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Abstract

We propose a simple but effective source-free domain adaptation (SFDA) method.
Treating SFDA as an unsupervised clustering problem and following the intuition
that local neighbors in feature space should have more similar predictions than
other features, we propose to optimize an objective of prediction consistency. This
objective encourages local neighborhood features in feature space to have similar
predictions while features farther away in feature space have dissimilar predictions,
leading to efficient feature clustering and cluster assignment simultaneously. For
efficient training, we seek to optimize an upper-bound of the objective resulting
in two simple terms. Furthermore, we relate popular existing methods in domain
adaptation, source-free domain adaptation and contrastive learning via the perspec-
tive of discriminability and diversity. The experimental results prove the superiority
of our method, and our method can be adopted as a simple but strong baseline for
future research in SFDA. Our method can be also adapted to source-free open-set
and partial-set DA which further shows the generalization ability of our method.
Code is available in https://github.com/Albert0147/AaD_SFDA.

1 Introduction

Supervised learning methods which are based on training with huge amounts of labeled data are
advancing almost all fields of computer vision. However, the learned models typically perform
decently on test data which have a similar distribution with the training set. Significant performance
degradation will occur if directly applying those models to a new domain different from the training
set, where the data distribution (such as variation of background, styles or camera parameter) is
considerably different. This kind of distribution shift is formally denoted as domain/distribution
shift. It limits the generalization of the model to unseen domains which is important in real-world
applications. There are several research fields trying to tackle this problem. One of them is Domain
Adaptation (DA), which aims to reduce the domain shift between the labeled source domain and
unlabeled target domain. Typical works [12, 38] resort to learn domain-invariant features, thus
improving generalization ability of the model between different domains. And in the past few years,
the main research line of domain adaptation is either trying to minimize the distribution discrepancy
between two domains [32, 33, 35], or deploying adversarial training on features to learn domain
invariant representation [52, 68, 4, 36]. Some methods also tackle domain shift from the view of
semi-supervised learning [67, 27] or clustering [7, 50, 5].

Many recent methods [24, 29, 64, 66, 55, 15, 61] focus on source-free domain adaptation (SFDA),
where source data are unavailable during target adaptation, due to data privacy and intellectual
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Table 1: Detailed comparison of SFDA methods on VisDA. ’ODA/PDA’ means whether the method
reports the results for open-set or partial-set DA. |L| means number of training objective terms.

Method Extra Modules/Processing ODA/PDA |L| Per-class
SHOT [26] Access all target data for pseudo labeling ✓ 3 82.9

3C-GAN [24] Data generation by conditional GAN ✗ 5 81.6
A2Net [61] Self-supervised learning with extra classifiers ✗ 5 84.3

G-SFDA [66] Store features for nearest neighbor retrieval ✗ 2 85.4
NRC [64] Store features for 2-hop nearest neighbor retrieval ✗ 4 85.9
HCL [15] Store historical models ✓ 2 83.5

Ours Store features for nearest neighbor retrieval ✓ 2 88.0

property concerns of both users and businesses. Some SFDA methods resort to neighborhood
clustering and pseudo labeling. However, pseudo labeling methods [29] may suffer from negative
impact from noisy labels [28], and neighborhood clustering methods [66, 64] fail to investigate
the potential information from dissimilar samples. Other methods either demand complex extra
modules/processing [24, 61] or the storing of historical models for contrastive learning [15].

Based on the fact that target features from the source model already form some semantic structure
and following the intuition that for a target feature from a (source-pretrained) model, similar features
should have closer predictions than dissimilar ones, we propose a new objective dubbed as Attracting-
and-Dispersing (AaD) to achieve it. we upperbound this objective, resulting in a simple final objective
which only contains two types of terms, which encourage discriminability and diversity respectively.
Further, we unify several popular domain adaptation, source-free domain adaptation and contrastive
learning methods from the perspective of discriminability and diversity. Experimental results on
several benchmarks prove the superiority of our proposed method. Our simple method improves the
state-of-the-art on the challenging VisDA with 2.1% to 88.0%. Additionally, extra experiments on
open-set and partial-set DA further prove the effectiveness of our method. A preliminary comparison
between different SFDA method is shown in Tab. 1, which shows the simplicity and generalization
ability of our method: it only requires the storing of features and a few nearest neighbors searches
without any additional module like a generator [24] or a classifier [61].

