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A Overview of Notation

In Table A.1, we provide a reference of the notation and symbols used in our paper.

Table A.1: Overview of our notation

Symbol Name Signature

M Markov decision process without reward (MDP\R) (S,A, P,H, s0)
S State space
A Action space
P Transition model S ×A → ∆S
H Horizon H ∈ N+

s0 Initial state s0 ∈ S
π Policy S × [H]→ ∆A
r Reward function S ×A× [H]→ [0, Rmax], Rmax ∈ R+

M∪ r Markov decision process (MDP) (S,A, P,H, s0, r)

Qπ,h
M∪r Q-function (of π inM∪ r) S ×A× [H]→ R

V π,h
M∪r Value function (of π inM∪ r) S × [H]→ R

Aπ,h
M∪r Advantage function (of π inM∪ r) S ×A× [H]→ R

ηh,·M,π(·|s0)
State-visitation frequency
(conditioned on state) [H]→ ∆S

ηh,·M,π(·|s0, a0)
State-visitation frequency
(conditioned on state-action) [H]→ ∆S

ηh,·M,π(·, ·|s0)
State-action-visitation frequency
(conditioned on state) [H]× S → ∆A

ηh,·M,π(·, ·|s0, a0)
State-action-visitation frequency
(conditioned on state) [H]× S → ∆A

RM∪r Feasible set ofM∪ r
RB = RM∪πE Exact feasible set
RB̂ = RM̂∪π̂E Recovered feasible set

ϵ Target accuracy ϵ ∈ R+

δ Significancy δ ∈ (0, 1)
NE Number of exploration episodes NE ∈ N+
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B Proofs of Theoretical Results

B.1 Simulation Lemmas

In this section, we establish several simulation lemmas that we will use throughout our analysis. Some of the
results were already derived in prior work for the infinite horizon setting, e.g., by Zanette et al. (2019) and
Metelli et al. (2021). For completeness, we provide proofs for all results in the finite-horizon setting.

Definition B.1 (Occupancy measures). We define ηh,h′
M,π(s|s0) as the probability of being in state s at timestep

h′ ≥ h following a policy π in MDP\R M starting in state s0 at timestep h. We can compute it recursively as:

ηh,h
M,π(s

′|s) := 1{s′=s}

ηh,h′+1
M,π (s′|s) :=

∑
s′′,ã

P (s′|s′′, ã)πh′(ã|s′′)ηh,h′
M,π(s

′′|s)

We define the same probability for state-action pairs analogously:

ηh,h′
M,π(s

′, a′|s, a) := 1{s′=s,a′=a}

ηh,h′+1
M,π (s′, a′|s, a) :=

∑
s̃,ã

πh′(a′|s′)P (s′|s̃, ã)ηh,h′
M,π(s̃, ã|s, a)

as well as

ηh,h
M,π(s

′, a′|s) := πh(a
′|s′)1{s′=s}

ηh,h′+1
M,π (s′, a′|s) :=

∑
s̃,ã

πh′(a′|s′)P (s′|s̃, ã)ηh,h′
M,π(s̃, ã|s)

Because the environment is Markovian, it also holds for h′ > h that

ηh,h′
M,π(s

′|s) =
∑
s̃,a

ηh+1,h′
M,π (s′|s̃)P (s̃|s, a)πh(a|s)

and equivalently for state-action pairs.

Lemma B.2. The value function and Q-function of a policy π in an MDP M∪ r at timestep h can be expressed
as:

V π,h
M∪r(s) =

H∑
h′=h

∑
s′,a′

ηh,h′
M,π(s

′, a′|s)rh′(s′, a′)

Qπ,h
M∪r(s, a) =

H∑
h′=h

∑
s′,a′

ηh,h′
M,π(s

′, a′|s, a)rh′(s′, a′)

Proof. We show the result for the value function; the derivation for the Q-function is analogous.

Note that for h = H the statement holds because V π,H
M∪r(s) = 0. The general result follows by induction.

Assume that for h+ 1 the statement holds. Then:

V π,h
M∪r(s)

(a)
=
∑
a

πh(a|s)

(
rh(s, a) +

∑
s′

P (s′|s, a)V π,h+1
M∪r (s′)

)

(b)
=
∑
a

πh(a|s)

rh(s, a) +
∑
s′

P (s′|s, a)

 H∑
h′=h+1

∑
s′′,a′′

ηh+1,h′
M,π (s′′, a′′|s′)rh′(s′′, a′′)


(c)
=
∑
a

πh(a|s)rh(s, a) +
H∑

h′=h+1

∑
s′,a′

ηh,h′
M,π(s

′|s)πh′(a′|s′)rh′(s′, a′)

(d)
=

H∑
h′=h

∑
s′,a′

ηh,h′
M,π(s

′|s)πh′(a′|s′)rh′(s′, a′)

where (a) uses the Bellman equation, (b) the induction step, (c) uses Definition B.1 and relabels s′′ → s′,
a′′ → a′, and (d) uses Definition B.1 again and relabels a → a′.
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Lemma B.3 (Simulation lemma 1 by Metelli et al. (2021)). Let M be an MDP\R, and r, r̂ two reward functions
with corresponding optimal policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a) ≤
H∑

h′=h

∑
s′,a′

ηh,h′
M,π∗(s

′, a′|s, a)
(
rh′(s′, a′)− r̂h′(s′, a′)

)
V π∗,h
M∪r(s)− V π̂∗,h

M∪r̂(s) ≤
H∑

h′=h

∑
s′,a′

ηh,h′
M,π∗(s

′, a′|s)
(
rh′(s′, a′)− r̂h′(s′, a′)

)

Proof. Note that Qπ̂∗,h
M∪r̂(s, a) ≥ Qπ∗,h

M∪r̂(s, a) for all s, a because π̂∗ is optimal for r̂. Hence

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a) ≤ Qπ∗,h
M∪r(s, a)−Qπ∗,h

M∪r̂(s, a)

(a)
=

H∑
h′=h

∑
s′,a′

ηh,h′
M,π∗(s

′, a′|s, a)(rh′(s′, a′)− r̂h′(s′, a′))

where (a) uses Lemma B.2. After observing V π̂∗,h
M∪r̂(s) ≥ V π∗,h

M∪r̂(s), the second result follows analogously.

Lemma 6. Let M be an MDP\R, r, r̂ two reward functions with optimal policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a) ≤
H∑

h′=h

∑
s′,a′

(
ηh,h′
M,π∗(s

′, a′|s, a)− ηh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s′, a′)− r̂h′(s′, a′)
)

Proof.

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a) = (Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a)) + (Qπ̂∗,h
M∪r̂(s, a)−Qπ̂∗,h

M∪r(s, a))

(a)

≤
H∑

h′=h

∑
s′,a′

ηh,h′
M,π∗(s

′, a′|s, a)
(
rh′(s′, a′)− r̂h′(s′, a′)

)
+ (Qπ̂∗,h

M∪r̂(s, a)−Qπ̂∗,h
M∪r(s, a))

(b)
=

H∑
h′=h

∑
s′,a′

ηh,h′
M,π∗(s

′, a′|s, a)
(
rh′(s′, a′)− r̂h′(s′, a′)

)
+

H∑
h′=h

∑
s′,a′

ηh,h′
M,π̂∗(s

′, a′|s, a)
(
r̂h′(s′, a′)− rh′(s′, a′)

)
=

H∑
h′=h

∑
s′,a′

(
ηh,h′
M,π∗(s

′, a′|s, a)− ηh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s′, a′)− r̂h′(s′, a′)
)

where (a) uses Lemma B.3 and (b) uses Lemma B.2.

