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Abstract

Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a re-
ward function from expert demonstrations. Many IRL algorithms require a known
transition model and sometimes even a known expert policy, or they at least require
access to a generative model. However, these assumptions are too strong for many
real-world applications, where the environment can be accessed only through se-
quential interaction. We propose a novel IRL algorithm: Active exploration for
Inverse Reinforcement Learning (AceIRL), which actively explores an unknown
environment and expert policy to quickly learn the expert’s reward function and
identify a good policy. AceIRL uses previous observations to construct confidence
intervals that capture plausible reward functions and find exploration policies that
focus on the most informative regions of the environment. AceIRL is the first
approach to active IRL with sample-complexity bounds that does not require a
generative model of the environment. AceIRL matches the sample complexity of
active IRL with a generative model in the worst case. Additionally, we establish
a problem-dependent bound that relates the sample complexity of AceIRL to the
suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in sim-
ulations and find that it significantly outperforms more naive exploration strategies.

1 Introduction

Reinforcement Learning (RL; Sutton and Barto, 2018) has achieved impressive results, from playing
video games (Mnih et al., 2015) to solving robotic control problems (Haarnoja et al., 2019). However,
in many applications, it is challenging to design a reward function that robustly describes the desired
task (Amodei et al., 2016; Hendrycks et al., 2021). Instead of using an explicit reward function,
Inverse Reinforcement Learning (IRL; Ng et al., 2000) seeks to recover the reward by observing
an expert, e.g., an human who already knows how to perform a task. However, most existing IRL
algorithms assume that the transition model, and in some cases, the expert’s policy, are known.
In many real-world applications, this is not given, and the agent needs to estimate the transition
dynamics and the expert policy from samples. Figure 1 shows an illustrative example where the agent
can choose between different paths that have different properties, e.g., walking speeds, and lead to
different goals. The agent has to explore the environment and query the expert policy in order to infer
the expert’s reward function.

IRL with sample-based estimation was only recently analyzed formally by Metelli et al. (2021). They
decompose the error on the reward into a contribution from estimating the transition model and
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Figure 1: An illustrative example of Active IRL. The agent can choose between four paths that lead
to different objects. It can get action recommendations from an expert but does not know about the
properties of the different paths (the transition dynamics) or the value of different items (the reward
function). The agent’s goal is to infer which reward functions explain the expert’s recommendations.
Only observing the expert actions is not enough to do that. Rather, the agent has to explore the
environment and learn about the dynamics. The human might prefer to find the treasure over the
carrot but still recommend the yellow path because the treasure is very difficult to reach. To explore
efficiently, the agent has to combine its uncertainty about the expert policy with its uncertainty about
the environment to choose where to explore. AceIRL implements an exploration strategy that aims to
infer which reward functions are consistent with the expert’s recommendations as quickly as possible.
We present experiments on a version of this environment in Section 7.

estimating the expert policy. Based on this, Metelli et al. (2021) propose an efficient sampling strategy
to recover a good reward function. However, they assume a generative model of the environment,
i.e., the agent can query the transition dynamics for arbitrary states and actions. In practice, this
assumption is unrealistic. The agent in Figure 1 starts in the middle and cannot learn about the
properties of any path without actually exploring the environment.

In this work, we consider IRL with unknown transition dynamics and expert policy and focus on
exploring the environment in order to recover the expert’s reward function efficiently. To the best of
our knowledge, we present the first paper providing sample complexity guarantees for the active IRL
problem without access to a generative model.

Our main contributions are:

• We propose the active IRL problem in a finite-horizon, undiscounted Markov Decision Pro-
cess (MDP) and characterize necessary and sufficient conditions for solving it (Section 4.1).

• We analyze how the estimation errors of the transition model and the expert policy contribute
to the estimation error of the reward function, extending prior work to the finite-horizon
setting. We provide a novel analysis of how this error affects the performance of the policy,
which optimizes the recovered reward function (Section 4.2).

• We propose a novel algorithm, Active exploration for Inverse Reinforcement Learning
(AceIRL), which actively explores the environment and the expert policy to infer a good
reward function. In each iteration, AceIRL constructs an exploratory policy based on the
estimation error of the recovered reward function (Section 6).

