s,a)[R(s,a) + γ ∑
i∈N

max
ai

(Qϕ
i )2
(s′, ai)] + b(s)∣

= γmax
s,a

1⊺∣w(s,a) ∑
s′∈S

Pr(s′∣s,a)[∑
i∈N

max
ai

(Qϕ
i )1
(s′, ai) − ∑

i∈N
max
ai

(Qϕ
i )2
(s′, ai)]∣

≤ γmax
s,a

1⊺∣w(s,a)∣max
s,a
∣ ∑
s′∈S

Pr(s′∣s,a)[∑
i∈N

max
ai

(Qϕ
i )1
(s′, ai) − ∑

i∈N
max
ai

(Qϕ
i )2
(s′, ai)]∣

(If we write δ = γmax
s,a

1⊺∣w(s,a)∣, we can have the following equation.)

= δmax
s,a
∣ ∑
s′∈S

Pr(s′∣s,a)[∑
i∈N

max
ai

(Qϕ
i )1
(s′, ai) − ∑

i∈N
max
ai

(Qϕ
i )2
(s′, ai)]∣

≤ δmax
s,a
∑
s′∈S

Pr(s′∣s,a)∣∑
i∈N

max
ai

(Qϕ
i )1
(s′, ai) − ∑

i∈N
max
ai

(Qϕ
i )2
(s′, ai)∣

= δ∣∑
i∈N
[max

ai

(Qϕ
i )1
(s′, ai) −max

ai

(Qϕ
i )2
(s′, ai)]∣

(By triangle inequality, we can obtain the following inequality.)

≤ δ ∑
i∈N
∣max

ai

(Qϕ
i )1
(s′, ai) −max

ai

(Qϕ
i )2
(s′, ai)∣

≤ δ ∑
i∈N

max
ai

∣(Qϕ
i )1
(s′, ai) − (Q

ϕ
i )2
(s′, ai)∣

(Since a =×i∈Nai, we have the following equation.)

= δmax
a
∑
i∈N
∣(Qϕ

i )1
(s′, ai) − (Q

ϕ
i )2
(s′, ai)∣

≤ δmax
z,a
∑
i∈N
∣(Qϕ

i )1
(z, ai) − (Q

ϕ
i )2
(z, ai)∣ = δ∣∣Q

ϕ
1 −Q

ϕ
2 ∣∣1.

Now, we need to discuss the condition to δ ∈ (0,1). Apparently, δ > 0, so we just need to discuss the
condition to guarantee that δ < 1. We now have the following discussions such that

δ = γmax
s,a

1⊺∣w(s,a)∣ < 1 (Since wi(s, ai) > 0.)

⇒ γmax
s,a
∑
i∈N

wi(s, ai) < 1

(When γ ≠ 0, we can have the following inequality.)

⇒max
s,a
∑
i∈N

wi(s, ai) <
1

γ

(Since a =×i∈Nai, we have the following equation.)

⇒max
s
{∑
i∈N

max
ai

wi(s, ai)} <
1

γ
.

Therefore, we show that Shapley-Bellman operator Υ is a contraction mapping in the non-
empty complete metric space generated by R∣N ∣×∣S∣∣A∣ with the metric induced by ∣∣ ⋅ ∣∣1, when
maxs {∑i∈N maxai wi(s, ai)} <

1
γ

. Finally, it is apparent that wi(s, ai) = 1/∣N ∣ when ai =

argmaxai Q
ϕ
i (s, ai) satisfies the above condition.
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Corollary 1. According to Banach fixed-point theorem [46], Shapley-Bellman operator admits a
unique fixed point. Moreover, starting by an arbitrary start point, the sequence recursively generated
by Shapley-Bellman operator can finally converge to that fixed point.

Proof. Since ⟨R∣N ∣×∣S∣∣A∣, ∣∣ ⋅ ∣∣1⟩ is a non-empty complete metric space and Shapley-Bellman operator
Υ is shown as a contraction mapping in Lemma 4, by Banach fixed-point theorem [46] we can directly
conclude that Shapley-Bellman operator Υ admits a unique fixed point. Furthermore, starting by an
arbitrary start point, the sequence recursively generated by Shapley-Bellman operator Υ can finally
converge to that fixed point.