Lemma B.4. Let M1,M2 be two MDP\R with transition dynamics P1, P2 respectively, r a reward function
and π a policy. Then, for any state s and timestep h:

V π,h
M2∪r(s)− V π,h

M1∪r(s) =

H∑
h′=h

∑
s′,a′,s′′

ηh,h′
M2,π

(s′; s)πh′(a′|s′)(P2(s
′′|s′, a′)− P1(s

′′|s′, a′))V π,h′+1
M1∪r (s′′)

V π,h
M1∪r(s)− V π,h

M2∪r(s) =

H∑
h′=h

∑
s′,a′,s′′

ηh,h′
M2,π

(s′; s)πh′(a′|s′)(P1(s
′′|s′, a′)− P2(s

′′|s′, a′))V π,h′+1
M1∪r (s′′)

Moreover,

∣∣∣V π,h
M2∪r(s)− V π,h

M1∪r(s)
∣∣∣ ≤ H∑

h′=h

∑
s′,a′,s′′

ηh,h′
M2,π

(s′; s)πh′(a′|s′)
∣∣∣P2(s

′′|s′, a′)− P1(s
′′|s′, a′)

∣∣∣V π,h′+1
M1∪r (s′′)

Proof. We start by writing explicitly the value-functions:

V π,h
M2∪r(s)− V π,h

M1∪r(s) =
∑
a,s′

πh(a|s)
(
P2(s

′|s, a)V π,h+1
M2∪r (s

′)− P1(s
′|s, a)V π,h+1

M1∪r (s
′)± P2(s

′|s, a)V π,h+1
M1∪r (s

′)
)

=
∑
a,s′

πh(a|s)
(
(P2(s

′|s, a)− P1(s
′|s, a))V π,h+1

M1∪r (s
′) + P2(s

′|s, a)(V π,h+1
M2∪r (s

′)− V π,h+1
M1∪r (s

′))
)
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Unrolling the recursion gives the first result; the second result follows similarly:

V π,h
M1∪r(s)− V π,h

M2∪r(s) =
∑
a,s′

πh(a|s)
(
P1(s

′|s, a)V π,h+1
M1∪r (s

′)− P2(s
′|s, a)V π,h+1

M2∪r (s
′)± P2(s

′|s, a)V π,h+1
M1∪r (s

′)
)

=
∑
a,s′

πh(a|s)
(
(P1(s

′|s, a)− P2(s
′|s, a))V π,h+1

M1∪r (s
′) + P2(s

′|s, a)(V π,h+1
M1∪r (s

′)− V π,h+1
M2∪r (s

′))
)

Together, the first two results imply the third one because all terms in the sums are non-negative.

Lemma B.5. Let M1,M2 be two MDP\R with transition dynamics P1, P2 respectively, r a reward function,
and π∗

1 , π
∗
2 optimal policy in M1 ∪ r and M2 ∪ r, respectively. Then, for any state s and timestep h:

V ∗,h
M1∪r(s)− V ∗,h

M2∪r(s) ≤
∑
h′=h

∑
s′,a′,s′′

ηh,h′
M2,π

∗
1
(s′; s)π∗

1,h(a
′|s′)(P1(s

′′|s′, a′)− P2(s
′′|s′, a′))V ∗,h

M1∪r(s
′′)

V ∗,h
M2∪r(s)− V ∗,h

M1∪r(s) ≤
∑
h′=h

∑
s′,a′,s′′

ηh,h′
M2,π

∗
2
(s′; s)π∗

2,h(a
′|s′)(P2(s

′′|s′, a′)− P1(s
′′|s′, a′))V ∗,h

M2∪r(s
′′)

Proof.

V ∗,h
M1∪r(s)− V ∗,h

M2∪r(s) =
∑
a,s′

(
π∗
1,h(a|s)P1(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)− π∗
2,h(a|s)P2(s

′|s, a)V π∗
2 ,h+1

M2∪r (s′)

± π∗
1,h(a|s)P2(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)± π∗
1,h(a|s)P2(s

′|s, a)V π∗
2 ,h+1

M2∪r (s′)
)

=
∑
a,s′

(
π∗
1,h(a|s)P2(s

′|s, a)(V π∗
1 ,h+1

M1∪r (s′)− V
π∗
2 ,h+1

M2∪r (s′))

+ π∗
1,h(a|s)(P1(s

′|s, a)− P2(s
′|s, a))V π∗

1 ,h+1

M1∪r (s′)

+ (π∗
1,h(a|s)− π∗

2,h(a|s))P2(s
′|s, a)V π∗

2 ,h+1

M2∪r (s′)
)

≤
∑
a,s′

(
π∗
1,h(a|s)P2(s

′|s, a)(V π∗
1 ,h+1

M1∪r (s′)− V
π∗
2 ,h+1

M2∪r (s′))

+ π∗
1,h(a|s)(P1(s

′|s, a)− P2(s
′|s, a))V π∗

1 ,h+1

M1∪r (s′)
)

where the last inequality uses that π∗ is optimal for M2 ∪ r. Unrolling the recursion gives the first result. A
similar argument yields the second results:

V ∗,h
M2∪r(s)− V ∗,h

M1∪r(s) =
∑
a,s′

(
π∗
2,h(a|s)P2(s

′|s, a)V π∗
2 ,h+1

M2∪r (s′)− π∗
1,h(a|s)P1(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)

± π∗
2,h(a|s)P2(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)
)

=
∑
a,s′

(
π∗
2,h(a|s)P2(s

′|s, a)(V π∗
2 ,h+1

M2∪r (s′)− V
π∗
1 ,h+1

M1∪r (s′))

+ π∗
2,h(a|s)P2(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)− π∗
1,h(a|s)P1(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)

≤
∑
a,s′

(
π∗
2,h(a|s)P2(s

′|s, a)(V π∗
2 ,h+1

M2∪r (s′)− V
π∗
1 ,h+1

M1∪r (s′))

+ π∗
2,h(a|s)(P2(s

′|s, a)− P1(s
′|s, a))V π∗

1 ,h+1

M1∪r (s′)

B.2 Feasible Reward Set

In this section, we characterize the feasible reward set first implicitly, then explicitly, and prove a result about
error propagation. Metelli et al. (2021) provide a similar analysis in the infinite horizon setting.

Lemma 3 (Feasible Reward Set Implicit). A reward function r is feasible if and only if for all s, a, h it holds that:
Aπ,h

M∪r(s, a) = 0 if πE
h (a|s) ≥ 0 and Aπ,h

M∪r(s, a) ≤ 0 if πE
h (a|s) = 0. Moreover, if the second inequality is

strict, πE is uniquely optimal, i.e., Π∗
M∪r = {πE}.

Proof. The result follows directly from Definition 1.
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Lemma B.6. A Q-function satisfies the conditions of Lemma 3 if and only if there exists an {Ah ∈ RS×A
≥0 }h∈H

and {Vh ∈ RS} such that for every h, s, a ∈ [H]× S ×A:

QπE ,h
M∪r(s, a) = −Ah(s, a)1{πE

h
(a|s)=0} + Vh(s)

Proof. We first show that if QπE ,h
M∪r(s, a) has this form, the conditions of Lemma 3 are satisfied, and then the

converse. Assume QπE ,h
M∪r(s, a) = −Ah(s, a)1{πE

h
(a|s)=0} + Vh(s). Then,

V πE ,h
M∪r (s) =

∑
a

πE
h (a|s)QπE ,h

M∪r(s, a) = Vh(s).

If πE
h (a|s) > 0, then QπE ,h

M∪r(s, a) = V πE ,h
M∪r (s), which is the first condition of Lemma 3. If πE

h (a|s) = 0,

QπE ,h
M∪r(s, a) = V πE ,h

M∪r (s)−Ah(s, a) ≤ V πE ,h
M∪r (s), which is the second condition of Lemma 3.

For the converse, assume that the conditions of Lemma 3 hold, and let Vh(s) = V πE ,h
M∪r (s) and Ah(s, a) =

V πE ,h
M∪r (s)−QπE ,h

M∪r(s, a).

Lemma 4 (Feasible Reward Set Explicit). A reward function r is feasible if and only if there exists an
{Ah ∈ RS×A

≥0 }h∈[H] and {Vh ∈ RS}h∈[H] such that for all s, a, h it holds that:

rh(s, a) = −Ah(s, a)1{πE
h

(a|s)=0} + Vh(s) +
∑
s′

P (s′|s, a)Vh+1(s
′)

Proof. Since QπE ,h
M∪r(s, a) = rh(s, a) +

∑
s′ P (s′|s, a)Vh+1(s

′), using Lemma B.6, we have:

rh(s, a) = QπE ,h
M∪r(s, a)−

∑
s′

P (s′|s, a)Vh+1(s
′)

= −Ah(s, a)1{πE
h

(a|s)=0} + Vh(s) +
∑
s′

P (s′|s, a)Vh+1(s
′)

Theorem 5 (Error Propagation). Let (M, πE) and (M̂, π̂E) be two IRL problems. Then, for any r ∈ R(M,πE)

there exists r̂ ∈ R̂(M̂,π̂E) such that:

|rh(s, a)− r̂h(s, a)| ≤ Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|+
∑
s′

Vh+1(s
′)|P (s′|s, a)− P̂ (s′|s, a)|

and we can bound Vh ≤ (H − h)Rmax and Ah ≤ (H − h)Rmax.

