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Abstract

Convolutional neural networks use regular quadrilateral convolution kernels to
extract features. Since the number of parameters increases quadratically with the
size of the convolution kernel, many popular models use small convolution kernels,
resulting in small local receptive fields in lower layers. This paper proposes a novel
log-polar space convolution (LPSC) layer, where the convolution kernel is elliptical
and adaptively divides its local receptive field into different regions according to
the relative directions and logarithmic distances. The local receptive field grows
exponentially with the number of distance levels. Therefore, the proposed LPSC
not only naturally encodes local spatial structures, but also greatly increases the
single-layer receptive field while maintaining the number of parameters. We show
that LPSC can be implemented with conventional convolution via log-polar space
pooling and can be applied in any network architecture to replace conventional con-
volutions. Experiments on different tasks and datasets demonstrate the effectiveness
of the proposed LPSC.

1 Introduction

Convolutional neural networks [1, 2] have achieved great success in the field of computer vision.
The size of the convolution kernel determines the locally weighted range of the image or feature
map, which is called the local receptive field (LRF). In many computer vision tasks such as image
classification [2, 3, 4] and intensive prediction [5, 6, 7], larger LRF is generally desired to capture
the dependencies between long-distance spatial positions and a wide range of context information.
Simply increasing the size of the convolution kernel is not plausible because the number of parameters
increases quadratically with the size.

In practice, commonly used techniques to obtain larger receptive fields include adding pooling layers,
replacing a single-layer large convolution kernel with multi-layer small convolution kernels, and
using dilated convolutions [8, 9]. The pooling process often causes information loss. Increasing
the number of convolutional layers may cause vanishing gradients and make training more difficult.
Moreover, going deeper with small kernels may not indicate a larger receptive field. A plain CNN
with all 3×3 convolution kernels cannot be too deep without residual connections. Some studies [10]
have found that ResNets behave like ensembles of shallow networks. Regardless of the actual depth,
the effective number of layers for ResNets maybe limited. That is, even if a ResNet with hundreds of
layers is stacked, its actual receptive field may be equivalent to that of a shallow network.

According to the effective receptive field (ERF) theory [11], the ERF is proportional to the square root
of the depth and directly proportional to the kernel size. Therefore, it is easier to achieve a large ERF
by increasing the kernel size than by adding layers. The success of Vision Transformers [12, 13] may
also reveal the effectiveness of large local windows, while various sparse attention mechanisms [14,
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15, 16] for Transformers are proposed to allow larger LRFs with limited increases of calculations.
In this paper, we reconsider lightweight CNNs with large convolution kernels. Dilated convolution
kernels are able to increase the LRFs greatly, but they are not continuous since not all pixels in the
LRF are involved in convolution calculation. The skipped pixels are regularly selected. With the
same number of parameters, the larger the LRF, the more pixels are skipped, which may miss some
details and cause discontinuity of information.

(a) (b)

Figure 1: (a) At different locations of an image, lo-
cal contextual pixels can be divided into different
regions according to their relative distances and di-
rections in the log-polar space. For each location,
pixels falling in the same region are generally sim-
ilar and can share the same weight. (b) The LPSC
kernel. For this example, Lr = 3, Lθ = 6, g = 2,
thus there are only 18+1 parameters.

In addition, conventional and dilated convolu-
tions use regular square kernels. Each position
is assigned a different weight within the LRF.
All positions are equally treated regardless of
the size of the kernel. However, intuitively, the
correlation between neighboring pixels and the
center pixel is usually higher, while the farther
the pixel, the smaller the impact on the center
pixel, which is evidenced by statistics from nat-
ural images presented in Appendix A.1. The
effects of two adjacent pixels that are far away
from the center are usually similar, thus they can
share the same parameter rather than be assigned
different weights separately. As shown in red
in Fig. 1(a), according to the configuration of
surrounding regions, it can be inferred that the
center position is located on the upper edge of
the nose. Pixels in the same upper-left outer half-
fan-shaped region show that the far upper left
of the center point is white fur, but there is little
difference in the effects of two specific fur points.