• We consider two different exploration strategies for AceIRL. The first, more straightforward,
strategy provides a sample complexity similar to the algorithm proposed by Metelli et al.
(2021), which has access to a generative model (Section 6.1). The second strategy takes
the expected reduction in uncertainty into account (Section 6.2). This yields a tighter,
problem-dependent sample complexity bound at the cost of solving a convex optimization
problem in each iteration (Section 6.3).

• We evaluate AceIRL empirically in simulated environments and demonstrate that it achieves
significantly better performance than more naive exploration strategies (Section 7). We
provide code to reproduce out experiments at https://github.com/lasgroup/aceirl.

The proofs of all results presented in the main paper can be found in Appendix B.
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2 Related Work

Most IRL algorithms assume that the underlying transition model is known (Ratliff et al., 2006;
Ziebart et al., 2008; Ramachandran and Amir, 2007; Levine et al., 2011). However, the transition
model usually needs to be estimated from samples, which induces an error in the recovered reward
function that most papers do not study. Metelli et al. (2021) analyze this error and the sample
complexity of IRL in a tabular setting with a generative model. They propose an algorithm focused
on transferring the learned reward function to a fully known target environment. Dexter et al. (2021)
provides a similar analysis in continuous state spaces and discrete action spaces, but they still require
a generative model of the environment. In contrast, we do not assume access to a generative model
and thus need to tackle the exploration problem in IRL.

Some prior work studies active learning algorithms for IRL in a Bayesian framework but without
theoretical guarantees. Lopes et al. (2009) propose an active learning algorithm for IRL that estimates
a posterior distribution over reward functions from demonstrations, requiring a prior distribution and
full knowledge of the environment dynamics. Relatedly, Cohn et al. (2011) consider a Bayesian IRL
setting with a semi-autonomous agent that asks an expert for advice if it is uncertain about the reward.
Brown et al. (2018) empirically study active IRL in several safety-critical environments, selecting
queries using value at risk. Kulick et al. (2013) consider active learning for a robotic manipulation
task, asking a human expert for advice in situations with the highest predictive uncertainty. Similarly,
Losey and O’Malley (2018) propose a method to learn uncertainty estimates from human corrections
in a robotics context. All of these papers assume a Bayesian framework and do not provide theoretical
guarantees. In contrast, our setup does not require a prior over reward functions, and we provide
theoretical sample complexity guarantees for our algorithm.

A separate line of work studies sample complexity in imitation learning where the goal is to imitate
an expert policy rather than infer a reward function (Rajaraman et al., 2020; Xu et al., 2020). In
particular, Abbeel and Ng (2005) also focus on exploration and propose to use the expert policy to
explore relevant regions, whereas Shani et al. (2022) use an upper-confidence approach to exploration.
Our setting is different because we focus on IRL instead of imitation learning, and we aim to explore
to infer a reward function learn most effectively.

3 Preliminaries

Let us first introduce necessary background and notation that we use throughout the paper.

Markov decision process. A finite-horizon (or episodic) Markov Decision Process without reward
function (MDP\R) is a tupleM := (S,A, P,H, s0), where S is the finite state space of size S; A
is the finite action space of size A; P : S ×A → ∆S is the transition model; H is the horizon and
s0 is the initial state. 1 In other words, a finite-horizon MDP\R is a finite-horizon MDP (Puterman,
2014) without the reward function. We describe an agent’s behaviour with a (possible stochastic)
policy π ∈ S × [H]→ ∆A.

Reward function. A reward function r : S×A×[H]→ [0, Rmax] maps state-action-time step triplets
to a reward. Given an MDP\RM and a reward function r, we denote the resulting MDP byM∪ r.