Proof. We start by rewriting r and r̂ using Lemma 4:

rh(s, a) = −Ah(s, a)1{πE
h

(a|s)=0} + Vh(s) +
∑
s′

P (s′|s, a)Vh+1(s
′)

r̂h(s, a) = −Âh(s, a)1{π̂E
h

(a|s)=0} + V̂h(s) +
∑
s′

P̂ (s′|s, a)V̂h+1(s
′)

We can choose (w.l.o.g.) Vh = V̂h and Âh = 1{πE
h

(a|s)=0}Ah:

rh(s, a)− r̂h(s, a) =−Ah(s, a)1{πE
h

(a|s)=0} + Vh(s) +
∑
s′

P (s′|s, a)Vh+1(s
′)

+Ah(s, a)1{π̂E
h

(a|s)=0}1{πE
h

(a|s)=0} − Vh(s)−
∑
s′

P̂ (s′|s, a)Vh+1(s
′)

=Ah(s, a)1{πE
h

(a|s)=0}(1{π̂E
h

(a|s)=0} − 1) +
∑
s′

Vh+1(s
′)(P (s′|s, a)− P̂ (s′|s, a))

=−Ah(s, a)1{πE
h

(a|s)=0}1{π̂h(a|s)≥0} +
∑
s′

Vh+1(s
′)(P (s′|s, a)− P̂ (s′|s, a))

The result follows by taking the absolute value and applying the triangle inequality.
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Algorithm 2 Uniform sampling IRL with a generative model.
1: Input: significance δ ∈ (0, 1), target accuracy ϵ, maximum number of samples per iter. nmax

2: Initialize k ← 0, ϵ0 ← H
3: while ϵk > ϵ/2 do
4: Uniformly sample ⌈nmax

SAH ⌉ samples from all (s, a, h) ∈ S ×A× [H]
5: For all samples, observe sample from transition dynamics and expert policy
6: k ← k + 1
7: Update P̂k, π̂k, and Ch

k

8: Update accuracy ϵk ← Hmaxs,a,h C
h
k (s, a)

9: end while

B.3 Uniform Sampling IRL with a Generative Model

In this section, we derive sample complexity results for uniform sampling with a generative model (Algorithm 2).
Metelli et al. (2021) proved an analogous result for the infinite horizon setting focusing on transferable rewards.
In contrast, our focus is on the finite horizon setting. Moreover, Metelli et al. (2021) considers to learn a reward
that is transferable to a known target environment. In our setting, instead, we suppose to use the recovered
reward function in the unknown source environment.

Definition 2 (Optimality Criterion). Let RB be the exact feasible set and RB̂ be the feasible set recovered after
observing n ≥ 0 samples collected from M and πE . We say that an algorithm for Active IRL is (ϵ, δ, n)-correct
if after n iterations with probability at least 1− δ it holds that:

inf
r̂∈R

B̂

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r ∈ RB,

inf
r∈RB

sup
π∗∈Π∗

M∪r

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r̂ ∈ RB̂,

where π∗ is an optimal policy in M∪ r and π̂∗ is an optimal policy in M̂ ∪ r̂.

Lemma B.7 (Good Event). Let πE be a (possibly stochastic) expert policy. We estimate the expert policy with
π̂E and the transition model P with an estimate P̂k from k episodic interactions. Let nh

k(s, a) and nh
k(s) be

the number of times state action pairs and states have been observed at time h within the first k episodes, and
nh+
k (s, a) = max{1, nh

k(s, a)}. Then,

1{πE
h

(a|s)=0}1{π̂E
h

(a|s)≥0}Ah(s, a) ≤ (H − h)Rmax

√
ℓhk(s, a)

nh
k
+
(s, a)

1{π̂E
h

(a|s)=0}1{πE
h

(a|s)≥0}Âh(s, a) ≤ (H − h)Rmax

√
ℓhk(s, a)

nh
k
+
(s, a)∑

s′
|(P (s′|s, a)− P̂k(s

′|s, a))V π,h
r (s′)| ≤ (H − h)Rmax

√
2ℓhk(s, a)

nh
k
+
(s, a)∑

s′
|(P (s′|s, a)− P̂k(s

′|s, a))V̂ π,h
r (s′)| ≤ (H − h)Rmax

√
2ℓhk(s, a)

nh
k
+
(s, a)

where ℓhk(s, a) = log
(
24SAH(nh

k
+
(s, a))2/δ

)
, holds simultaneously for all (s, a, h) ∈ S × A × [H] and

k ≥ 1 with probability at least 1− δ. We call the event that these equations hold the good event E and write
P (E ) ≥ 1− δ.

Proof. We show that each statement individually does not hold with probability less than δ/4, which implies

the result via a union bound. Let us denote β1(s, a, h) := (H − h)Rmax

√
2ℓh

k
(s,a)

nh
k
+
(s,a)

. First, consider the last

two inequalities. The probability that either of them does not hold is:
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Pr

(
∃k ≥ 1, (s, a, h) ∈ S ×A× [H] :

∑
s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| > β1(s, a, h)

)
(a)

≤Pr

(
∃m ≥ 0, (s, a, h) ∈ S ×A× [H] :

∑
s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| > β1(s, a, h)

)
(b)

≤
∑
m≥0

∑
s,a

H∑
h=0

Pr

(∑
s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| > β1(s, a, h)

)
(c)

≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp

(
− 2β1(s, a, h)

2m2

4m(H − h)2R2
max

)
≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp (−ℓk(s, a))

=
∑
m≥0

∑
s,a

H∑
h=0

2δ

24SAH(m+)2
=

δ

12

1 +
∑
m≥0

1

m2

 =
δ

12

(
1 +

π2

6

)
≤ δ

4

Step (a) assumes that we visit a state action pair m times, and focuses on these m times the transition model
for the given state-action pair is updated. Step (b) uses a union bound over m and (s, a). Step (c) applies
Hoeffding’s inequality using that we estimate P with an average of samples, and V π,h

r ≤ (H − h)Rmax. The
factor m2 in the numerator results from dividing by 1/m to average over samples, and the factor 4m in the
denominator results from the sum over m in the denominator of Hoeffding’s bound.

We show the first two inequalities similarly, with β2(s, a, h) := (H − h)Rmax

√
ℓh
k
(s,a)

nh
k
+
(s,a)

Pr
(
∃k ≥ 1, (s, a, h) ∈ S ×A× [H] : |(πE

k (a|s)− π̂E
k (a|s))V π,h

r (s′)| > β2(s, a, h)
)

(a)

≤Pr
(
∃m ≥ 0, (s, a, h) ∈ S ×A× [H] : |(πE

k (a|s)− π̂E
k (a|s))V π,h

r (s′)| > β2(s, a, h)
)

(b)

≤
∑
m≥0

∑
s,a

H∑
h=0

Pr
(
|(πE

k (a|s)− π̂E
k (a|s))V π,h

r (s′)| > β2(s, a, h)
)

(c)

≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp

(
− 2β2(s, a, h)

2m2

m(H − h)2R2
max

)
≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp (−ℓk(s, a))

=
∑
m≥0

∑
s,a

H∑
h=0

2δ

24SAH(m+)2
=

δ

12

1 +
∑
m≥0

1

m2

 =
δ

12

(
1 +

π2

6

)
≤ δ

4

A union bound over all equations results in P (E ) ≥ 1− δ.

Definition B.8. We define the reward uncertainty as

Ch
k (s, a) = (H − h)Rmax min

(
1, 2

√
2ℓhk(s, a)

nh
k(s, a)

)
Corollary B.9. Under the good event E , in each iteration k it holds for all (s, a, h) ∈ S ×A× [H] that:

|rh(s, a)− r̂kh(s, a)| ≤ Ch
k (s, a)

Proof.

|rh(s, a)− r̂kh(s, a)|
(a)

≤ Ah(s, a)1{πE
h

(a|s)=0}1{π̂E
h

(a|s)≥0} +
∑
s′

Vh+1(s
′)|P (s′|s, a)− P̂ (s′|s, a)|

(b)

≤ (H − h)Rmax

(
2

√
2ℓhk(s, a)

nh
k
+
(s, a)

)
= Ch

k (s, a)

where (a) uses Theorem 5 and (b) uses Lemma B.7.