Theorem 1. Shapley-Bellman operator can converge to the optimal Markov Shapley Q-value and the
corresponding optimal joint deterministic policy when maxs {∑i∈N maxai wi(s, ai)} <

1
γ

.

Proof. By Corollary 1, we get that Shapley-Bellman operator admits a unique fixed point. Since
Shapley-Bellman optimality equation (i.e., Eq.7) is obviously a fixed point for Shapley-Bellman
operator, it is not difficult to get the conclusion that the optimal Markov Shapley Q-value is achieved.
Since the sum of optimal Markov Shapley Q-values is equal to the optimal global Q-value and the
optimal global Q-value corresponds to the optimal joint deterministic policy, we show that the optimal
joint deterministic policy is achieved. Besides, it is obvious that Shapley-Bellman optimality equation
can be transformed back to the Bellman optimality equation w.r.t. the optimal global Q-value, given
the efficiency property of Markov Shapley value.

E.4.3 Stochastic Approximation of Shapley-Bellman operator

We now derive the stochastic approximation of Shapley-Bellman operator over the value space, i.e.
a form of Q-learning derived from Shapley-Bellman operator. By sampling from Pr(s′∣s,a) via
Monte Carlo method, the Q-learning algorithm can be expressed as follows:

Qϕ
t+1(s,a)←Qϕ

t (s,a)+αt(s,a)[w(s,a)(Rt+γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai))−b(s)−Q
ϕ
t (s,a)]. (55)

Lemma 5 (Jaakkola et al. [47]). The random process {∆t} taking values Rn defined as

∆t+1(x) = (1 − αt(x))∆t(x) + αt(x)Ft(x)

converges to 0 w.p.1 under the following assumptions:

• 0 ≤ αt ≤ 1, ∑t αt(x) =∞ and ∑t α
2
t ≤∞;

• ∣∣E[Ft(x)∣Ft]∣∣W ≤ δ∣∣∆t∣∣W , with 0 ≤ δ < 1;

• var[Ft(x)∣Ft] ≤ C(1 + ∣∣∆t∣∣
2
W ), for C > 0.

Theorem 4. For a finite Markov convex game, the Q-learning algorithm derived by Shapley-Bellman
operator given by the update rule such that

Qϕ
t+1(s,a)←Qϕ

t (s,a) + αt(s,a) [w(s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s) −Q
ϕ
t (s,a)] ,

converges w.p.1 to the optimal Markov Shapley Q-value if

∑
t

αt(s,a) =∞ ∑
t

α2
t (s,a) ≤∞ (56)

for all s ∈ S and a ∈ A as well as maxs {∑i∈N maxai wi(s, ai)} <
1
γ

.

Proof. The proof follows the sketch of proving the convergence of Q-learning given by Melo [48].
First, we rewrite Eq.55 to

Qϕ
t (s,a) = (1 − αt(s,a))Q

ϕ
t (s,a) + αt(s,a) [w(s,a)(Rt + γ ∑

i∈N
max
ai

(Qϕ
i )t(s

′, ai)) − b(s)] .

By subtracting Qϕ∗(s,a) and letting

∆t(s,a) =Q
ϕ
t (s,a) −Q

ϕ∗
(s,a),
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we can transform Eq.55 to

∆t+1(s,a) = (1 − αt(s,a))∆t(s,a) + αt(s,a)Ft(s,a),

where

Ft(s,a) =w(s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s) −Qϕ∗
(s,a).

Since s′ ∈ S is a random sample from Markov Chain, so we can get that

E[Ft(s,a)∣Ft] = ∑
s′∈S

Pr(s′∣s,a) [w(s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s) −Qϕ∗
(s,a)]

=w(s,a) ∑
s′∈S

Pr(s′∣s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s) −Qϕ∗
(s,a)

(Since max
s
{∑
i∈N

max
ai

wi(s, ai)} <
1

γ
.)

=ΥQϕ
t (s,a) −ΥQϕ∗

(s,a).