Value functions and optimality conditions. We define the Q-function Qπ,h
M∪r(s, a) and value-

function V π,h
M∪r(s) of a policy π in the MDPM∪ r at time step h, state s and action a as:

Qπ,h
M∪r(s, a) = rh(s, a)+

∑
s′,a′

πh+1(a
′|s′)P (s′|s, a)Qπ,h+1

M∪r (s′, a′); V π,h
M∪r(s) =

∑
a

πh(a|s)Qπ,h
M∪r(s, a)

We define the advantage function Aπ,h
M∪r(s, a) as Aπ,h

M∪r(s, a) = Qπ,h
M∪r(s, a)− V π,h

M∪r(s). A policy
π is optimal if Aπ,h

M∪r(s, a) is ≤ 0 for each time step h ∈ [H], state s ∈ S , action a ∈ A. We denote
the set of optimal policies for the MDPM∪ r with Π∗

M∪r.

1We can model any initial state distribution as a single initial state by modifying the transitions.
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State-visitation frequencies. We define ηh,h
′

M,π(s|s0) as the probability of being in state s at time
h′ ≥ h following policy π in MDP\RM starting in state s0 at time h. We can compute it recursively:

ηh,hM,π(s
′|s) := 1{s′=s} and ηh,h

′+1
M,π (s′|s) :=

∑
s′′,ã

P (s′|s′′, ã)πh′(ã|s′′)ηh,h
′

M,π(s
′′|s).

We can define the visitation frequencies for state-action pairs analogously (see Appendix B.1).

4 Active Learning for Inverse Reinforcement Learning (Active IRL)

In this section, we first introduce the Active Inverse Reinforcement Learning problem with and
without a generative model (Section 4.1). Then, we define the feasible reward set for finite-horizon
MDPs (Section 4.2) and characterize the error propagation on the reward function and the value
function (Section 4.3), extending results by Metelli et al. (2021) to the finite horizon setting.

4.1 Problem Definition

Our goal is to design an exploration strategy to construct a dataset of demonstrations D such that
an arbitrary IRL algorithm can recover a good reward function from it. To be agnostic to the choice
of IRL algorithm, we consider the set of all feasible reward functions for a specific expert policy.
Formally, we consider IRL problems (M, πE) consisting of an MDP\R and an expert policy πE ,
and we define the feasible reward set as follows.
Definition 1 (Feasible Reward Set). A reward function r is feasible for an IRL problem (M, πE),
if and only if the expert policy πE is optimal in M ∪ r. We call the set of all feasible reward
functionsRM∪πE the feasible reward set. If we estimate the transition model and expert policy from
samples, we refer to the recovered feasible setRB̂ = RM̂∪π̂E in contrast to the exact feasible set
RB = RM∪πE .

Now, we can formalize the goal of Active IRL as finding a exploration strategy that satisfies the
following PAC optimality criterion.
Definition 2 (Optimality Criterion). Let RB be the exact feasible set and RB̂ be the feasible set
recovered after observing n ≥ 0 samples collected fromM and πE . We say that an algorithm for
Active IRL is (ϵ, δ, n)-correct if after n iterations with probability at least 1− δ it holds that:

inf
r̂∈RB̂

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r ∈ RB,

inf
r∈RB

sup
π∗∈Π∗

M∪r

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r̂ ∈ RB̂,

where π∗ is an optimal policy inM∪ r and π̂∗ is an optimal policy in M̂ ∪ r̂.

The first condition states that for each reward in the exact feasible set, the best reward we could
estimate in the recovered feasible set has a low error everywhere. This condition is a type of “recall”:
every possible true reward function needs to be captured by the recovered feasible set. The second
condition ensures that there is a possible true reward function with a low error for every possible
recovered reward function. This avoids an unnecessarily large recovered feasible set. This condition
is a type of “precision”: if we recover a reward function, it has to be close to a possible true reward
function. Note, that Metelli et al. (2021) consider a similar optimality criterion in their Definition 5.1.
However, they consider a known target environment; hence, our Definition 2 is a stronger requirement.