Corollary B.10. Let S be a sampling strategy. Let RB be the exact feasible set and RB̂k
be the feasible set

recovered after k iterations. If
H max

s,a,h
Ch

k (s, a) ≤
ϵ

2
,

then the conditions of Definition 2 are satisfied.

18



Proof. For the first condition of Definition 2, observe:

inf
r̂∈R

B̂k

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

(Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a))

(a)

≤ inf
r̂∈R

B̂k

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

H∑
h′=h

∑
s′,a′

(
ηh,h′
M,π∗(s

′, a′|s, a)− ηh,h′
M,π̂∗(s

′, a′|s, a)
) (

rh′(s′, a′)− r̂h′(s′, a′)
)

(b)

≤ inf
r̂∈R

B̂k

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

∣∣∣ H∑
h′=h

∑
s′,a′

(
ηh,h′
M,π∗(s

′, a′|s, a)− ηh,h′
M,π̂∗(s

′, a′|s, a)
)
Ch′

k (s′, a′)
∣∣∣

≤2H max
s,a,h

Ch
k (s, a)

where (a) uses Lemma 6 and (b) uses Corollary B.9.

For the second condition of Definition 2, it follows similarly that:

inf
r∈RB

sup
π∗∈Π∗

M∪r

max
s,a,h

(Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)) ≤ 2H max
s,a,h

Ch
k (s, a)

Hence, if H maxs,a,h Ch
k (s, a) ≤ ϵ/2, both conditions of Definition 2 are satisfied.

Theorem B.11 (Sample Complexity of Uniform Sampling IRL). With probability at least 1− δ, Algorithm 2
stops at iteration τ fulfilling Definition 2 with a number of samples upper bounded by:

n ≤ Õ
(
H5R2

maxSA

ϵ2

)
Proof. First, note

H max
s,a,h

Ch
k (s, a) = H2Rmax max

s,a,h

(
2

√
2ℓhk(s, a)

nh
k
+
(s, a)

)

After τ iterations, we have collected τ · nmax samples and for each s, a, h, we have: nh
τ
+
(s, a) ≥ τnmax

SAH
≥ 1

To terminate at iteration τ , we need to have for all s, a, h:

2H2Rmax

√
2ℓhτ (s, a)

nh
τ (s, a)

≤ ϵ

2

which implies

nh
τ (s, a) ≥

32H4R2
maxℓ

h
τ (s, a)

ϵ2

By using Lemma B.8 by Metelli et al. (2021), we can conclude that the number of samples necessary to ensure
accuracy ε is:

n ≤ Õ
(
H5R2

maxSA

ϵ2

)

Corollary B.12. If the true reward function does not depend on the timestep h, i.e., rh(s, a) = r(s, a), then we

can modify Algorithm 2 to only need n ≤ Õ
(

H4R2
maxSA

ϵ2

)
samples.

Proof. If we know that the reward function does not depend on h we can choose Ck(s, a) = minh Ch
k (s, a) as

a confidence interval of the reward. Consequently, we can sample all states for a fixed h.

We still need for all s, a:

2H2Rmax

√
2ℓhτ (s, a)

nh
τ (s, a)

≤ ϵ

2
⇒ nh

τ (s, a) ≥
32H4R2

maxℓ
h
τ (s, a)

ϵ2

Again, we use Lemma B.8 by Metelli et al. (2021), but we can eliminate one sum over H , ending up with:

n ≤ Õ
(
H4R2

maxSA

ϵ2

)
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B.4 Sample Complexity of AceIRL in Unknown Environments (Problem Independent)

We are now ready to analyze the sample complexity of AceIRL (Algorithm 1). We first consider the simple
version of the algorithm: AceIRL Greedy. Then, we consider the full version of the algorithm after introducing a
few additional lemma about the policy confidence set. We start by defining the error upper bound and deriving
two lemmas that will help us to show that it is indeed an upper bound on the error we want to reduce.

Definition B.13. We define recursively:

EH
k (s, a) = 0; Eh

k (s, a) = min
(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a) max
a′∈A

Eh+1
k (s′, a′)

)
where P̂ is the estimated transition model of the environment.

The first lemma shows that the error upper bound can upper bound the error due to estimating the transition
model.

Lemma B.14. Under the good event E , for all policies π and reward functions r and all s, a, h:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Eh
k (s, a)

Proof.

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| =
∣∣∣∑

s′
P̂ (s′|s, a)

∑
a′

π(a′|s′)Qπ,h+1

M̂∪r
(s′, a′)

−
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)Qπ,h+1
M∪r (s′, a′)±

∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)Qπ,h+1
M∪r (s′, a′)

∣∣∣
≤
∣∣∣∑

s′

(
P̂ (s′|s, a)− P (s′|s, a)

)∑
a′

π(a′|s′)Qπ,h+1
M∪r (s′, a′)

∣∣∣
+
∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

For h = H the result holds trivially. Now assuming it holds for h+ 1, we consider step h:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′

∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′

Eh+1
k (s′, a′) = Eh

k (s, a)

The next lemma shows that the error upper bound can also upper bound the error in estimating the reward
function, which is due to estimating the transition model and the expert policy.

Lemma B.15. Under the good event E , for all reward function r, all policies π, and all s, a ∈ S ×A:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)| ≤ Eh

k (s, a)

Proof. For h = H the result holds trivially. Now assuming it holds for h+ 1, we consider step h:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)|

≤|r̂(s, a)− r(s, a)|+
∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)|Qπ,h+1

M̂∪r̂
(s′, a′)−Qπ,h+1

M̂∪r
(s′, a′)|

≤|r̂(s, a)− r(s, a)|+
∑
s′

P̂ (s′|s, a)max
a′

|Qπ,h+1

M̂∪r̂
(s′, a′)−Qπ,h+1

M̂∪r
(s′, a′)|

≤|r̂(s, a)− r(s, a)|+
∑
s′

P̂ (s′|s, a)max
a′

Eh+1
k (s′, a′) = Eh

k (s, a)
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We can now combine the previous two lemmas to show that E is indeed an upper bound on the error we want to
reduce. This implies correctness of AceIRL Greedy, which the following lemma formalizes.

Lemma B.16 (Correctness of AceIRL Greedy). If AceIRL Greedy stops in episode k, after sampling n samples,
i.e., E0

k(s0, πk+1(s0)) ≤ ϵ
4

, then it fulfills Definition 2.

Proof. Let us define the error

ehk(s, a) := |Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)|

where π∗ is the true optimal policy in M∪ r, and π̂∗ is the optimal policy in M̂ ∪ r̂, i.e., in the estimated MDP
using the inferred reward function. Then,

ehk(s, a) = |Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)±Qπ∗,h
M̂∪r

(s, a)±Qπ̂∗,h
M̂∪r

(s, a)|

≤ |Qπ∗,h
M∪r(s, a)−Qπ∗,h

M̂∪r
(s, a)|︸ ︷︷ ︸

≤Eh
k
(s,a)

+|Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)|+ |Qπ̂∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M∪r(s, a)|︸ ︷︷ ︸

≤Eh
k
(s,a)

≤ 2Eh
k (s, a) + |Qπ∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M̂∪r
(s, a)|

where, we used Lemma B.14.

Let us consider the remaining term |Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)| in two steps. First, we have:

Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a) ≤Qπ∗,h
M̂∪r

(s, a)−Qπ∗,h
M̂∪r̂

(s, a)︸ ︷︷ ︸
≤Eh

k
(s,a)

+Qπ∗,h
M̂∪r̂

(s, a)−Qπ̂∗,h
M̂∪r̂

(s, a)︸ ︷︷ ︸
≤0

+

+Qπ̂∗,h
M̂∪r̂

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)︸ ︷︷ ︸
≤Eh

k
(s,a)

≤ 2Eh
k (s, a),

where we used Lemma B.15 and the fact that π̂∗ is optimal in the MDP M̂ ∪ r̂. Second, we have:

Qπ̂∗,h
M̂∪r

(s, a)−Qπ∗,h
M̂∪r

(s, a) ≤Qπ̂∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M∪r(s, a)︸ ︷︷ ︸

≤Eh
k
(s,a)

+Qπ̂∗,h
M∪r(s, a)−Qπ∗,h

M∪r(s, a)︸ ︷︷ ︸
≤0

+

+Qπ∗,h
M∪r(s, a)−Qπ∗,h

M̂∪r
(s, a)︸ ︷︷ ︸

≤Eh
k
(s,a)

≤ 2Eh
k (s, a),

where we used Lemma B.14 and the fact that π∗ is optimal in the MDP M∪ r. Overall, we find that

|Qπ∗,h
M̂∪r

(s, a)−Qπ̂∗,h
M̂∪r

(s, a)| ≤ 2Eh
k (s, a),

and consequently,
ehk(s, a) ≤ 4Eh

k (s, a).