We summary our contributions as follows:

• We propose to tackle source-free domain adaptation by optimizing an upperbound of the proposed
clustering objective, which is surprisingly simple.

• We relate several popular existing methods in domain adaptation, source-free domain adaptation
and contrastive learning via the perspective of discriminability and diversity, which is helpful to
understand existing methods and beneficial for future improvement.

• The experimental results prove the efficacy of our method, especially we achieve new state-of-the-
art on the challenging VisDA, and the method can be also extended to source-free open-set and
partial-set domain adaptation.

2 Related Work

Domain Adaptation. Early DA methods such as [33, 49, 53] adopt moment matching to align
feature distributions. For adversarial learning methods, DANN [9] formulates domain adaptation as
an adversarial two-player game. The adversarial training of CDAN [34] is conditioned on several
sources of information. DIRT-T [47] performs domain adversarial training with an added term that
penalizes violations of the cluster assumption. Additionally, [22, 36, 44] adopts prediction diversity
between multiple learnable classifiers to achieve local or category-level feature alignment between
source and target domains. SRDC [50] proposes to directly uncover the intrinsic target discrimination
via discriminative clustering to achieve adaptation. CST [31] proposes a simple self-training strategy
to improve the rough pseudo label under domain shift.

Source-free Domain Adaptation. The above-mentioned normal domain adaptation methods need
to access source domain data at all time during adaptation. In recent years plenty of methods
emerge trying to tackle source-free domain adaptation. USFDA [20] and FS [21] resort to synthesize
extra training samples in order to get compact decision boundaries, which is beneficial for both
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Algorithm 1 Attracting and Dispersing for SFDA
Require: Source-pretrained model and target data Dt

1: Build memory bank storing all target features and predictions
2: while Adaptation do
3: Sample batch T from Dt and Update memory bank
4: For each feature zi in T , retrieve K-nearest neighbors (Ci) and their predictions from memory bank
5: Update model by minimizing Eq. 5
6: end while

the detection of open classes and also target adaptation. SHOT [26] proposes to freeze the source
classifier and it clusters target features by maximizing mutual information along with pseudo labeling
for extra supervision. 3C-GAN [24] synthesizes labeled target-style training images. It is based on a
conditional GAN to provide supervision for adaptation. BAIT [65] extends MCD [44] to source-free
setting. A2Net [61] proposes to learn an additional target-specific classifier for hard samples and
adopts a contrastive category-wise matching module to cluster target features. HCL [15] adopts
Instance Discrimination [60] for features from current and historical models to cluster features, along
with a generated pseudo label conditioned on historical consistency. G-SFDA [66] and NRC [64]
propose neighborhood clustering which enforces prediction consistency between local neighbors.

Deep Clustering and Contrastive Learning. Recent Deep Clustering methods can be roughly
divided into two groups, they the differ in how they learn the feature representation and cluster as-
signments, either simultaneously or alternatively. For example, DAC [2] and DCCM [58] alternately
update cluster assignments and between-sample similarity. Simultaneous clustering methods IIC [18]
and ISMAT [14] are based on mutual information maximizing between samples and theirs augmenta-
tions. LA [70] depends on a huge amount of nearest neighbor searches and multiple extra runs of
k-means clustering to aggregate features. Recent unsupervised clustering works [25, 51, 46] start to
rely on contrastive learning, where InfoNCE [37] is typically deployed. And recently NNCLR [8]
proposes to use nearest neighbors in the latent space as positives in contrastive learning to cover
more semantic variations than pre-defined transformations. However an inevitable problem of normal
contrastive learning is class collision where negative samples are from the same class. To tackle this
issue, recent works [23, 16] propose to estimate cluster prototypes and integrate them into contrastive
learning.