In this paper, we propose a novel log-polar space convolution (LPSC) method. The shape of the
LPSC kernel is not a regular square, but an ellipse. Parameters of the kernel are not evenly distributed
in the LRF, but are assigned in the log-polar coordinate space. As shown in Fig. 1(b), the LPSC
kernel divides the LRF into different regions, where regions become larger with the increase of the
distance to the center. Pixels that fall into the same region share the same weight. In this way, LPSC
can increase the LRF exponentially without increasing the number of parameters. Besides, LPSC
naturally imposes a contextual structure on the local neighboring distribution.

The main contributions of this paper include: 1. We propose a new convolution method where the
kernel lies in the log-polar space to capture the structured context information and greatly expand
the LRF without increasing the number of parameters. 2. We propose log-polar space pooling to
up-sample the feature map, by which conventional convolution can be conveniently used to achieve
LPSC. 3. We apply LPSC to replace the conventional and dilated convolution in different network
architectures including AlexNet, VGGNet, ResNet, DeepLabv3+, and CE-Net. We demonstrate the
effectiveness of LPSC through empirical evaluations on different tasks and datasets.

2 Related work

Context pooling. Our method is highly motivated by shape context [17, 18]. Centered at a reference
point, all other points are divided into bins that are uniformly distributed in the log-polar space. The
histogram among these bins is used as the descriptor. The statistics in the log-polar space have also
been shown to be effective for word recognition in [19]. Geometric blur [20] sparsely samples and
aggregates a blurred signal in the log-polar space. Pyramid context [21] pools log-spaced context
points at multiple scales. Different from these methods, we design a kernel in the log-polar space for
convolution, each region is assigned a weight to aggregate information from the bins. We incorporate
the kernel into deep neural networks.

Methods to increase LRFs. In [22] and [23], it is found that imposing a regularization on large
convolution kernels is equivalent to the superposition of multiple convolution layers with smaller
kernels. Based on this observation, many state-of-the-art network architectures use multi-layer small
kernels. However, deeper layers may cause vanishing gradients, making the network more difficult to
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train. Moreover, according to [11], the effective receptive field (ERF) is proportional to the square
root of the depth and proportional to the kernel size. Thus it is easier to achieve a large ERF by
increasing the kernel size than by adding layers. We provide a way to increase the LRF without
increasing either the number of layers or the number of parameters. In cases where large input or
LRF is required but very deep networks are not allowed restricted by resources, our method may be
applied to construct a lightweight model.

In [8, 9], atrous (or dilated) convolution increases the LRF by inserting holes (zeros) between
parameters in the kernel, where the interval is determined by a dilation rate. Dilated convolution has
been applied in different tasks [24, 25, 7, 26, 27, 28]. In [29] and [30], scale-adaptive convolution
learns adaptive dilation rate with a scale regression layer. Due to the insertion of holes, not all pixels
in the LRF are used for calculating the output. In [31] and [32], this problem is alleviated by hybrid
dilated convolution and Kronecker convolution that uses the Kronecker product to share parameters.

Other convolution methods. Fractionally strided convolution [33, 34] up-samples the input by
padding. In [35], a spatial transformer transforms the regular spatial grid into a sampling grid.
Active convolution [36] learns the shape of convolution by introducing the convolution unit with
position parameters. Deformable convolution and kernels [6, 37] learn additional offsets or perform
resampling to augment the sampling locations, thereby adaptively changing the LRF into a polygon.
For active and deformable convolutions, the adapted LRF contains holes, the positions and offsets are
learned through additional convolutions, which increases the parameters. Deformable kernels [38]
resample the original kernel space and adapt it to the deformation of objects. The offsets for kernel
positions also need to be learned. Quasi-hexagonal kernels [39], blind-spot kernels [40], asymmetric
blocks [41], and circle kernels [42] also have non-regular shapes, but generally they cannot enlarge
LRFs without increasing parameters.