By the results from Theorem 4, we can get that

∣∣E[Ft(s,a)∣Ft]∣∣1 ≤ δ∣∣Q
ϕ
t (s,a) −Q

ϕ∗
(s,a)∣∣1 = δ∣∣∆t(s,a)∣∣1,

where δ ∈ (0,1).

Next, we get that

var[Ft(s,a)∣Ft] = E[(w(s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s) −Qϕ∗
(s,a)

−ΥQϕ
t (s,a) +Q

ϕ∗
(s,a))

2
]

= E[(w(s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s) −ΥQϕ
t (s,a))

2
]

= var[w(s,a)(Rt + γ ∑
i∈N

max
ai

(Qϕ
i )t(s

′, ai)) − b(s)∣Ft].

Since Rt, w(s,a) and b(s) are bounded, it clearly verifies that

var[Ft(s,a)∣Ft] ≤ C(1 + ∣∣∆t(s,a)∣∣
2
1)

for some constant C.

Finally, by Lemma 5 it is easy to see that ∆t converges to 0 w.p.1, i.e., Qϕ
t (s,a) converges to

Qϕ∗(s,a) w.p.1, given the condition in Eq.56.

E.4.4 Derivation of Shapley Q-Learning

Similar to the operations in Section E.4.3, by stochastic approximation in value space, i.e. sampling
s′ from Pr(s′∣s,a) via Monte Carlo method, Shapley-Bellman operator can be expressed as follows:

Qϕ
(s,a) =w(s,a)(R + γ ∑

i∈N
max
ai

Qϕ
i (s

′, ai)) − b(s), (57)

where w(s,a) = [wi(s, ai)]
⊺ ∈ R∣N ∣+ ; b(s) = [bi(s)]⊺ ∈ R∣N ∣+ ; and Qϕ(s,a) = [Qϕ

i (s, ai)]
⊺ ∈ R∣N ∣+ .

Since w(s,a) = diag(w(s,a)) 1 where diag(⋅) denotes the diagonalization of a vector8 and 1
denotes the vector of ones, Eq.57 can be equivalently represented as

Qϕ
(s,a) = diag(w(s,a)) 1 (R + γ ∑

i∈N
max
ai

Qϕ
i (s

′, ai)) − b(s). (58)

8It is a square diagonal matrix with the elements of vector v on the main diagonal, and the other entries of
the matrix are zeros.
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Since wi(s, ai) > 0,∀i ∈ N , we can write the following equivalent form to Eq.58 such that

diag(w(s,a))
−1
Qϕ
(s,a) = 1 (R + γ ∑

i∈N
max
ai

Qϕ
i (s

′, ai)) − diag(w(s,a))
−1
b(s). (59)

Next, we multiply 1⊺ on both sides and obtain the following equation such that

∑
i∈N

1

wi(s, ai)
Qϕ

i (s, ai) = ∣N ∣ (R + γ ∑
i∈N

max
ai

Qϕ
i (s

′, ai)) − ∑
i∈N

wi(s, ai)
−1bi(s). (60)

Since the condition such that ∑i∈N wi(s, ai)
−1bi(s) = 0, by dividing ∣N ∣ on both sides we get that

∑
i∈N

1

∣N ∣wi(s, ai)
Qϕ

i (s, ai) = R + γ ∑
i∈N

max
ai

Qϕ
i (s, ai). (61)

Since wi(s, ai) = 1/∣N ∣ when ai = argmaxai Q
ϕ
i (s, ai), by defining δi(s, ai) = 1

∣N ∣ wi(s,ai) we can
get that

δi(s, ai) = {
1 ai = argmaxai

Qϕ
i (s, ai),

αi(s, ai) ai ≠ argmaxai Q
ϕ
i (s, ai),

(62)

where αi(s, ai) is a variable that expresses 1
∣N ∣ wi(s,ai) when ai ≠ argmaxai Q

ϕ
i (s, ai) for the ease

of implementation.