3 Method

For source-free domain adaptation (SFDA), we are given source-pretrained model in the beginning
and an unlabeled target domain with Nt samples as Dt = {xt

i}
Nt
i=1. Target domain have same C

classes as source domain in this paper (known as the closed-set setting). The goal of SFDA is to
adapt the model to target domain without source data. We divide the model into two parts: the
feature extractor f , and the classifier g. The output of the feature extractor is denoted as feature
(zi = f (x) ∈ Rh), where h is dimension of the feature space. The output of classifier is denoted
as (pi = δ(g(zi)) ∈ RC ) where δ is the softmax function. We denote P ∈ Rbs×C as the prediction
matrix in a mini-batch. Regarding the SFDA as an unsupervised clustering problem, we address
SFDA problem by clustering target features based on the proposed AaD. In additionally, we relate
our method with several existing DA, SFDA and contrastive learning methods.

3.1 Attracting and Dispersing for Source-free Domain Adaptation

Since the source-pretrained model already learns a good feature representation, it can provides a
decent initialization for target adaptation. We propose to achieve SFDA by attracting predictions for
features that are located close in feature space, while dispersing predictions of those features farther
away in feature space.

We define pij as the probability that the feature zi ∈ Rh has similar (or the same) prediction to feature

zj : pij = ep
T
i pj∑Nt

k=1 ep
t
i
pk

. It can be interpreted as the possibility that pj is selected as the neighbor of pi
in the output space [10].
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We then define two sets for each feature zi: close neighbor set Ci containing K-nearest neighbors
of zi (with distances as cosine similarity), and background set Bi which contains the features that
are not in Ci (features potentially from different classes). To retrieve nearest neighbors for training,
we build two memory banks to store all target features along with their predictions just like former
works [27, 66, 64, 42], which is efficient in both memory and computation, since only the features
along with their predictions computed in each mini-batch are used to update the memory bank.

Intuitively, for each feature zi, the features in Bi should have less similar predictions than those in
Ci2. To achieve this, we first define two likelihood functions:

P (Ci|θ) =
∏
j∈Ci

pij =
∏
j∈Ci

ep
T
i pj∑Nt

k=1 e
pT
i pk

, P (Bi|θ) =
∏
j∈Bi

pij =
∏
j∈Bi

ep
T
i pj∑Nt

k=1 e
pT
i pk

(1)

where θ denotes parameters of the model, for readability we omit θ in following equations. The
probability pj in Eq. 1 is the stored prediction for neighborhood feature zj , which is retrieved from
the memory bank.

We then propose to achieve target features clustering by minimizing the following negative log-
likelihood, denoted as AaD (Attracting-and-Dispersing):

L̃i(Ci,Bi) = − log
P (Ci)
P (Bi)

(2)

Noting that, if we only have P (Ci), it will be similar to Instance Discrimination [60], but we also
consider P (Bi) and we operate on predictions instead of features. If regarding weights of the classifier
g as classes prototypes, optimizing Eq. 2 is not only pulling features towards their closest neighbors
and pushing them away from background features, but also towards (or away from) corresponding
class prototypes. Therefore, we can achieve feature clustering and cluster assignment simultaneously.

To simplify the training, instead of manually and carefully sampling background features, we use
all other features except zi in the mini-batch as Bi, which can be regarded as an estimation of the
distribution of the whole dataset. We can reasonably believe that overall similarity of features in
Ci is potentially higher than that of Bi, even if Bi has intersection with Ci since features in Ci are
the closest ones to feature zi. By optimizing Eq. 2, we are encouraging features in Ci, which have
a higher chance of belonging to the same class, to have more similar predictions to zi than those
features in Bi, which have a lower chance of belonging to the same class. Note all features will show
up in both the first and second term; intra-cluster alignment and inter-cluster separability are expected
to be achieved after training.

One problem optimizing Eq. 2 is that all target data are needed to compute Eq. 1, which is infeasible
in real-world situation. Here we resort to get an upper-bound of Eq. 2:

L̃i(Ci,Bi) = − log
P (Ci)

P (Bi)
= −

∑
j∈Ci

[pTi pj − log(

Nt∑
k=1

ep
T
i pk )] +

∑
m∈Bi

[pTi pm − log(

Nt∑
k=1

ep
T
i pk )]

= −
∑
j∈Ci

pTi pj +
∑

m∈Bi

pTi pm + (NCi −NBi) log(

Nt∑
k=1

ep
T
i pk )

(3)

Since we set NCi
< NBi

, with Jensen’s inequality:

L̃i(Ci,Bi) ≤ −
∑
j∈Ci

pTi pj +
∑

m∈Bi

pTi pm + (NCi −NBi)(

Nt∑
k=1

1

Nt
pTi pk + logNt)

≃
∑

m∈Bi

pTi pm −
∑
j∈Ci

pTi pj + (NCi −NBi)(
∑
k∈Bi

pTi pk
NBi

+ logNt)

= −
∑
j∈Ci

pTi pj +
NCi

NBi

∑
m∈Bi

pTi pm + (NCi −NBi) logNt

(4)

2For better understanding, we refer to Bi and Ci as index sets.
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Table 2: Decomposition of methods into two terms: discriminability (dis) and diversity (div), which
will be minimized for training.

Method Task dis term div term
MI SFDA&Clustering H(Y |X) −H(Y )

BNM DA&SFDA −∥P∥F −rank(P )

NC SFDA −g(Wijp
T
i pj)

∑C
c=1 KL(p̄c||qc)

InfoNCE Contrastive −f(x)T f(y)/τ log( eτ +
∑

i e
f(x−

i )T f(x)/τ )
Ours SFDA −

∑
j∈Ci

pTi pj
∑

m∈Bi
pTi pm

where NCi
and NBi

is the number of features in Ci and Bi. Note that we cannot get this upper-bound
without P (Bi). The approximation above in the penultimate line is to estimate the average dot product
using the mini-batch data. This leads to the surprisingly simple final objective for unsupervised
domain adaptation:

L = E[Li(Ci,Bi)],with Li(Ci,Bi) = −
∑
j∈Ci

pTi pj + λ
∑
m∈Bi

pTi pm (5)

Note the gradient will come from both pi and pm. The first term aims to enforce prediction consistency
between local neighbors, and the naive interpretation of second term is to disperse the prediction of
potential dissimilar features, which are all other features in the mini-batch. Note that the dot product
between two softmaxed predictions will be maximal when two predictions have the same predicted
class and are close to one-hot vector. Our algorithm is illustrated in Algorithm. 1.

Unlike using a constant for the second term in Eq. 4 we empirically found that using a hyperpa-
rameter λ to decay second term (starting from 1) works better, we will adopt SND [43] to tune this
hyperparameter unsupervisedly. One reason may be that the approximation inside Eq. 3.1 is not
necessarily accurate. And as training goes on, features are gradually clustering, the role of the second
term for dispersing should be weakened. Additionally, considering the current mini-batch with the
correctly predicted features zi and zm belonging to the same class. In this case the second term in
both Li(Ci,Bi) and Lm(Cm,Bm) tends to push pm to the wrong direction, while the first term in
Lm(Cm,Bm) can potentially keep current (correct) prediction unchanged. Hence, this will suppress
the negative impact of the second term. We will further deepen the understanding of these two terms
in the next subsection.

3.2 Relation to Existing Works

In this section, we will relate several popular DA, SFDA and contrastive learning methods through two
objectives, discriminability and diversity. This can improve our understanding of domain adaptation
methods, as well as improve the understanding of our method.

Mutual Information maximizing (MI). SHOT-IM [26] proposes to achieve source-free domain
adaptation by maximizing the mutual information, which is actually widely used in unsupervised
clustering [11, 40, 14]:

LMI = H(Y |X)−H(Y ) (6)

which contains two terms: conditional entropy term H(Y |X) to encourages unambiguous cluster
assignments, and marginal entropy term H(Y ) to encourage cluster sizes to be uniform to avoid
degeneracy. In practice, H(Y ) is approximated by the current mini-batch instead of using whole
dataset [48, 14].

Batch Nuclear-norm Maximization (BNM). BNM [5, 6] aims to increase prediction discrim-
inability and diversity to tackle domain shift. It is originally achieved by maximizing F -norm (for
discriminability) and rank of prediction matrix (for diversity) respectively:

L = −∥P∥F − rank(P ) (7)

In their paper, they further prove merely maximizing the nuclear norm ∥P∥∗ can achieve these two
goals simultaneously. In relation to our method, if target features are well clustering during training,
we can presume the K-nearest neighbors of feature zi have the same prediction, the first term in Eq. 5
can be seen as the summation of diagonal elements of matrix PPT , which is actually the square
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of F -norm (∥P∥F =
√
trace(PPT )), then it is actually minimizing prediction entropy [5]. As for

second term, we can regard it as the summation of non-diagonal element of PPT , it encourages all
these non-diagonal elements to be 0 thus the rank(PPT ) = rank(P ) is supposed to increase, which
indicates larger prediction diversity [5]. In a nutshell, compared to SHOT and BNM our method first
considers local feature structure to cluster target features, which can be treated as an alternative way
to increase discriminability at the late training stage, meanwhile as discussed above our method is
also encouraging diversity.