Group convolution [2, 43, 44] and separable convolution [45] do not increase the LRF of kernels.
Octave convolution [46] decomposes the feature map into high-frequency and low-frequency features.
Multi-scale convolution is performed in [47] and [48]. In [49] and [50], stand-alone self-attention is
used to replace convolution. The filter in the attention module lies in a regular and square grid. In [51],
the polar transformer network generates a log-polar representation of the input by differentiable
sampling and interpolation techniques. The polar transform is applied to a single predicted origin
location. In contrast, LPSC performs log-polar pooling via binning and can be applied at any location.

Differences. For dilated and other advanced convolutions, the kernel is still performed in a regular
grid and all parameters are treated equally. Regardless of the distance from the center, the interval
or the sharing range of a parameter is the same among different positions. In contrast, the proposed
LPSC expands the LRF in the log-polar space, where near and far regions are distinguished in
parameter sharing. The farther away from the center, the larger the range of parameter sharing.

3 Log-polar space convolution

Let X ∈ RH×W×C be the input image or feature map, where H , W , and C are the height, width,
and number of channels of X , respectively. W ∈ R(2M+1)×(2N+1)×C is a conventional convolution
kernel with a size of (2M + 1) × (2N + 1). The central parameter of W is indexed by (0, 0),
parameters of W lie in a regular grid {(−M,−N), (−M,−N + 1), · · · , (M − 1, N), (M,N)}.
The convolution operation is performed in the 2D spatial domain across the channels. For a spatial
location (i, j), the output of the conventional convolution is calculated as

(X ∗W)(i, j)=

M∑
m=−M

N∑
n=−N

(X(i+m, j + n) ·W (m,n)) + b, (1)

where b is the bias. Strictly, Eq. (1) actually performs cross-correlation. For convolution, W needs to
be rotated 180 degrees. However, since we can view the learned W as the rotated kernel, we follow
the common practice of CNN to formulate convolution into Eq. (1). Parameters of the kernel are
uniformly distributed in the regular grid, thus each pixel of X falling into the field is weighted by a
separate parameter, i.e., all positions are equally treated. However, pixels that have different distances
and directions from the center may have different impacts, e.g., pixels adjacent to the center should
have larger contributions to the output. Pixels in the input image usually change gently, adjacent
pixels far away from the center often have similar impacts on the center. Based on these intuitions,
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(a) (b)

Figure 2: (a) The LPSC kernel is slid through the
feature map. (b) The shape and inclination of the
LPSC kernel can be changed.

(a) (b)

Figure 3: (a) Log-polar pooling generates a
2Lr × Lθ/2 matrix per position using the pre-
computed mask. (b) To perform LPSC on the
original input (left), log-polar pooling generates
a matrix for each pixel, resulting in an upsam-
pled map (middle), conventional convolution is
applied to this map (right).

we design a convolution kernel with a special structure, namely Log-Polar Space Convolution (LPSC)
kernel, to express a wide range of contextual configurations.

3.1 LPSC kernel

As shown in Fig. 1(b), the proposed LPSC kernel lies in the log-polar space and is shaped by the size
2R+ 1, the number of distance levels Lr, the number of direction levels Lθ, and the growth rate g.
The LRF of the kernel is the area of the outermost circle whose radius is R. It is uniformly divided
into Lr × Lθ regions in the log-polar space. Specifically, the log radius is uniformly divided into Lr
levels, i.e.,

log(Rl+1)− log(Rl) = log(Rl)− log(Rl−1) = log(g), (2)