4.2 Feasible Rewards in Finite-horizon MDPs

Ng et al. (2000) characterize the feasible reward set implicitly in the infinite horizon setting, whereas
Metelli et al. (2021) characterize it explicitly. Here, we provide similar results for a finite horizon.
Lemma 3 (Feasible Reward Set Implicit). A reward function r is feasible if and only if for all s, a, h
it holds that: Aπ,h

M∪r(s, a) = 0 if πE
h (a|s) ≥ 0 and Aπ,h

M∪r(s, a) ≤ 0 if πE
h (a|s) = 0. Moreover, if

the second inequality is strict, πE is uniquely optimal, i.e., Π∗
M∪r = {πE}.
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Lemma 4 (Feasible Reward Set Explicit). A reward function r is feasible if and only if there exists
an {Ah ∈ RS×A

≥0 }h∈[H] and {Vh ∈ RS}h∈[H] such that for all s, a, h it holds that:

rh(s, a) = −Ah(s, a)1{πE
h (a|s)=0} + Vh(s) +

∑
s′

P (s′|s, a)Vh+1(s
′)

Here, the first term ensures there is an advantage function for πE and it is 0 for actions the expert takes
and Ah(s, a) for actions the expert does not take. The second term corresponds to reward-shaping
by the value function.

4.3 Error Propagation

Next, we study the error propagation of estimating the transition model P with P̂ and the expert
policy πE with π̂E . In particular, we bound the estimation error on the reward as a function of the
estimation errors of P̂ and π̂E , extending a result by Metelli et al. (2021) to the finite horizon setting.

Theorem 5 (Error Propagation). Let (M, πE) and (M̂, π̂E) be two IRL problems. Then, for any
r ∈ R(M,πE) there exists r̂ ∈ R̂

(M̂,π̂E)
such that:

|rh(s, a)− r̂h(s, a)| ≤ Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|+
∑
s′

Vh+1(s
′)|P (s′|s, a)− P̂ (s′|s, a)|

and we can bound Vh ≤ (H − h)Rmax and Ah ≤ (H − h)Rmax.

In IRL, we cannot hope to recover the expert’s reward function perfectly. Instead, we aim to estimate
a reward function that leads to an optimal policy with performance close to the expert’s policy under
the (unknown) real reward function. For example, suppose a specific state s is difficult to reach in the
environment. In that case, the error on the reward function r(s, ·) will not impact the performance of
the induced policy much. Formally, we are interested in studying the error propagation to the optimal
value function. The next lemma will be crucial for analyzing this.

Lemma 6. Let M be an MDP\R, r, r̂ two reward functions with optimal policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a) ≤
H∑

h′=h

∑
s′,a′

(
ηh,h

′

M,π∗(s
′, a′|s, a)− ηh,h

′

M,π̂∗(s
′, a′|s, a)

)
(rh′(s′, a′)− r̂h′(s′, a′))

By combining this lemma with Theorem 5, we can decompose the error in the value function and Q-
function into the error in estimating the transition model and the error in estimating the expert policy.

5 Recovering Feasible Rewards with a Generative Model

As a warmup, let us first study the sample complexity of a simple uniform sampling strategy with
access to the generative model ofM. We assume we can query a generative model about a state-action
pair (s, a) to receive a next state s′ ∼ P (·|s, a) and an expert action aE ∼ πE(·|s). This allows us to
introduce key ideas and serves as a baseline to compare later results to. We adapt the infinite-horizon
results by Metelli et al. (2021) to the finite-horizon setting, and our stronger PAC requirement in
Definition 2. We first discuss how we can estimate the transition model and the policy (Section 5.1)
before stating the sample complexity of the uniform sampling strategy (Section 5.2).

5.1 Estimating Transition Model and Expert Policy

In each iteration k, let nh
k(s, a, s

′) be the number of times we observed the transitions (s, a, s) at time
h up to iteration k. Also, we define nh

k(s, a) =
∑

s′ n
h
k(s, a, s

′), and nh
k(s) =

∑
a n

h
k(s, a). Then

we can estimate the transition model and expert policy by

P̂k(s
′|s, a) =

∑H
h=1 n

h
k(s, a, s

′)

max(1,
∑H

h=1 n
h
k(s, a))

π̂E
k,h(a|s) =

nh
k(s, a)

max(1, nh
k(s))

.
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Algorithm 1 AceIRL algorithm for IRL in an unknown environment.
1: Input: significance δ ∈ (0, 1), target accuracy ϵ, IRL algorithm A , number of episodes NE