Neighborhood Clustering (NC). G-SFDA [66] and NRC [64] are based on neighborhood clus-
tering to tackle SFDA problem. Those works basically contain two major terms in their optimizing
objective: a neighborhood clustering term for prediction consistency and a marginal entropy term
H(Y ) for prediction diversity. NRC [64] further introduces neighborhood reciprocity to weight the
different neighbors. Their loss objective can be written as:

Li = −
∑
j∈Ci

g(Wijp
T
i pj) +

C∑
c=1

KL(p̄c||qc), with p̄c =
1

nt

∑
i

p
(c)
i , and q{c=1,..,C} =

1

C

where Wij will weight the importance of neighbor and g(·) is log or identity function. Although the
first term of G-SFDA and NRC is the same as that of our final loss objective Eq. 5, note that our
motivation is different as we simultaneously consider similar and dissimilar features, and Eq. 5 is
deduced as an approximated upper-bound of our original objective Eq. 2.

And note actually the marginal entropy term −H(Y ) =
∑C

c=1 p̄c log p̄c =
∑C

c=1 KL(p̄c||qc)− logC.
Although the second term of those methods are favoring prediction diversity to avoid the trivial
solution where all images are only assigned to some certain classes, the margin entropy term presumes
the prior that whole dataset or the mini-batch is class balance/uniformly distributed, which is barely
true for current benchmarks or in real-world environment. In conclusion, the above three types
of methods are actually all to increase discriminability and meanwhile maximize diversity of the
prediction, but through different ways.

Contrastive Learning. Here we also link our method to InfoNCE [37]), which is widely used in
contrastive learning. As a recent paper [56] points out that InfoNCE loss can be decomposed into 2
terms:
LinfoNCE = E(x,y)∼ppos

[−f(x)T f(y)/τ ] + E
x∼pdata {x−

i }M
i=1∼pdata

[log(e1/τ +
∑
i

ef(x
−
i )T f(x)/τ )]

(8)
The first term is denoted as alignment term (with positive pairs) is to make positive pairs of features
similar, and the second term denoted as uniformity term with negative pairs encouraging all features
to roughly uniformly distributed in the feature space.

The Eq. 8 shares some similarity with all the above domain adaptation methods in that the first
term is for the alignment with positive pairs and the second term is to encourage diversity. But note
that the remarkable difference is that the above domain adaptation methods operate in the output
(prediction) space while contrastive learning is conducted in the (spherical) feature space. Therefore,
simultaneously feature representation learning and cluster assignment can be achieved for those
domain adaptation methods. Note in normal contrastive learning methods, extra KNN or a linear
learnable classifier needs to be deployed for final classification, while our model can directly give
predictions.

We list all above methods in Tab. 2. Finally, returning to Eq. 5, we can also regard the second term
as a variant of diversity loss to avoid degeneration solution, but without making any category prior
assumption. Intuitively, with target features forming groups during training, the second term should
play less and less important role, otherwise it may destabilize the training. This is similar to the class
collision issue in contrastive learning. If our second term contains too many features belonging to the
same class. Thus it is reasonable to decay the second term.

4 Experiments

Datasets. We conduct experiments on three benchmark datasets for image classification: Office-31,
Office-Home and VisDA-C 2017. Office-31 [41] contains 3 domains (Amazon, Webcam, DSLR)
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Table 3: Accuracies (%) on Office-Home for ResNet50-based methods. We highlight the best result
and underline the second best one.