where Rl, l = 1, · · · , Lr is the radius of the l-th level and the growth rate g is a hyperparameter
controlling the expansion speed. When the center of the kernel is located at position (ch, cw), all
pixels of X in the range of ∆ = [ch −R, ch +R] × [cw −R, cw +R] are divided into Lr levels
according to their relative squared distances to the center position. The position (i, j) ∈ ∆ belongs to
the l-th distance level if Rl−1 ≤ di,j < Rl, where di,j = (i− ch)2 + (j − cw)2. From Eq. (2), we
have Rl = gl−1R1. When the innermost radius R1 is fixed, the LRF grows exponentially with the
increase of Lr. The LRF is determined by R which can be set arbitrarily. Given RLr = R2 and g, we
calculate R1 = max(2, R2/gLr−1). We use R =

√
RLr as a hyperparameter instead of R1, which

is more flexible. Since we use the squared distance, we impose a minimum value of 2 to ensure that
all 8-neighborhood pixels fall into the 1-st level.

All positions in the range of ∆ are also uniformly divided into Lθ levels according to their relative
directions from the center. The position (i, j) belongs to the m-th level if 2π(m− 1)/Lθ ≤ θi,j <
2πm/Lθ, where θi,j is the counterclockwise angle from the vector (0, 1) to the vector (i−ch, j−cw).
Combining the distance levels and the direction levels, the LRF is divided into Lr × Lθ regions.

The LPSC kernel assigns a parameter to each region. All pixels of X falling into the same region
share the same parameter. For the region with the l-th distance level and m-th direction level, the
assigned parameter is denoted by wl,m. The areas of regions increase with l, the farther away from
the center, the larger the area, the more pixels sharing parameters. Because the center position of
the kernel is important and forms the basis of regions, we assign an additional separate parameter
w0,0 for the center pixel. A conventional kernel with a size of (2R+ 1)× (2R+ 1) has (2R+ 1)2

parameters, while a LPSC kernel only has Lr × Lθ + 1 parameters no matter how large R is. When
R ranges from 2 to 9, a single conventional kernel has 25 to 361 parameters. In this range, it is
sufficient to set Lr to 2 or 3 and set Lθ to 6 or 8, so an LPSC kernel only has 13 to 25 parameters.

Let Nl,m denote the number of pixels falling into the region bin(l,m) with the l-th distance level
and the m-th direction level. In faraway regions with large l, Nl,m, the impacts of pixels in them
should be weakened. Therefore, we regularize the weight wl,m of each region by Nl,m: wl,m/Nl,m.
As a result, the LPSC kernel aggregates finer information from pixels nearing the center and is less
sensitive to those of pixels farther away. Similar to conventional convolution, the LPSC kernel is slid
along the input feature map X with a pre-defined stride to perform convolution, as shown in Fig. 2(a).
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When the kernel is located at a spatial location (i, j), the output response is calculated as

(X ∗W )(i, j) = W (0, 0) ·X(i, j) +

Lr∑
l=1

Lθ∑
n=1

W (l,m) · ( 1

Nl,m

∑
u,v∈bin(l,m)

X(u, v)) + b (3)

For the LPSC kernel, the shape of its LRF is not necessarily a standard circle, but can be an oblique
ellipse. As shown in Fig. 2(b), two additional hyper-parameters are introduced: the initial angle α
and the eccentricity of the ellipse e. When dividing the regions, the distances are calculated according
to the squared ellipse distance and the initial angle is added to the calculated directions. In this way,
the LPSC kernel can better fit objects with different rotations and scales. In our experiments, we only
evaluate the standard circular LRF by setting α = 0 and e = h/w = 1.

3.2 LPSC via log-polar space pooling

Due to the special structure and parameter sharing, LPSC cannot be directly performed by popular
deep learning frameworks. In this subsection, we show that LPSC can be readily implemented by
conventional convolutions via log-polar space pooling to utilize efficient convolution modules.