Note that, Eh
k (s, a) only sums positive terms, hence:

max
s,a,h

Eh
k (s, a) ≤ max

a
E0

k(s0, a) = E0
k(s0, πk+1(s0))

Hence, if E0
k(s0, πk+1(s0)) ≤ ϵ

4
, we have for all s, a, h ∈ S ×A× [H]:

ehk(s, a) ≤ ϵ

which implies correctness according to Definition 2.

Next, we will analyze the sample complexity of AceIRL Greedy. Let us first define pseudo-counts that will be
crucial to deal with the uncertainty of the transition dynamics in our analysis. This is similar to the analysis of
UCRL for reward-free exploration by Kaufmann et al. (2021).

Definition B.17. We define the pseudo-counts of visiting a specific state action pair at timestep h within the first
k iterations as

n̄h
k(s, a) :=

k∑
i=1

η0,h
M,πi

(s, a|s0),

where πi is the exploration policy in episode i.
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The following lemma allows us to introduce the pseudo-counts when considering the contraction of the reward
confidence intervals.

Lemma B.18. With probability at least 1− δ
2

for all s, a, h, k ∈ S ×A× [H]× N+, we have:

min

(
2ℓhk(s, a)

nh
k(s, a)

, 1

)
≤ 8ℓ̄hk(s, a)

max
(
n̄h
k(s, a), 1

)
where ℓ̄hk(s, a) = log

(
24SAH(n̄h

k(s, a))
2/δ
)
.

Proof. This result adapts Lemma 7 by Kaufmann et al. (2021) to our setting.

By Lemma 10 in Kaufmann et al. (2021), we have with probability at least 1− δ
2

:

nh
k(s, a) ≥

1

2
n̄h
k(s, a)− βcnt(δ),

where βcnt(δ) = log(2SAH/δ).

We distinguish two cases. First let βcnt(δ) ≤ 1
4
n̄h
k(s, a). Then nh

k(s, a) ≥ 1
4
n̄h
k(s, a), and

min

(
2ℓhk(s, a)

nh
k(s, a)

, 1

)
≤ 2ℓhk(s, a)

max(nh
k(s, a), 1)

=
2 log(24SAH(nh

k(s, a))
2/δ)

max(nh
k(s, a), 1)

≤ 2 log(24SAH(n̄h
k(s, a)/4)

2/δ)

(n̄h
k(s, a)/4)

≤ 8ℓ̄hk(s, a)

max(n̄h
k(s, a), 1)

where we use that log(24SAHx2/δ)/x is non-increasing for x > 1, and log(24SAHx2/δ) is non-decreasing
and βcnt(δ) ≥ 1.

Now consider let βcnt(δ) >
1
4
n̄h
k(s, a). Then,

min

(
2ℓhk(s, a)

nh
k(s, a)

, 1

)
≤ 1 < 4

βcnt(δ)

max(n̄h
k(s, a), 1)

≤ 4ℓ̄hk(s, a)

max(n̄h
k(s, a), 1)

where we used that ℓhk(s, a) = log
(
24SAH(nh

k(s, a))
2/δ
)
= βcnt(δ) + log

(
6nh

k(s, a))
2
)
≥ βcnt(δ).

The final lemma we need shows relates the error upper bound which is defined using our estimated transition
model to a similar quantity defined using the (unknown) real transitions.

Lemma B.19. Under the good event E , we have for any s, a, h :

Eh
k (s, a) ≤ 2Ch

k (s, a) +
∑
s′

P (s′|s, a)max
a′

Eh+1
k (s′, a′)

where P is the true transition model that we do not know.

Proof. First note that Eh
k (s, a) ≤ H by definition. Now, consider:

Eh
k (s, a) ≤ Ch

k (s, a) +
∑
s′

P̂ (s′|s, a)max
a′

Eh+1
k (s′, a′)

= Ch
k (s, a) +

∑
s′

(P̂ (s′|s, a)− P (s′|s, a) + P (s′|s, a))max
a′

Eh+1
k (s′, a′)

= Ch
k (s, a) +

∑
s′

(P̂ (s′|s, a)− P (s′|s, a))max
a′

Eh+1
k (s′, a′)︸ ︷︷ ︸

≤Ch
k
(s,a)

+
∑
s′

P (s′|s, a))max
a′

Eh+1
k (s′, a′)

≤ 2Ch
k (s, a) +

∑
s′

P (s′|s, a)max
a′

Eh+1
k (s′, a′)

where we used the good event and the fact that Ch
k can only shrink over episodes.

Finally, we can analyze the sample complexity of AceIRL Greedy.

Theorem B.20 (AceIRL Greedy Sample Complexity (problem independent)). AceIRL Greedy terminates with
an (ϵ, δ, n)-correct solution, with

n ≤ Õ
(
H5R2

maxSA

ϵ2

)
.
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Proof. Lemma B.16 shows that if AceIRL Greedy terminates, then it returns a (ϵ, δ, n)-correct solution. So, we
need to show that it terminates within τ iterations and bound τ .

Let us consider the average error, defined by

qhk :=
∑
s,a

η0,h
M,πk+1

(s, a|s0)Eh
k (s, a)

(a)

≤
∑
s,a

η0,h
M,πk+1

(s, a|s0)
(
2Ch

k (s, a) +
∑
s′

P (s′|s, a)max
a′

Eh+1
k (s′, a′)

)
=
∑
s,a

η0,h
M,πk+1

(s, a|s0)
(
2Ch

k (s, a) +
∑
s′

P (s′|s, a)
∑
a′

πk+1(a
′|s′)Eh+1

k (s′, a′)
)

= 2
∑
s,a

η0,h
M,πk+1

(s, a|s0)Ch
k (s, a) + qh+1

k

where we used Lemma B.19 in step (a). Unrolling the recursion, results in:

qhk ≤ 2

H∑
h′=h

∑
s,a

η0,h′
M,πk+1

(s, a|s0)Ch′
k (s, a)

If the algorithm terminates at τ , we have for each k < τ , and s, a, h ∈ S ×
A × [H]: ϵ < 4E0

k(s0, πk+1(s0)). We have q0k = E0
k(s0, πk+1(s0)); therefore,

as long we haven’t stopped, we have ϵ ≤ 4q0k. Writing out this inequality, yields:

ϵ ≤ 4q0k ≤ 8

H∑
h=0

∑
s,a

η0,h
M,πk+1

(s, a|s0)Ch
k (s, a) ≤ 4HRmax

H∑
h=0

∑
s,a

η0,h
M,πk+1

(s, a|s0)

√
8 log(12SAH(nh

k(s, a))
2/δ)

max(nh
k(s, a), 1)

Using Lemma B.18, we can relate this to the pseudo-counts

ϵ < 4HRmax

H∑
h=0

∑
s,a

η0,h
M,πk+1

(s, a|s0)

√
8 log(12SAH(n̄h

k(s, a))
2/δ)

max(n̄h
k(s, a), 1)

≤ 4HRmax

H∑
h=0

∑
s,a

η0,h
M,πk+1

(s, a|s0)

√
8 log(12SAHk2/δ)

max(n̄h
k(s, a), 1)

Summing the inequality over k = 0, . . . T with T < τ , we obtain

ϵ(T + 1) ≤ 4HRmax

√
8 log(12SAHT 2/δ)

H∑
h=0

∑
s,a

T∑
k=1

η0,h
M,πk+1

(s, a|s0)
1√

max(n̄h
k(s, a), 1)

= 4HRmax

√
8 log(12SAHT 2/δ)

H∑
h=0

∑
s,a

T∑
k=1

n̄k+1
h (s, a)− n̄k

h(s, a)√
max(n̄h

k(s, a), 1)

where we used the definition of the pseudo-counts in the last equality. Using Lemma 19 by Jaksch et al. (2010),
we can further bound the sum in k:

ϵ(T + 1) = 4HRmax

√
8 log(12SAHT 2/δ)

H∑
h=0

∑
s,a

√
n̄T+1
h (s, a)

≤ 4HRmax

√
8 log(12SAHT 2/δ)

√
SA

H∑
h=0

√∑
s,a

n̄T+1
h (s, a)

= 4H2Rmax

√
8 log(12SAHT 2/δ)

√
SA

√
T + 1

It follows that

ϵ
√
T + 1 ≤ 4H2Rmax

√
8SA log(12SAHT 2/δ)

ϵ2τ ≤ 128H4R2
maxSA log(12SAH(τ − 1)2/δ)

setting τ = T + 1.