Substituting Eq.62 into Eq.61, we can get the following equation such that

∑
i∈N

δi(s, ai) Q
ϕ
i (s, ai) = R + γ ∑

i∈N
max
ai

Qϕ
i (s

′, ai). (63)

By rearranging Eq.63, we obtain the TD error of Shapley Q-learning (SHAQ) such that

∆(s,a, s′) = R + γ ∑
i∈N

max
ai

Qϕ
i (s

′, ai) − ∑
i∈N

δi(s, ai) Q
ϕ
i (s, ai). (64)

Note that the TD error of SHAQ is necessary for the TD error of Eq.55 (i.e. the stochastic learning
process that we proved to converge to the optimal Markov Shapley Q-value in Theorem 4). For
this reason, the condition maxs {∑i∈N maxai wi(s, ai)} <

1
γ

is necessary to be satisfied so that the
convergence to the optimality is possible to hold.

E.5 Mathematical Proofs of Validity and Interpretability

Lemma 6. Markov core is a convex set.

Proof. Let (maxπi xi(s))i∈N and (maxπi yi(s))i∈N be two vectors in the Markov core and α ∈
[0,1) be an arbitrary scalar. To ease life, for any i ∈ N we let maxπi zi(s) = αmaxπi xi(s) + (1 −
α)maxπi yi(s). By definition, for any coalition C ⊆ N we have

max
πC

z(s∣C) =∑
i∈C

max
πi

zi(s)

=∑
i∈C
αmax

πi

xi(s) + (1 − α)max
πi

yi(s)

= α∑
i∈C

max
πi

xi(s) + (1 − α)∑
i∈C

max
πi

yi(s)

≥ αmax
πC

V πC(s) + (1 − α)max
πC

V πC(s)

=max
πC

V πC(s).

Therefore, we proved that Markov core is a convex set.

Theorem 2. The optimal Markov Shapley value is a solution in the Markov core under Markov
convex game (MCG) with the grand coalition.

Proof. The optimal Markov Shapley value is the affine combination of the optimal marginal contribu-
tions. We know that Markov core is a convex set by Lemma 6 and the optimal marginal contribution
is in the Markov core by Lemma 1. Since the affine combination of the points in a convex set is still
in this convex set, we get that the optimal Markov Shapley value is in the Markov core.
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E.6 Mathematical Derivation for Implementation of Shapley Q-Learning

Proposition 3. Suppose any action marginal contribution can be factorised to the form such that
Φi(s, ai∣Ci) = σ(s,aCi∪{i}) Q̂i(s, ai). With the condition such that

ECi∼Pr(Ci∣N /{i})[σ(s,aCi∪{i})] = {
1 ai = argmaxai Q

ϕ
i (s, ai),

K ∈ (0,1) ai ≠ argmaxai Q
ϕ
i (s, ai),

we have

{
Qϕ

i (s, ai) = Q̂i(s, ai) ai = argmaxai Q̂i(s, ai),

αi(s, ai) Q
ϕ
i (s, ai) = α̂i(s, ai) Q̂i(s, ai) ai ≠ argmaxai Q̂i(s, ai),

where α̂i(s, ai) = ECi∼Pr(Ci∣N /{i})[ψ̂i(s, ai;aCi)] and ψ̂i(s, ai;aCi) ∶= αi(s, ai) σ(s,aCi∪{i}).

Proof. We suppose for any s ∈ S and a ∈ A, we have Φi(s, ai∣Ci) = σ(s,aCi∪{i}) Q̂i(s, ai) and
ECi[σ(s,aCi∪{i})] = 1 when ai = argmaxai Q

ϕ
i (s, ai). By the definition of the Markov Shapley

Q-value, it is not difficult to obtain

Qϕ
i (s, ai) = ECi[Φi(s, ai∣Ci)]

= ECi[σ(s,aCi∪{i}) Q̂i(s, ai)]

= ECi[σ(s,aCi∪{i})] Q̂i(s, ai).

Recall that δi(s, ai) is defined as follows:

δi(s, ai) = {
1 ai = argmaxai Q

ϕ
i (s, ai),

αi(s, ai) ai ≠ argmaxai Q
ϕ
i (s, ai).