Given the hyper-parameters R, Lr, Lθ, and g of the proposed LPSC, we can pre-compute a mask
matrix I to indicate the region indexes of positions. The size of the mask I is (2R+ 1)× (2R+ 1).
1, · · · , Lθ × Lr in I indicates the region index of the corresponding position. 0 indicates that the
corresponding position does not fall into the LRF, since the region of the mask is the circumscribed
rectangle of the LRF. The mask is slid through the input feature map X with the same stride of the
LPSC convolution. As shown in Fig. 3(b), when the mask is located at a spatial location (i, j), pixels
of X in the range are divided into regions indicated by the mask. All pixels in the same region are
encoded into a single pixel by mean pooling. We re-arrange the pooled pixels of different regions
into a matrix of 2Lr × Lθ/2 to preserve their relative spatial positions, as shown in Fig. 3(a). In this
way, given H ′ ×W ′ convolution locations (H ′ = H and W ′ = W if the stride is 1 with padding),
the spatial size of the output map Xp after log-polar space pooling equals 2H ′Lr ×W ′Lθ/2.

We perform conventional convolution with C ′ output channels on the output map Xp without
padding. The size of the conventional convolution kernel is set to (2Lr, Lθ/2) and the stride is also
(2Lr, Lθ/2). The output feature map Yp has a size ofH ′×W ′×C ′. This is equivalent to performing
the second term in Eq. (3). To model the first term, we use a separate 1× 1 conventional convolution
with the same C ′ channels on the original X . The stride is the same as the log-polar space pooling.
The output feature map Yc contains the convolution responses of the center pixels. We add this
separate center pixel convolution output Yc to the contextual convolution output Yp. Yc + Yp serves
as the output feature map of the proposed LPSC.

3.3 Incorporating LPSC into different CNNs

LPSC can be integrated into different CNN architectures. A straightforward way is to replace all
conventional convolution kernels with LPSC kernels in a part of convolution layers. For plain CNN
architectures such as AlexNet [2] and VGGNet [22], we simply perform this strategy in lower layers
to increase the LRFs. However, some network architectures such as ResNet [23] are constituted
of specifically designed blocks. In ResNet, either the bottleneck or the basicblock structure only
contains 3 × 3 and 1 × 1 convolutions. Due to the difference in the local receptive field, the
information captured by these small convolutions and LPSC may be different. In order to better
incorporate these two types of information, we propose a cross convolution strategy as an alternative
to replacing all convolutions in each layer of the block. Specifically, we set a ratio p. For each of
several consecutive layers, we replace p% of all convolution kernels to LPSC kernels, while the
remaining (100− p)% of conventional kernels remain the same. In this way, each convolution kernel
in the next layer, whether it is a conventional or an LPSC kernel, perceives the outputs generated
by both the conventional and LPSC kernels of the previous layer. We denote this cross-convolution
strategy by LPSC-CC. Details on how to incorporate LPSCs depend on the CNN architecture and
will be presented in Section 4. Our code is available at https://github.com/BingSu12/
Log-Polar-Space-Convolution.
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3.4 Discussions

Complexity. For a (2M + 1)× (2N + 1)×C kernel, conventional convolution involves (2M + 1)×
(2N +1)×C multiplications and (2M +1)× (2N +1)×C additions. LPSC with Lr distance levels
and Lθ direction levels only involves 2 ∗ Lr × Lθ × C multiplications, (2M + 1)× (2N + 1)× C
additions, and (2M + 1) × (2N + 1) lookups. The complexity of pre-computing the mask for
lookup is O(R2), which only needs to be calculated once when initialing the layer. Typically, if
Lr = 2, Lθ = 6, LPSC only executes 24C multiplications for any size. However, even for a small
(2M + 1)× (2N + 1) = 5× 5 kernel, conventional convolution executes 25C multiplications; for a
9× 9 kernel, multiplications increase to 81C.