Method SFAr→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→PrAvg
ResNet-50 [13] ✗ 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD [44] ✗ 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN [34] ✗ 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN [63] ✗ 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
MDD [69] ✗ 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
TADA [57] ✗ 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SRDC [50] ✗ 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
SHOT [26] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net [61] ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
G-SFDA [66] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC [64] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
BNM-S [6] ✓ 57.4 77.8 81.7 67.8 77.6 79.3 67.6 55.7 82.2 73.5 59.5 84.7 72.1
Ours ✓ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7

Table 4: Accuracies (%) on VisDA-C (Synthesis → Real) for ResNet101-based methods. We
highlight the best result and underline the second best one.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ResNet-101 [13] ✗ 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN+BSP [3] ✗ 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
MCC [19] ✗ 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR [36] ✗ 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
RWOT [62] ✗ 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
3C-GAN [24] ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT [26] ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
A2Net [61] ✓ 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA [66] ✓ 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC [64] ✓ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
HCL [15] ✓ 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5
Ours ✓ 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0

with 31 classes and 4,652 images. Office-Home [54] contains 4 domains (Real, Clipart, Art, Product)
with 65 classes and a total of 15,500 images. VisDA (VisDA-C 2017) [39] is a more challenging
dataset, with 12-class synthetic-to-real object recognition tasks, its source domain contains of 152k
synthetic images while the target domain has 55k real object images.

Evaluation. The column SF in the tables denotes source-free. For Office-31 and Office-Home, we
show the results of each task and the average accuracy over all tasks (Avg in the tables). For VisDA,
we show accuracy for all classes and average over those classes (Per-class in the table). All results
are the average of three random runs for target adaptation.

Model details. To ensure fair comparison with related methods, we adopt the backbone of a
ResNet-50 [13] for Office-Home and ResNet-101 for VisDA. Specifically, we use the same network
architecture as SHOT [26], BNM-S [6], G-SFDA [66] and NRC [64], i.e., the final part of the
network is: fully connected layer - Batch Normalization [17] - fully connected layer with weight
normalization [45]. We adopt SGD with momentum 0.9 and batch size of 64 for all datasets. The
learning rate for Office-31 and Office-Home is set to 1e-3 for all layers, except for the last two newly
added fc layers, where we apply 1e-2. Learning rates are set 10 times smaller for VisDA. We train 40
epochs for Office-31 and Office-Home while 15 epochs for VisDA.

There are two hyperparameters NCi
(number of nearest neighbors) and λ, to ensure fair comparison

we set NCi to the same number as previous works G-SFDA [66] and NRC [64], which also resort
to nearest neighbors. That is, we set NCi to 3 on Office-31 and Office-Home, 5 on VisDA. For λ,
we set it as λ = (1 + 10 ∗ iter

max_iter )
−β , where the decay factor β controls the decaying speed. We

directly apply SND [43] to select β unsupervisedly. Based on SND we set β to 0 on Office-Home, 2
on Office-31 and 5 on VisDA.

4.1 Results and Analysis

Quantitative Results. As shown in Tables 3-5(Left), where the top part shows results for the
source-present methods that use source data during adaptation, and the bottom part shows results for
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Table 5: (Left) Accuracies (%) on Office-31 for ResNet50-based methods. We highlight the best
result and underline the second best one. (Right) Ablation study on number of nearest neighbors
NCi

. We highlight the best score and underline the second best one.
Method SFA→DA→WD→WW→DD→AW→AAvg
MCD [44] ✗ 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [34] ✗ 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [69] ✗ 90.4 90.4 98.7 99.9 75.0 73.7 88.0
DMRL [59] ✗ 93.4 90.8 99.0 100.0 73.0 71.2 87.9
MCC [19] ✗ 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [50] ✗ 95.8 95.7 99.2 100.0 76.7 77.1 90.8
SHOT [26] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6
3C-GAN [24] ✓ 92.7 93.7 98.5 99.8 75.3 77.8 89.6
NRC [64] ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4
HCL [15] ✓ 94.7 92.5 98.2 100.0 75.9 77.7 89.8
BNM-S [6] ✓ 93.0 92.9 98.2 99.9 75.4 75.0 89.1
Ours ✓ 96.4 92.1 99.1 100.0 75.0 76.5 89.9

NCi
Avg

Office-31
1 89.1
2 89.5
3 89.9

Office-Home
1 72.2
2 72.6
3 72.7

NCi Per-class
VisDA

3 86.7
4 87.4
5 88.0
6 88.0
7 88.0

Source model only first term without decay with decay

Figure 1: Visualization of decision boundary on target data with different training objective.