For large enough τ , this inequality cannot hold because
√
T + 1 on the l.h.s grows faster than log(τ) on the r.h.s.

Hence, the stopping time τ is finite. Further, we can apply Lemma 15 by Kaufmann et al. (2021), and follow that

τ ≤ Õ
(
H4R2

maxSA

ϵ2

)
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If we observe H samples in each iteration, i.e., NE = 1, we get a sample complexity of

n ≤ Õ
(
H5R2

maxSA

ϵ2

)

B.5 Sample Complexity of AceIRL in Unknown Environments (Problem Dependent)

For the problem dependent analysis, we will need this additional lemma also used by Kakade and Langford
(2002).

Lemma B.21 (Lemma 6.1 by Kakade and Langford (2002)). For any policy π:

V π∗,h
M∪r(s)− V π,h

M∪r(s) = −
∑
s′,a′

H∑
h′=h

ηh,h′
M,π(s

′, a′; s)A∗,h′
M∪r(s

′, a′)

Proof.

V ∗,h
M∪r(s)− V π,h

M∪r(s)

=
∑
a

π∗
h(a|s)

(
rh(s, a) +

∑
s′

P (s′|s, a)V ∗,h+1
M∪r (s′)

)

−
∑
a

πh(a|s)

(
rh(s, a) +

∑
s′

P (s′|s, a)V π,h+1
M∪r (s′)

)
±
∑
a,s′

πh(a|s)P (s′|s, a)V ∗,h+1
M∪r (s′)

=
∑
a

(π∗
h(a|s)− πh(a|s))r(s, a) +

∑
a,s′

(π∗
h(a|s)− πh(a|s))P (s′|s, a)V ∗,h+1

M∪r (s′)

+
∑
a,s′

πh(a|s)P (s′|s, a)(V ∗,h+1
M∪r (s)− V π,h+1

M∪r (s))

=−
∑
a

π(a|s)A∗,h
M∪r(s, a) +

∑
a,s′

πh(a|s)P (s′|s, a)(V ∗,h+1
M∪r (s)− V π,h+1

M∪r (s))

Unrolling the recursion yields the result.

We can now start with the analysis. First, we define the policy confidence set, and show that it indeed contains
the relevant policies under the good event.

Definition B.22. We define the policy confidence set as

Π̂k = {π|V ∗,
M̂∪r̂

(s0)− V π,

M̂∪r̂
(s0) ≤ 10ϵk}

where r̂ = A (RB̂) is the reward estimated using an IRL algorithm A . We choose ϵk recursively by solving the
optimization problem

ϵk = max
π∈Π̂k−1

H∑
h=0

∑
s′,a′

η0,h

M̂,π
(s′, a′; s0)C

h
k (s

′, a′)

starting with ϵ0 = 1
10
H .

The following lemma will help us to deal with uncertainty about the transition dynamics.

Lemma B.23. Under the good event E , if π ∈ Π̂k, then:

|V π,h

M̂∪r̂
(s)− V π,h

M∪r̂(s)| ≤ ϵk

|V ∗,h
M∪r̂(s)− V ∗,h

M̂∪r̂
(s)| ≤ ϵk

Proof. First by Lemma B.4:

|V π,h

M̂∪r
(s)− V π,h

M∪r(s)| ≤
H∑

h′=h

∑
s′,a′,s′′

ηh,h′

M̂,π
(s′; s)πh′(a′|s′)|P̂ (s′′|s′, a′)− P (s′′|s′, a′)|V π,h′+1

M∪r (s′′)

≤
H∑

h′=h

∑
s′,a′

ηh,h′

M̂,π
(s′; s)πh′(a′|s′)Ck(s

′, a′) ≤ ϵk
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Then, by Lemma B.5:

V ∗,h
M∪r(s)− V ∗,h

M̂∪r
(s) ≤

∑
h′=h

∑
s′,a′,s′′

ηh,h′

M̂,π∗(s
′; s)π∗

h′(a′|s′)(P (s′′|s′, a′)− P̂ (s′′|s′, a′))V ∗,h
M∪r(s

′′)

≤
∑
h′=h

∑
s′,a′

ηh,h′

M̂,π∗(s
′; s)π∗

h′(a′|s′)Ck(s
′, a′) ≤ ϵk

And, similarly

V ∗,h
M̂∪r

(s)− V ∗,h
M∪r(s) ≤

∑
h′=h

∑
s′,a′,s′′

ηh,h′

M̂,π̂∗(s
′; s)π̂∗

h′(a′|s′)(P̂ (s′′|s′, a′)− P (s′′|s′, a′))V ∗,h
M̂∪r

(s′′)

≤
∑
h′=h

∑
s′,a′

ηh,h′

M̂,π̂∗(s
′; s)π̂∗

h′(a′|s′)Ck(s
′, a′) ≤ ϵk

Now we show that the relevant policies are always in the policy confidence set, conditioned on the good event.

Lemma B.24. Conditioned the good event E , if π∗, π̂∗ ∈ Π̂k−1, then π∗ ∈ Π̂k.

Proof. Let r ∈ RB. Then

V ∗,h
M̂∪r̂k

(s)− V π∗,h
M̂∪r̂k

(s) = V ∗,h
M̂∪r̂k

(s)− V ∗,h
M̂∪r

(s) + V ∗,h
M̂∪r

(s)− V π∗,h
M̂∪r̂k

(s)

(a)

≤
H∑

h′=h

∑
s′,a′

ηh,h′

M̂,π∗(s
′, a′|s)Ch′

k (s′, a′) +

H∑
h′=h

∑
s′,a′

ηh,h′

M̂,π∗(s
′, a′|s)Ch′

k (s′, a′)
(b)

≤ 2ϵk

where (a) uses Lemma B.2, Lemma B.3 and Corollary B.9, (b) uses that π∗ ∈ Π̂k−1 and the definition of ϵk.
Hence,

max
s

(
V ∗,h
M̂∪r̂k

(s)− V π∗,h
M̂∪r̂k

(s)
)
≤ 2ϵk ≤ 10ϵk

and therefore π∗ ∈ Π̂k.

Lemma B.25. Conditioned on the good event E , for every policy π and episodes k′ > k, there exists
r̂k′ ∈ RB̂k′ , such that:

max
s

(
V π,h
M∪r̂k′ (s)− V π,h

M∪r̂k
(s)
)
≤ 4ϵk

Proof. Similarly to the proof of the previous lemma, we have

V π,h

M̂∪r̂k′
(s)− V π,h

M̂∪r̂k
(s) = V π,h

M̂∪r̂k′
(s)− V π,h

M̂∪r
(s) + V π,h

M̂∪r
(s)− V π,h

M̂∪r̂k
(s)

≤
H∑

h′=h

∑
s′,a′

ηh,h′

M̂,π
(s′, a′|s)Ch′

k′ (s′, a′) +

H∑
h′=h

∑
s′,a′

ηh,h′

M̂,π
(s′, a′|s)Ch′

k (s′, a′) ≤ 2ϵk

where we use that the confidence intervals are shrinking with increasing episode number, i.e., ϵk′ ≤ ϵk.