Structural benefits. With the special log-polar structure, the LPSC kernel naturally encodes the
local spatial distribution of pixels w.r.t. the center and puts more attention to those adjacent pixels.
Pixels with similar relative distances and directions share the same parameter, which not only reduces
the number of parameters, but also makes the filter more robust and compact. Due to the logarithm
effect, when located at different objects, small objects are relatively enlarged, while large objects are
relatively reduced. Therefore, LPSC is less sensitive to the size of objects. Advantages of log-polar
space pooling and extensions of LPSC to 1-D and 3-D data are discussed in the appendix.

Relation with effective receptive field [11]. In [11], it is found that the ERF only occupies a fraction
of the full theoretical receptive field. Specifically, the ERF size is O(k

√
n), where k = 2R+ 1 is the

kernel size and n is the number of layers. Therefore, increasing the kernel size has a greater effect
on expanding the ERF. It is also found that not all pixels in the LRF contribute equally, where the
impacts of pixels near the center are much larger. The LPSC kernel follows this spirit to treat pixels
near the center finely and increase the LRF exponentially.

Drawbacks. LPSC has two main drawbacks. (1) It introduces three additional hyper-parameters: Lr,
Lθ, and g. However, in practice, their selectable ranges are quite limited. Generally, to make the 8-
neighborhoods of the center pixel have finer and non-redundant regional resolution, Lr is set to 2 or 3,
Lθ is set to 6 or 8, and g is set to 2 or 3. (2) Its implementation via log-polar space pooling incurs large
memory overhead. The space complexity of the upsampled feature map Xp is O(H ′W ′LrLθC).
For a single layer, the space complexity of LPSC is O(H ′W ′LrLθC + LrLθCC

′ +H ′W ′C ′).

Limitations. Parameter sharing in LPSC aims to expand the local receptive field without increasing
the number of parameters, but the cost is the loss of some fine-grained information. LPSC is more
suitable for semantically sparse visual data that contains redundant information. As long as the
data distribution conforms to the local correlation assumption, our LPSC can also be applied to
irregularly sampled data, provided that the relative distances and angles between data points are
defined. However, if the mask matrix to indicate the region indexes of positions cannot be pre-
computed, the speed of LPSC will be very slow, because the region that each sampled data falls in
should be calculated on-the-fly. LPSC may not be suitable for semantically dense data such as speech
signals, text sequences, and amino acid sequences.

4 Experiments

4.1 Image classification experiments

For image classification, we evaluate the behaviors of LPSC integrated with different CNN archi-
tectures on three datasets: CIFAR-10, CIFAR-100 [52], and ImageNet [53]. We plug LPSC into
three typical CNN architectures, including AlexNet [2], VGGNet-19 [22], and ResNet20 [23], by
replacing a part of the conventional convolution layers. We use the Pytorch [54] implementation2 of
these architectures as our baseline. For the AlexNet, there are 5 convolution layers each followed
by a ReLU activation layer. The sizes of the convolution kernels are 11× 11, 5× 5, 3× 3, 3× 3,
and 3× 3, respectively. For the VGG19 Net, there are sixteen convolution layers. The kernel size
for all convolution layers is 3× 3. For the ResNet-20, there are 9 basic blocks. Each block contains
two 3 × 3 convolution layers. A 3 × 3 convolution layer is applied before all blocks. When the
conventional convolutions in a layer or block are replaced by LPSCs, the number of kernels and the
size of the output feature map remain the same as the original convolution layer.

2https://github.com/bearpaw/pytorch-classification
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Table 1: Comparison of different convolution methods.