the source-free DA methods. On Office-31 and VisDA, our method gets state-of-the-art performance
compared to existing source-free domain adaptation methods, especially on VisDA our method
outperforms others by a large margin (2.1% compared to NRC). And our method achieves similar
results on Office-Home compared to the more complex A2Net method (which combines three
classifiers and five objective functions). The reported results clearly demonstrate the efficiency of
the proposed method for source-free domain adaptation. It also achieves similar or better results
compared to domain adaptation methods with access to source data on both Office-Home and VisDA.
Note the extension of SHOT called SHOT++ [30] deploys extra self-supervised training and semi-
supervised learning, which are general to improve the results (an evidence is that the source model
after these 2 tricks gets huge improvement, e.g., 60.2% improves to 66.6% on Office-Home.), we do
not list it here for fair comparison.

Toy dataset. We carry out an experiment on the twinning moona dataset to ablate the influence of
two terms in our objective Eq. 5. For the twinning moons dataset, the data from the source domain
are represented by two inter-twinning moons, which contain 300 samples each. Data in the target
domain are generated through rotating source data by 30◦. The domain shift here is instantiated as
the rotation degree. First we train the model with 3 linear layers only on the source domain, and test
the model on all domains. As shown in the first image in Fig. 1, the source model performs badly on
target data. Then we conduct several variants of our method to train the model. The visualization of
the decision boundary in Fig. 1 indicates that both terms in Eq. 5 are necessary, and decay of second
term is shown to be important.

Table 6: Unsupervised hyperparameter selection of β with SND [43], larger SND should corre-
spond to better target model.

Office-31
β SND↑ Avg
0 4.1366 88.0

0.25 4.3016 89.7
1 4.4494 89.9
2 4.4501 89.9

Office-Home
β SND↑ Avg
0 3.7515 72.7

0.25 3.7402 72.6
0.5 3.7252 72.0
1 3.6923 70.6

VisDA
β SND↑ Per-class
0 8.1823 77.5
1 8.2584 83.8
2 8.3214 86.7
3 8.3311 87.6
4 8.3540 88.0
5 8.3543 88.0
7 8.3530 88.1
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Figure 2: (Left) Ratio of features which have 3 nearest neighbor features sharing the same predicted
label. (Right) Ratio among above features which have 3 nearest neighbor features sharing the same
and correct predicted label.

Table 7: Runtime analysis on SHOT and our method. For SHOT, pseudo labels are computed at each
epoch. 10% and 5% denote the percentage of target features which are stored in the memory bank.

VisDA Runtime (s/epoch)Per-class (%)
SHOT 618.82 82.9
Ours 520.13 88.0

Ours(10% for memory bank) 490.21 87.6
Ours(5% for memory bank) 482.77 87.5

Number of nearest neighbors (NCi ). For the number of nearest neighbors used for the first term
in Eq. 5, we show in Tab. 5 (Right) our method is robust to the choice of NCi

, as the results imply
that a reasonable choice of NCi

(such as 3) works quite well on all datasets, since only considering
few neighbors (such as 1/2) may be too noisy if all of them are misclassified, while setting NCi

too
larger may also potentially include samples of other categories. For larger dataset such as VisDA we
can choose a relatively larger NCi

. Note the reason why we choose NCi
as 5 in main experiments is

to compare fairly with G-SFDA [66] and NRC [64].

Decay factor β. According to the analysis in Sec. 3.2, the second term acts like a diversity term to
avoid that all target features collapse to a limited set of categories. The role of the second term should
be weakened during the training, but how to decay the second term is non-trivial. We directly adopt
SND [43] which computes Soft Neighborhood Density for unsupervised hyperparameter selection of
β. The method is unsupervised and larger SND predicts a better target models. The results of SND
with different β are shown in Tab. 6, the results prove that SND works well to choose optimal β.

Runtime analysis. Instead of storing all features in the memory bank, we can only stores a limited
number of target features, by updating the memory bank at the end of each iteration by taking the n
(batch size) embeddings from the current training iteration and concatenating them at the end of the
memory bank, and discard the oldest n elements from the memory bank. We report the results with
this type of memory bank of different buffer size in the Table 7. The results show that indeed this
could be an efficient way to reduce computation on very large datasets.