By combining this with Lemma B.23, we get the result:

max
s

(
V π,h
M∪r̂k′ (s)− V π,h

M∪r̂k
(s)
)

=max
s

(
V π,h
M∪r̂k′ (s)− V π,h

M̂∪r̂k′
(s)︸ ︷︷ ︸

≤ϵk

+V π,h

M̂∪r̂k′
(s)− V π,h

M̂∪r̂k
(s)︸ ︷︷ ︸

≤2ϵk

+V π,h

M̂∪r̂k
(s)− V π,h

M∪r̂k
(s)︸ ︷︷ ︸

≤ϵk

)
≤ 4ϵk

Lemma B.26. Under the good event E , if π̂∗
k, π ∈ Π̂k−1 and π /∈ Π̂k, then the policy π is suboptimal for some

reward r̂k′ ∈ RB̂k′ for all k′ ≥ k.
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Proof. We can observe that

V π,h
M∪r̂k′ (s0)− V ∗,h

M∪r̂k′ (s0) = V π,h
M∪r̂k′ (s0)− V

π̂∗
k,h

M∪r̂k′ (s0)

=V π,h
M∪r̂k′ (s0)− V π,h

M∪r̂k
(s0)︸ ︷︷ ︸

(a)
≤ 4ϵk

+V π,h
M∪r̂k

(s0)− V π,h

M̂∪r̂k
(s0)︸ ︷︷ ︸

(b)
≤ ϵk

+ V π,h

M̂∪r̂k
(s0)− V

π̂∗
k,h

M̂∪r̂k
(s0)︸ ︷︷ ︸

(c)
> 10ϵk

+V
π̂∗
k,h

M̂∪r̂k
(s0)− V

π̂∗
k,h

M∪r̂k
(s0)︸ ︷︷ ︸

(b)
≤ ϵk

+ V
π̂∗
k,h

M∪r̂k
(s0)− V

π̂∗
k,h

M∪r̂k′ (s0)︸ ︷︷ ︸
(a)
≤ 4ϵk

> 0

where we applied (a) Lemma B.23, (b) Lemma B.25, and (c) the definition of Π̂k and the fact that π /∈ Π̂k.
Consequently, π is suboptimal for at least some reward function r̂k′ ∈ RB̂k′ .

Corollary B.27. For ϵ0 = H
10

, for every k ≥ 0 it holds that both π∗, π̂∗
k+1 ∈ Π̂k.

Proof. We show the statement by induction over k. For k = 0, we have 10ϵ0 = H and therefore Π̂0 contains
all policies. Assume that for k − 1 the statement holds, i.e., π∗, π̂∗

k ∈ Π̂k−1, and consider k. By Lemma B.24,
π∗ ∈ Π̂k. Note, that π̂∗

k+1 ∈ Π̂k−1. Hence, by Lemma B.25, it follows that π̂∗
k+1 ∈ Π̂k because it would be

suboptimal otherwise which is a contradiction.

The last result we need, is quantifying the size of the policy confidence set.

Lemma B.28. Under the good event E , let r̃ ∈ argminr∈RB
maxs,a(r(s, a) − r̂k(s, a)), where r̂k =

A (RB̂k
). If π ∈ Π̂k, then maxs(V

∗,h
M̂∪r̃

(s)− V π,h

M̂∪r̃
(s)) ≤ 12ϵk.

Proof.

V ∗,h
M̂∪r̃

(s)− V π,h

M̂∪r̃
(s) = V ∗,h

M̂∪r̃
(s)− V ∗,h

M̂∪r̂k
(s)︸ ︷︷ ︸

≤ϵk

+V ∗,h
M̂∪r̂k

(s)− V π,h

M̂∪r̂k
(s)︸ ︷︷ ︸

≤10ϵk

+V π,h

M̂∪r̂k
(s)− V π,h

M̂∪r̃
(s)︸ ︷︷ ︸

≤ϵk

ϵk ≤ 14ϵk

Next, we define the error upper bound based on the policy confidence set.

Definition B.29. Using Π̂k, we define recursively:

ÊH
k (s, a) = 0

Êh
k (s, a) = min

(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

)
where P̂ is the estimated transition model of the environment. In contrast to Definition B.13, the maximization is
over policies in Π̂k rather than all actions.

This definition allows us to derive results that are analogous to the problem independent case.

Lemma B.30. Under the good event E , for all policies π ∈ Π̂k and reward functions r and all s, a ∈ S ×A:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Êh
k (s, a)

Proof. The proof is the same as for Lemma B.14, restricting the set of policies to Π̂k.

Lemma B.31. Under the good event E , for all reward function r, all policies π ∈ Π̂k, and all s, a ∈ S ×A:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)| ≤ Êh

k (s, a)

Proof. The proof is the same as for Lemma B.15, restricting the set of policies to Π̂k.
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Lemma B.32. Under the good event E , we have for any s, a, h :

Êh
k (s, a) ≤ 2Ch

k (s, a) +
∑
s′

P (s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

Proof. The proof is the same as for Lemma B.32.

Finally, we can combine these results to analyze the algorithm’s sample complexity.

Theorem 8. [AceIRL Sample Complexity] AceIRL returns a (ϵ, δ, n)-correct solution with

n ≤ Õ

(
min

[
H5R2

maxSA

ϵ2
,

H4R2
maxSAϵ2τ−1

mins,a,h(A
∗,h
M∪r(s, a))

2ϵ2

])

where ϵτ−1 depends on the choice of NE , the number of episodes of exploration in each iteration. A∗,h
M∪r(s, a)

is the advantage function of r ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)), the reward function from the

feasible set RB closest to the estimated reward function r̂k.

Proof. First note that the analysis of Theorem B.20 still applies; so, in the worst case we get the same sample
complexity. The key difference is that we no longer use the overall greedy policy w.r.t Eh

k , but restrict ourselves
to policies in Π̂k.

Again, we consider the error

eπ,h
k (s, a) := |Qπ∗,h

M∪r(s, a)−Qπ̂∗,h
M∪r(s, a)|

where π∗ is the true optimal policy in M∪ r, and π̂∗ is the optimal policy in M̂ ∪ r̂, i.e., in the estimated MDP
using the inferred reward function.

Similar, to the proof of Lemma B.16, we can use Lemma B.30 and Lemma B.31 to show for all policies π ∈ Π̂h
k ,

that:
eπ,h
k (s, a) ≤ 4Êh

k (s, a)

which implies the correctness of the algorithm according to Corollary B.10 when stopping at

Ê0
k(s0, πk+1(s0)) ≤

ϵ

4
(2)

Now, consider the following condition for all s, a, h:

Ch
k (s, a) ≤ −A∗,h

M∪r̃(s, a)
ϵ

48ϵk−1
, (3)

where r̃ ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)). We will (a) show that when this condition holds the

previous stopping condition also holds, and (b) analyze after how many iterations this condition will certainly
hold. Together this will yield the result.

To show that Equation (3) implies Equation (2), we assume that Equation (3) holds. Then, we get by applying
Lemma B.32 recursively:

Ê0
k(s0, πk+1(s0)) ≤ 2 max

π∈Π̂k−1

max
a

H∑
h=0

∑
s′,a′

η0,h
M,π(s

′, a′; s0, a)C
h
k (s

′, a′)

≤ 2 max
π∈Π̂k−1

max
a

H∑
h=0

∑
s′,a′

η0,h
M,π(s

′, a′; s0, a)

(
−A∗,h

M∪r̃(s
′, a′)

ϵ

48ϵk−1

)
(a)

≤ 2 max
π∈Π̂k−1

(V ∗,0
M∪r(s0)− V π,0

M∪r(s0))
ϵ

48ϵk−1

(b)

≤ ϵ

4

where (a) uses Lemma B.21 and (b) uses Lemma B.28.

Next, we analyze after how many iterations Equation (3) holds, which will give a lower bound on the sample
complexity result. The argument proceeds similar to the proof of Theorem B.20.