(a) Accuracy (%) with AlexNet and VGGNet-19

Convolution AlexNet VGGNet-19
Ori Dilation LPSC Ori Dilation LPSC

# Params (M) 2.47 2.34 2.31 20.04 20.08 20.08
CIFAR-10 77.43 (0.25) 75.42 (0.06) 78.44 (0.12) 93.54 (0.06) 93.46 (0.14) 93.92 (0.06)
CIFAR-100 43.98 (0.43) 44.43 (0.10) 47.43 (0.20) 72.41 (0.17) 73.03 (0.34) 73.13 (0.12)

(b) Accuracy (%) with ResNet-20
Convolution Ori Dilation LPSC LPSC-CC
# Params (M) 0.27 0.27 0.27 0.27
Acc. CIFAR-10 (%) 91.66 (0.13) 91.44 (0.10) 91.81 (0.21) 92.01 (0.08)
Acc. CIFAR-100 (%) 67.56 (0.27) 66.90 (0.25) 67.63 (0.27) 68.09 (0.27)

Table 2: Results with ResNet-110 on CIFAR-100.

Model Inference Time Acc
Conv 0.025 (0.0053) 73.50 (0.24)
Dilation 0.025 (0.0041) 73.75 (0.48)
LPSC 0.036 (0.0047) 73.54 (0.38)
LPSC-CC 0.135 (0.0035) 74.13 (0.14)

Table 3: Results with ResNet-18 on ImageNet.

Model #params(M) Top-1 Acc (%)
Conv 11.69 69.86 (0.082)
LPSC 11.69 69.96 (0.081)
LPSC-CC 11.70 69.95 (0.079)

To make a fair comparison, all experimental setup and details including the learning rate, batch
size, number of filters per layer, hyper-parameters for the optimizer (e.g., γ, momentum, weight
decay) remain exactly the same as in the baseline. We did not tune any of these setups for our
LPSC. Therefore, the differences in performances only come from the changes in convolution layers.
The numbers of parameters are computed on the CIFAR-10 dataset. Top-1 accuracy is used as the
performance measure.

Results on the CIFAR10 and CIFAR100 dataset. We train the AlexNet, VGGNet-19, and ResNet-
20 with conventional convolution, dilation convolution, and LPSC five times by using different
random seeds for initialization, respectively, and compare the average accuracies and standard
deviations. “Mean accuracy (standard deviation)” results are reported in Table 1. We use LPSC in the
first two convolution layers for AlexNet, in the added first convolution before all blocks for VGGNet-
19, and in the first convolution layer before all residual blocks for ResNet-20. Hyper-parameters of
the LPSC kernels in different layers and networks are the same as the first three columns in Table
A4(d) in the appendix, respectively. These choices are based on the ablation study as described in
Appendix A.2 and A.3. For dilation convolution, we replace the conventional convolutions with
dilation convolution in the same layers in the three architectures, respectively, where the kernel size
and dilation rates are set so that the LRF and number of parameters are comparable with LPSC.
Specifically, for AlexNet, the kernel size and dilation rate are set to 5 and 2 in the first convolution
layer, respectively, and 4 and 2 in the second convolution layer, respectively. For VGGNet-19, the
kernel size and dilation rate are set to 4 and 2 in the added first convolution layer before all blocks,
respectively. For ResNet-20, the kernel size and dilation rate are set to 4 and 3 in the first convolution
layer before all residual blocks, respectively. These choices are based on the evaluations in Table
A4 of Appendix A.3. From Table 1, we observe that LPSC outperforms dilation convolutions with
comparable LRF and parameters. The standard deviations for LPSC are limited, which shows that
LPSC is not particularly sensitive to initializations. In some cases, the worst results also exceed those
of the original networks with conventional convolutions and dilation convolutions by a margin.

We also evaluate the cross convolution strategy for ResNet-20. We apply LPSC-CC to the layer
before all blocks and all 3 × 3 layers of the first block with a fixed p of 50. From Table 1(b), we
observe that the cross convolution strategy further improves the performances.