2: Initialize k ← 0, ϵ0 ← H/10
3: while ϵk > ϵ/4 do
4: Solve (convex) optimization problem (ACE) to obtain πk

5: Explore with policy πk for NE episodes, observing transitions and expert actions
6: k ← k + 1
7: Update P̂k, π̂k, Ch

k , and r̂k ← A (RB̂)

8: Update accuracy ϵk ← maxa Ê
0
k(s0, a)

9: end while
10: return Estimated reward function r̂k

In Appendix B.3 we derive Hoeffding’s confidence intervals for the transition model and the expert
policy. Combining these with Theorem 5, we can compute the uncertainty on the recovered reward as:

Ch
k (s, a) = (H − h)Rmax min

(
1, 2

√
2ℓhk(s, a)

nh
k(s, a)

)
,

where ℓhk(s, a) = log
(
24SAH(nh

k(s, a))
2/δ
)
. We can show that for any pair of reward functions

r ∈ RB and r̂ ∈ RB̂, the difference |rh(s, a)− r̂k,h(s, a)| ≤ Ch
k (s, a). This uncertainty estimate

will be a key component in all of our theoretical analysis.

5.2 Uniform Sampling Strategy

In each iteration k, the uniform sampling strategy allocates nmax samples uniformly over [H]×S×A.
It estimates the reward uncertainty and stops as soon as Hmaxh,s,a C

h
k (s, a) ≤ ϵ. The next theorem

characterizes the sample complexity of uniform sampling with a generative model.

Theorem 7 (Sample Complexity of Uniform Sampling IRL). The uniform sampling strategy fulfills
Definition 2 with a number of samples upper bounded by:

n ≤ Õ
(
H5R2

maxSA/ϵ2
)
,

where O suppresses logarithmic terms.

This sample complexity bound appears slightly worse than the one in Metelli et al. (2021), who find
(1 − γ)−4 which would translate to H4. This is, however, due to the fact that we consider reward
functions that can depend on the timestep h. If we assume the reward function does not depend on h,
we gain a factor of H , obtaining the same result as Metelli et al. (2021).

6 Active Exploration for Inverse Reinforcement Learning

Let us now turn to our original problem: recovering the expert’s reward function in an unknown
environment without a generative model. This problem is harder since we need to create an exploration
strategy to acquire the desired information about the environment. We now propose a novel sample-
efficient exploration algorithm for IRL that we call Active exploration for Inverse Reinforcement
Learning (AceIRL). The algorithm takes inspiration from recent works on reward-free exploration
(Kaufmann et al., 2021) and exploration strategies in RL (Auer et al., 2008). We divide the explanation
of the algorithm into two parts. First, we introduce a simplified version of the algorithm, which
comes with a problem independent sample complexity result (Section 6.1). Next, we introduce the
full algorithm, which considers the expected reduction of uncertainty in the next iteration to improve
exploration and maintains a confidence set of plausibly optimal policies to focus on the most relevant
regions (Section 6.2). The full algorithm provides a tighter, problem-dependent sample complexity
bound (Section 6.3). Algorithm 1 contains pseudo-code of AceIRL, and Appendix B contains the
detailed theoretical analysis including proofs of all results discussed here.
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6.1 Uncertainty-based Exploration for IRL

The first idea of AceIRL is similar to reward-free UCRL (Kaufmann et al., 2021). Our goal is to fulfill
the PAC requirement in Definition 2. Hence, we start from an upper bound on the estimation error
between the performance of the optimal policy π̂∗ for a reward r̂ ∈ RB̂ in the recovered feasible set
and the optimal policy π∗ for a reward function r ∈ RB in the true MDPM. We will then use this
upper bound to drive the exploration. For each timestep h and iteration k, we define the error:

êhk(s, a;π
∗, π̂∗) =

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣. (1)

We can define an upper bound on these errors recursively with CH
k (s, a) = 0 and

Eh
k (s, a) = min

(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′∈A

Eh+1
k (s′, a′)

)
. (EB1)