Before the algorithm terminates at τ , we have for all k < τ :

min
s,a,h

(−A∗,h
M̂∪r̃

(s, a))
ϵ

48ϵk−1
< max

s,a,h
Ch

k (s, a) ≤ HRmax

√
2ℓhk(s, a)

max(Nh
k (s, a), )
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Using similar argument to the proof of Theorem B.20, using the same pseudo-counts, we arrive at:

min
s,a,h

(−A∗,h
M∪r̃(s, a))

ϵ

48ϵτ−1

√
τ + 1 ≤ HRmax

√
8SA log(12SAHτ2/δ)

Again, we can use Lemma 15 by Kaufmann et al. (2021) to find that

τ ≤ Õ

(
H3R2

maxSAϵ2τ−1

mins,a,h(A
∗,h
M∪r̃(s, a))

2ϵ2

)

B.6 Computing the Exploration Policy

To run AceIRL, we need to solve the optimization problem:

πh
k = min

π
max

π̂∈Π̂k−1

H∑
h=0

∑
s′,a′

η0,h

M̂,π̂
(s′, a′; s0)Ĉ

h
k (s

′, a′|π)

For simplicity let us denote the state visitation frequencies by

µh(s, a) := η0,h

M̂,π
(s, a; s0)

µ̂h(s, a) := η0,h

M̂,π̂
(s, a; s0)

Let us introduce the following matrix notation

Ã =



I 0 0 0 . . . 0

P̂ −I 0 0 . . . 0

0 P̂ −I 0 . . . 0
. . .

0 0 . . . 0 P̂ −I
I 0 0 . . . 0 0
0 I 0 . . . 0 0

. . .
0 0 0 . . . I 0
0 0 0 . . . 0 I


, a =


r̂0k−1

r̂1k−1

. . .
r̂Hk−1

 , A =

[
A 0
aT −1

]
,

x =


µ0

µ1

. . .
µH

t

 , x̂ =

 µ̂0

µ̂1

. . .
µ̂H

 , b =



µ̄0

0
. . .
0
1
. . .
1

−10ϵk−1


, c =


C0

C1

. . .
CH

1

 ,

where µ̄0 is the actual initial state distribution of the environment (which we assume to know). We can now
write the inner maximization problem above as a linear program:

max
x

cTx

Ax = b

x ≥ 0

The corresponding dual problem is:

min
y

bT y

AT y ≥ c

Using this we can write the full min-max problem as:

min
x̂,y

bT y

AT y ≥ c(x)

Ãx = b

x ≥ 0
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which is a convex optimization problem, if we use:

Ch(s, a) = 2(H − h)Rmax

√
2 log

(
24SAH(max(1, nh

k(s, a)))
2/δ
)

max(1, n̂h
k+1(s, a)

)

where n̂h
k+1(s, a) = nh

k(s, a) + µh(s, a) ∗NE is the number of times we expect h, s, a to be visited at the next
iteration.

Solving this optimization problem yields the state-visitation frequencies µ̂k(s, a). We can then find the
exploration policy that induces these state-visitations simply as:

πk,h(a|s) :=
µ̂h
k(s, a)∑

a′ µ̂h
k(s, a

′)
.

C Experimental Details

In this section, we provide more details on our experiments. We discuss the environments in detail (Ap-
pendix C.1), provide some information on the implementation and the libraries and computational resources
we used (Appendix C.2), and we provide more full plots of all experiments we discussed in the main paper
(Appendix C.3).

C.1 Details on the Environments

Four Paths. The four paths environment has 41 states and 4 actions:

S = {c, l1, . . . , l10, u1, . . . , u10, r1, . . . , r10, d1, . . . , d10}, A = {a1, a2, a3, a4},
and a time horizon of H = 20. The agent starts in the center state c, from which can move in four directions: left
(a1), up (a2), right (a3), or down (a4). Each action ai has a probability pi of failing. If an action fails it moves
in the opposite direction. p1, . . . , p4 are sampled uniformly from (0, 0.3). One of the states (l10, u10, r10, d10)
is chosen as the goal state at random. The reward in the goal state is 1, all other rewards are 0.

Double Chain. The Double Chain MDP, proposed by Kaufmann et al. (2021), consists of L states S =
{s0, . . . , sL−1}, and two actions A = {left, right}, which correspond to a transition to the left or to the right.
When the agent takes an action, there is a 0.1 probability of moving to the other direction. The state sL−1 has
reward 1, all other states have reward 0, and the agent starts in the center of the chain at s(L−1)/2. We choose
L = 31, similar to Kaufmann et al. (2021). The environment has horizon H = 20.

Chain. The Chain MDP, proposed by Metelli et al. (2021) has 6 states S = {s1, s2, s3, s4, s5, su} and 10
actions A = {a1, . . . , a10}. The agent starts in a random initial state. Taking action a10 moves it right along
the chain with probability 0.7 and to state su with probability 0.3. Any other action moves the agent right with
probability 0.3 and to state su with probability 0.7. If the agent is in state su, action a10 moves it back to state
s1 with probability 0.05. Any other action moves it to s1 with probability 0.01. The reward is 1 in all states
except su where the reward is 0. Metelli et al. (2021) provide an illustration of the environment in Figure 3. We
choose H = 10 for the chain.

Gridworld. The Gridworld, proposed by Metelli et al. (2021), is a 3× 3 gridworld with an obstacle in the center
cell (2, 2) and a goal cell at the right center cell (2, 1). The agent starts in a random non-goal cell, and it has 4
action one to move in each direction. If the agent takes an action with probability 0.3 the action fails and the
agent moves in a random direction instead. If the agent is in the center cell (2, 2) which has the obstacle, if the
agent would move right it instead stays in the center cell with probability 0.8. The reward in the goal cell is
1, all other rewards are 0. Metelli et al. (2021) provide an illustration of the gridworld in Figure 6. We choose
H = 10 for the gridworld.

Random MDPs. We generate random MDPs by uniformly sampling an initial state distribution and transition
matrix and normalizing them. The rewards are sampled uniformly between 0 and 1. Our random MDPs have 9
states, 4 actions and horizon 10.

C.2 Implementation Details

We provide a full implementation of AceIRL in Python, using multiple open sources libraries, including cvxpy
and the SCS optimizer (Diamond and Boyd, 2016; O’Donoghue et al., 2016) for solving the optimization
problem in Appendix B.6, and standard libraries for numerical computing, including numpy, and scipy. We
choose Maximum Entropy IRL (Ziebart et al., 2008) as an IRL algorithm, but AceIRL is agnostic to this choice.

We ran experiments in parallel on a server with two 64 Core AMD EPYC 7742 2.25GHz processors. We estimate
a total wall-clock time of less than 48 hours for running all experiments presented in this paper, including 50
random seeds each.
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Figure C.1: Full learning curves for all experiments shown in Table 1. Similar to Figure 2, we
show the mean and 95% confidence intervals computed over 50 random seeds. In addition to the
exploration algorithms, we also show uniform sampling and TRAVEL which are much faster in most
cases because they have access to a generative model.

C.3 Additional Results

We provide full learning curves for all experiments discussed in the main paper in Figure C.1.

D Connection to Reward-free Exploration

In the reward-free exploration problem, introduced by Jin et al. (2020), the agent explores an MDP\R to learn a
transition model. In each iteration it chooses a new exploration policy based on previous data. The goal is to
ensure that if the agent is given a reward function r after the exploration phase it can find a good policy using its
transition model. Jin et al. (2020) formalize this goal as reducing the error:

V π∗,0
M∪r(s0)− V π̂∗,0

M∪r,

where π̂∗ is the optimal policy in the estimated MDP M̂ ∪ r. Note the striking similarity between this problem,
and the active IRL problem, we study in this paper. We want to reduce a similar error (cf. Definition 2), but we
have additional information about the reward in form of the expert policy.
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Figure D.2: Illustrative experiments for reward-free exploration in the Double Chain environment
proposed by Kaufmann et al. (2021). The difference to our Active IRL setting is that the agent does
not have access to the expert policy during exploration, but still tries to learn a good model of the
environment. During testing it then gets access to the reward function, and the regret measures the
suboptimality of the policy trained in the agent’s transition model. We find that the ideas used in
AceIRL are also useful for batched reward-free exploration with larget NE .

The Reward-free UCRL algorithm, proposed by Kaufmann et al. (2021), is essentially analogous to AceIRL
Greedy (Section 6.1). Reward-free UCRL explores greedily with respect to an upper bound on the value function
error. However, the exploration policy needs to be updated after each episode to adapt to the new uncertainty
estimates. This might be expensive or not possible in practice. Instead, we could consider a batched version of
reward-free exploration, where in each iteration the agent explores for NE episodes, similar to our Active IRL
problem. In this setting, a greedy policy w.r.t. uncertainty is suboptimal because it does not adapt to the reduced
uncertainty over the NE episodes.

Instead, we can consider reducing the expected uncertainty at the next iteration, similar to our discussion in
Section 6.2. If our error estimate is denoted by Ek(s, a), we do no longer act greedily w.r.t. Ek. Instead we try
to estimate the error at the next iteration Êk+1(s, a|π) as a function of the policy and try to select the policy that
reduces this error. In the tabular case, we can formulate this as a convex optimization problem, analogous to
Appendix B.6. We call this adaptation of AceIRL to the reward-free exploration problem Ace-RF.

Figure D.2 shows illustrative results of this algorithm in the batched reward-free exploration setting in the
Double Chain environment. We find that for larger batch sizes, choosing an exploration policy that reduces
future uncertainty is significantly better than reward-free UCRL.
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