Degree of clustering during training. We also plot how features are clustered with different
decaying factors β on VisDA in Fig. 2. The left one shows the ratio of features which have 3-nearest
neighbors all sharing the same prediction, which indicates the degree of clustering during training,
and the right one shows the ratio among above features which have 3-nearest neighbor features
sharing the same and correct predicted label. Those curves in Fig. 2 left show that the target features
are clustering, and those in Fig. 2 right indicate that clear category boundaries are emerging. The
numbers in the legends denote the deployed β and the corresponding final accuracy. From the figures
we can draw the conclusion that with a larger decay factor β on VisDA, features are quickly clustering
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Table 8: Accuracy on Office-Home using ResNet-50 as backbone for Source-free open-set DA.
OS*, UNK and HOS mean average per-class accuracy across known classes, unknown accuracy and
harmonic mean between known and unknown accuracy respectively.

Ar → Cl Ar → Pr Ar → Rw Cl→ Ar Cl → Pr Cl → Rw
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

SHOT 67.0 28.0 39.5 81.8 26.3 39.8 87.5 32.1 47.0 66.8 46.2 54.6 77.5 27.2 40.2 80.0 25.9 39.1
AaD 50.7 66.4 57.6 64.6 69.4 66.9 73.1 66.9 69.9 48.2 81.1 60.5 59.5 63.5 61.4 67.4 68.3 67.8

Pr → Ar Pr → Cl Pr → Rw Rw→ Ar Rw → Cl Rw → Pr Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

SHOT 66.3 51.1 57.7 59.3 31.0 40.8 85.8 31.6 46.2 73.5 50.6 59.9 65.3 28.9 40.1 84.4 28.2 42.3 74.6 33.9 45.6
AaD 47.3 82.4 60.1 45.4 72.8 55.9 68.4 72.8 70.6 54.5 79.0 64.6 49.0 69.6 57.5 69.7 70.6 70.1 58.2 71.9 63.6

Table 9: Accuracy on Office-Home using ResNet-50 as backbone for Source-free partial-set DA.
Partial-set DA Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

SHOT-IM 57.9 83.6 88.8 72.4 74.0 79.0 76.1 60.6 90.1 81.9 68.3 88.5 76.8
SHOT 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
AaD 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 87.3 79.7

and forming inter-class boundaries, since the ratio of features which share the same and correct
prediction with neighbors are increasing faster. When decaying factor β is too small, meaning training
signal from the second term is strong, the clustering process is actually impeded. The curves in Fig. 2
(left) signify that this ratio can also be used to choose β with higher performance unsupervisedly.

Source-free partial-set and open-set DA. We provide additional results under source-free partial-
set and open-set DA (PDA and ODA) setting in Tab. 8 and Tab. 9 respectively, where the open-set
detection in ODA follows the same protocol to detect unseen categories as SHOT. On ODA, instead
of reporting average per-class accuracy OS = |Cs|×OS∗

|Cs|+1 + 1×UNK
|Cs|+1 where |Cs| is the number of

known categories on source domain, we report results of HOS = 2×OS∗×UNK
OS∗+UNK , which is harmonic

mean between known categories accuracy OS∗ and unknown accuracy UNK. As pointed out by [1],
OS is problematic since this metric can be quite high even when unknown class accuracy UNK is
0, while unknown category detection is the key part in open-set DA. We reproduce SHOT under
open-set DA and report results of OS∗, UNK and HOS in Tab. 8, which shows our method gets much
better balance between known and unknown accuracy.

5 Conclusion

We proposed to tackle source-free domain adaptation by encouraging similar features in feature space
to have similar predictions while dispersing predictions of dissimilar features in feature space, to
achieve simultaneously feature clustering and cluster assignment. We introduced an upper bound to
our proposed objective, resulting in two simple terms. Further we showed that we can unify several
popular domain adaptation, source-free domain adaptation and contrastive learning methods from the
perspective of discriminability and diversity. The approach is simple but achieves state-of-the-art
performance on several benchmarks, and can be also adapted to source-free open-set and partial-set
domain adaptation.
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