It is straightforward to show that êhk(s, a;π
∗, π̂∗) ≤ Eh

k (s, a) for any two policies π∗, π̂∗. Using this
error bound, we can introduce a simplified version of AceIRL that explores greedily with respect
to Eh

k (s, a). We call this algorithm “AceIRL Greedy”. Note that this is equivalent to solving the
RL problem defined byM∪ Ch

k ; hence, we can use any RL solver to find the exploration policy in
practice. If we explore with this greedy policy, we can stop if:

4max
a

E0
k(s0, a) ≤ ϵ. (SP1)

We can show that when this stopping condition holds, the solution fulfills the PAC requirement 2.
Furthermore, we show in Appendix B.4 that AceIRL Greedy achieves a sample complexity on order
Õ
(
H5R2

maxSA/ϵ2
)
, which matches the sample complexity of uniform sampling with a generative

model. This is already a strong result implying that we do not need a generative model to achieve a
good sample complexity for IRL. However, it turns out we can improve the algorithm further.

6.2 Problem Dependent Exploration

AceIRL Greedy is limited in two ways: (i) it explores states that have high uncertainty so far, whereas
our goal is to reduce uncertainty in the next iteration, and (ii) it explores to reduce the uncertainty about
all policies, whereas our goal is to reduce the uncertainty primarily about plausibly optimal policies.
To address these limitations, we propose two modifications that yield the full AceIRL algorithm.

Reducing future uncertainty. The greedy policy w.r.t. Eh
k explores states in which the estimation

error on the Q-functions is large. However, note that this is not exactly what we want, namely, to
reduce the uncertainty the most. In particular, if we explore for more than one episode before updating
the exploration policy, we should choose an exploration policy that considers how the uncertainty will
reduce during exploration. Ideally, we would explore with a policy that minimizes Eh

k+1. However,
we cannot compute this quantity exactly. Instead, we can approximate it using our current estimate
of the transition model. Concretely, if we have an exploration policy π, we can estimate the reward
uncertainty at the next iteration as:

Ĉh
k+1(s, a) = (H − h)Rmax min

(
1, 2

√
2ℓhk(s, a)

nh
k(s, a) + n̂h

π(s, a)

)
,

where n̂h
π(s, a) = NE · η0,hM,π(s, a|s0) is the expected number of times π visits (s, a) at time h and

NE is the number of episodes we will explore with π. We can use this estimate to find a policy that
minimizes our estimate of Eh+1

k . While our original approach was akin to “uncertainty sampling”,
we now have a better way to measure the “informativeness” of choosing an exploration policy. This
is a common pattern when designing query strategies in active learning (Settles, 2012). Note, that this
argument does not rely on the IRL problem and can be used to independently improve algorithms for
reward-free exploration (cf. Appendix D).

Focusing on plausibly optimal policies. By exploring greedily w.r.t. Eh
k , we reduce the estimation

error of all policies. However, we are primarily interested in estimating the distance between policies
π∗ ∈ Π∗

M∪r and π̂∗ ∈ Π∗
M∪r̂ with r ∈ RB and r̂ ∈ RB̂. Of course, we do not know these sets,

so we cannot use them directly to target the exploration. Instead, assume we can construct a set of
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plausibly optimal policies Π̂k that contains all π∗ and π̂∗
k with high probability. Then, we can redefine

our upper bounds recursively as ÊH
k (s, a) = 0 and:

Êh
k (s, a) = min

(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

)
, (EB2)

In contrast to (EB1), we maximize over policies in Π̂k rather than all actions. Acting greedily with
respect to Êh

k (s, a) is equivalent to finding the optimal policy πk ∈ Π̂k for the RL problem defined by
M∪Ch

k . To construct the set of plausibly optimal policies, we use an arbitrary IRL algorithm A . We
only assume that A will return a reward function r̂k ∈ RB̂. Then, we can construct a set of plausibly
optimal policies as Π̂k = {π|V ∗,

M̂∪r̂k
(s0)− V π,

M̂∪r̂k
(s0) ≤ 10ϵk}. We show in Appendix B.5 that Π̂k

contains both π∗ and π̂∗
k with high probability. This choice is based on ideas by Zanette et al. (2019).