If ai = argmaxai Q
ϕ
i (s, ai), it is not difficult to get that Qϕ

i (s, ai) = Q̂i(s, ai).

If ai ≠ argmaxai Q
ϕ
i (s, ai), we can have the following equation such that

αi(s, ai) Q
ϕ
i (s, ai) = αi(s, ai) ECi[σ(s,aCi∪{i}) Q̂i(s, ai)]

= ECi[αi(s, ai) σ(s,aCi∪{i})] Q̂i(s, ai)

∶= ECi[ψ̂i(s, ai;aCi)] Q̂i(s, ai),

where αi(s, ai) σ(s,aCi∪{i}) is defined as ψ̂i(s, ai;aCi). Since under this situation Q̂i(s, ai) is
always a scaled Qϕ

i (s, ai) with the scale of 1/K, the decisions are consistent to the original decisions.

E.6.1 Implementation of α̂i(s, ai)

As introduced in the main part of paper, when ai ≠ argmaxai Q̂i(s, ai), α̂i(s, ai) is implemented as
follows:

α̂i(s, ai) =
1

M

M

∑
k=1

Fs(Q̂Cki (τCki ,aCki ), Q̂i(τi, ai)) + 1,

where
Q̂Cki (τCki ,aCki ) =

1

∣Cki ∣
∑
j∈Cki

Q̂j(τj , aj)

and Cki ∼ Pr(Ci∣N /{i}) that follows the distribution w.r.t. the occurrence frequency of Ci; and
Fs(⋅, ⋅) is a monotonic function with an absolute activation function on the output whose weights are
generated from hypernetworks w.r.t. the global state, similar to the architecture of QMIX [9]. Since
Fs(⋅, ⋅) ≥ 0 always holds, it is not difficult to obtain that α̂i(s, ai) ≥ 1 always holds. As Eq.11 shows,
it is not difficult to get that αi(s, ai) =K

−1 α̂i(s, ai). Since K ∈ (0,1), we get that αi(s, ai) > 1.

As introduced in the main part of paper, the following equation is satisfied such that

δi(s, ai) =
1

∣N ∣ wi(s, ai)
.
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For all s ∈ S and ai ≠ argmaxai Q̂i(s, ai), δi(s, ai) = αi(s, ai) > 1. So, we can derive that

wi(s, ai) =
1

∣N ∣ αi(s, ai)

⇒max
ai

wi(s, ai) =max
ai

1

∣N ∣ αi(s, ai)
=

1

∣N ∣ minai αi(s, ai)
<

1

∣N ∣

⇒ 0 < ∑
i∈N

max
ai

wi(s, ai) < 1.

For all s ∈ S and ai = argmaxai Q̂i(s, ai), δi(s, ai) = δ̂i(s, ai) = 1. So, we can derive that

wi(s, ai) =
1

∣N ∣

⇒ ∑
i∈N

max
ai

wi(s, ai) = 1.

Therefore, we can directly obtain that for all s ∈ S and a ∈ A,

0 <max
s
{∑
i∈N

max
ai

wi(s, ai)} ≤ 1.

Since γ ∈ (0,1), we can get that 1
γ
> 1. As a result, we show that for all s ∈ S and a ∈ A,

0 <max
s
{∑
i∈N

max
ai

wi(s, ai)} <
1

γ
.

We get that our implementation of α̂i(s, ai) satisfies the condition in Theorem 1.

F Potential Negative Societal Impacts

Although this paper studies a fundamental theory of multi-agent reinforcement learning, if the
proposed algorithm is applied to real-world applications in the future, there may still exist some
potential negative societal impacts. First, since the theory does not consider robustness, it is possible
that the proposed algorithm would be attacked or vulnerable to some extreme scenarios like most of
machine learning models and algorithms. Fortunately, our theory is orthogonal to the robustness and
it is possible to consider robustness as an extension in the future work. Another potential negative
societal impacts could come from the implementation of models, e.g., policy and critic. Since these
are implemented by neural networks that are known as black boxes, the reliability could be a problem.
Nevertheless, this is irrelevant to the main purpose of this paper and can be improved by other related
research tracks in the future.
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