We can define a stopping condition analogously to (SP1):

4max
a

Ê0
k(s0, a) ≤ ϵ. (SP2)

Again, we can prove that if the algorithms stops due to (SP2), thenRB̂ respects Definition 2.

Implementing AceIRL. To implement the full algorithm, we need to solve an optimization problem:

πk ∈ argmin
π

max
π̂∈Π̂k−1

Ê0
k+1(s0, π̂(s0)) (ACE)

The solution to this problem is the exploration policy that minimizes the uncertainty at the next
iteration about plausibly optimal policies. This combines both modifications we just discussed. This
problem might seem difficult to solve at first, but, perhaps surprisingly, it can be formulated as a
convex optimization problem solvable with standard techniques (cf. Appendix B.6).

6.3 Sample Complexity of AceIRL

In this section, we present our main result about the sample complexity of AceIRL. The result is
problem-dependent, and, in particular, depends on the advantage function A∗,h

M∪r(s, a), where r is
the reward function in the exact feasible setRB closest to the reward function r̂k which belongs to
the estimated feasible setRB̂. The advantage function A∗,h

M∪r(s, a) acts similarly to a suboptimality
gap: the closer the value of the second best action is to the best action, the harder it is to identify the
best action and infer the correct reward function.
Theorem 8. [AceIRL Sample Complexity] AceIRL returns a (ϵ, δ, n)-correct solution with

n ≤ Õ

(
min

[
H5R2

maxSA

ϵ2
,

H4R2
maxSAϵ2τ−1

mins,a,h(A
∗,h
M∪r(s, a))

2ϵ2

])
where ϵτ−1 depends on the choice of NE , the number of episodes of exploration in each iteration.
A∗,h

M∪r(s, a) is the advantage function of r ∈ argminr∈RB
maxh,s,a(rh(s, a) − r̂k,h(s, a)), the

reward function from the feasible setRB closest to the estimated reward function r̂k.

This result is the minimum of two terms. The first term is problem independent and it is achieved
both by AceIRL Greedy and the full AceIRL. This bound matches the bound we saw previously
with a generative model. Hence, AceIRL achieves the same results without access to the generative
model. Using (ACE) can yield a better sample complexity, represented by the second term in the
minimum. This bound depends on two main components: the ratio ϵτ−1/ϵ and the advantage function
A∗,h

M∪r(s, a). The ratio depends on the choice of NE , the number of exploration episodes per iteration.
If NE is small, then the ϵ-ratio will be also small. If NE is large the algorithm will perform similarly
to a uniform sampling strategy. Appendix B.5 provides the full proof of this theorem.
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Uniform sampling
(gener. model)

TRAVEL (gener. model)
(Metelli et al., 2021)

Random
Exploration

AceIRL
Greedy

AceIRL
(Full)

Four Paths (Figure 1) 1900± 71 17840± 1886
– NE = 50 1560± 76 24180± 1747 10780± 1369
– NE = 100 2000± 0 32760± 2172 14080± 1603
– NE = 200 4000± 0 52000± 4057 16160± 2033

Double Chain
(Kaufmann et al., 2021) 1980± 66 23640± 2195

– NE = 50 1120± 46 16240± 842 11580± 870
– NE = 100 2000± 0 22200± 1329 15440± 1031
– NE = 200 4000± 0 37200± 1664 20400± 1629

Metelli et al. (2021):
Random MDPs (NE = 1) 22± 1 27± 1 22± 1 23± 1 21± 1
Chain (NE = 1) 78± 2 76± 4 161± 8 153± 8 142± 9
Gridworld (NE = 1) 43± 2 35± 2 45± 2 46± 3 48± 2

Table 1: Sample complexity of AceIRL compared to random exploration and methods that use a
generative model. We show the number of samples necessary to find a policy with normalized regret
less than 0.4. We report means and standard errors computed over 50 random seeds each. For each
environment, we highlight in bold the method that achieves the best performance without access
to a generative model. If multiple methods are within one standard error distance, we highlight all
of them. Overall, AceIRL is the most sample efficient method without a generative model if NE is
chosen small enough. In Appendix C.3, we show learning curves for all individual experiments.

7 Experiments
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Figure 2: Normalized regret (lower is better)
of the policy optimizing for the inferred re-
ward in the estimated MDP as a function of
the number of samples. The plots show the
mean and 95% confidence intervals computed
using 50 random seeds. We use NE = 50.

We perform a series of simulation experiments to
evaluate AceIRL. We simulate a (deterministic) ex-
pert policy using an underlying true reward function,
and compare it to the recovered reward functions. We
provide a code to reproduce all of our experiments at
https://github.com/lasgroup/aceirl.

Our main evaluation metric is a normalized regret:(
V π∗,0
M∪r(s0)−V

π̂∗,0
M∪r(s0)

)
/
(
V π∗,0
M∪r(s0)−V

π̄∗,0
M∪r(s0)

)
,

where π∗ is the optimal policy forM∪ r, π̂∗ is the
optimal policy for M̂∪r̂, and π̄∗ is the worst possible
policy for r, i.e., the optimal policy forM∪ (−r).
We introduce the Four Paths environment shown in
Figure 1, which consists of four chains of states that
have different randomly sampled transition probabil-
ities. One path has a goal with reward 1; all other
rewards are 0. We also evaluate on Random MDPs
with uniformly sampled transition dynamics and re-
ward functions, the Double Chain environment proposed by Kaufmann et al. (2021), and the Chain
and Gridworld environments proposed by Metelli et al. (2021). Appendix C.1 provides details on the
transition dynamics and rewards of all environments.

We compare AceIRL and AceIRL Greedy to a uniformly random exploration policy, as a naive explo-
ration strategy. Further, we consider uniform sampling with a generative model as well as TRAVEL
(Metelli et al., 2021), which can be more sample efficient because they do not need to explore the envi-
ronment. Note that TRAVEL is designed to learn a reward to be transferred to a known target environ-
ment. Instead, we use a modified version that uses the estimated MDP as a target. Appendix C.2 pro-
vides more details on our implementations, and we provide source code in the supplemental material.

Table 1 shows the sample efficiency of all algorithms in all environments, measured as the number of
samples needed to achieve a regret threshold of 0.4 (different thresholds yield similar conclusions; cf.
Appendix C). AceIRL is the most sample efficient exploration strategy without access to a generative
model; but the relative differences between the methods depend on the environment. In some cases,
AceIRL even performs comparably to methods using a generative model, as the theory predicts.

In the Four Paths and Double Chain environments, we also vary the NE parameter. AceIRL performs
better for small values at the computational cost of updating the exploration policy more often. If
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NE is too large, using AceIRL can be as bad as a uniformly random exploration policy. Increasing
NE hurts the performance of AceIRL Greedy more severely, which does not consider NE explicitly.
Figure 2 shows the normalized regret as a function of the number of samples in Four Paths and
Double Chain. In both cases AceIRL performs best. However, AceIRL Greedy is worse than random
exploration in the Four Paths environment. Hence, we find that the problem dependent exploration
strategy of the full algorithm significantly improves the sample efficiency.

8 Conclusion

We considered active inverse reinforcement learning (IRL) with unknown transition dynamics
and expert policy and introduced AceIRL, an efficient exploration strategy to learn about both the
dynamic and the expert policy with the goal of inferring the reward function as efficiently as possible.

Our approach is a crucial step towards IRL algorithms with theoretical guarantees, but future work is
needed to move to more practical settings. In particular, it would be interesting to extend the approach
to continuous state and action spaces (e.g. using function approximation), and to obtain an efficient
algorithm that does not require solving convex optimization problems. From a theoretical perspective,
it would be useful to derive a lower bound on the sample complexity of the IRL problem, to understand
if the IRL problem is inherently more difficult than usual RL. Beyond IRL, we believe that some of
our methods could be useful for other settings, such as reward-free exploration (cf. Appendix D).

Sample efficient IRL is a promising way to apply RL in situations where there is no well-specified
reward function available. Of course, even robust IRL algorithms pose a risk of misuse. But, we are
optimistic that these methods will overall lead to safer RL systems that can be used in real applications.
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