Results with ResNet-110. We train ResNet-110 with different convolutions on CIFAR-100 in Tab. 2.
We follow the same setting for evaluating ResNet20, where 5× 5 LPSC kernels (Lr, Lθ, g = 2, 6, 3)
are used to replace 3× 3 convolutions in the first layer before all blocks in LPSC and in the first three
layers with a fixed p of 50 in LPSC-CC. For the deeper model, the advantage of LPSC is weakened,
but LPSC-CC still improves ResNet110 significantly.
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Table 4: Results on the VOC 2012 dataset. “-” means that the results are not reported. “∗” indicates
our reproduced results.

Method oAcc mAcc fAcc mIoU
DeepLabv3 - - - 0.701
DeepLabv3+ - - - 0.711
DeepLabv3+∗ 0.9230 0.8332 0.8652 0.7144
DeepLabv3+LPSC 0.9273 0.8388 0.8714 0.7260

Table 5: Results on the DRIVE dataset [55]. “∗” indicates our reproduced results.
Method Sen Acc AUC
HED [56] 0.7364 0.9434 0.9723
Azzopardi et al. [57] 0.7655 0.9442 0.9614
Zhao et al. [58] 0.7420 0.9540 0.8620
U-Net [59] 0.7537 0.9531 0.9601
Deep Vessel [60] 0.7603 0.9523 0.9752
CE-Net [61] 0.8309 0.9545 0.9779
CE-Net∗ [61] 0.8266 (0.0106) 0.9550 (0.0009) 0.9782 (0.0008)
CE-Net-LPSC-1 0.8300 (0.0079) 0.9552 (0.0011) 0.9782 (0.0008)
CE-Net-LPSC-2 0.8312 (0.0075) 0.9548 (0.0011) 0.9784 (0.0007)

Comparison of FLOPs. Comparisons of the average runtime per batch for using different convolu-
tions in ResNet110 are shown in Tab 2. LPSC runs slower than conventional convolution, but this
is because we use of-the-shell conventional convolution modules in Pytorch to implement LPSC,
which are highly optimized and very efficient for conventional convolution. LPSC can be greatly
accelerated if it can be directly implemented with CUDA or by directly adapting the underlying code
of convolutions in the integrated framework. On CIFAR10 with AlexNet, the FLOPs (recorded by the
fvcore toolbox3) of conventional convolution, dilated convolution, and LPSC are 14.95M, 24.71M,
and 11.42M, respectively. LPSC has much lower FLOPs than other convolution methods.

Results on the ImageNet dataset. ImageNet [53] contains 1.28 million training images and 50k
validation images from 1000 classes. We again use the Pytorch implementation4 of ResNet-18 as the
baseline. For LPSC, we replace conventional convolution with LPSC in the first convolution layer
before all blocks of ResNet-18, where the size 2R+ 1, Lr, Lθ, and g for LPSC kernels are 9, 3, 8,
and 2, respectively. For LPSC-CC, in addition to reduce p from 100 to 25 in the first layer, we also
replace a quarter of 3× 3 kernels with LPSC kernels in the first residual block (i.e., p = 25), where
the size 2R + 1, Lr, Lθ, and g for LPSC kernels in the block are 5, 2, 6, and 3, respectively. The
setting of these hyper-parameters for LPSC follows the suggestions in the ablation study in Appendix
A.2. Due to the limitation of computing resources, we reduced the batch size and learning rate by
4 times. Other hyper-parameters remain the same. We compare the mean top-1 accuracy and the
standard deviation of the last ten epoches in Tab. 3. Both LPSC and LPSC-CC slightly improve the
top-1 accuracy and the standard deviation of ResNet-18.

4.2 Semantic segmentation experiments

LPSC can also be applied to other vision tasks. On the PASCAL VOC 2012 dataset [62, 63] for
general image semantic segmentation, we adopt the Pytorch implementation5 of DeepLabv3+ [64]
with the MobileNet [65] backbone as the baseline. The training set is augmented by extra annotations
provided in [66]. Overall accuracy (oAcc), mean accuracy (mAcc), freqw accuracy (fAcc), and
mean IoU (mIoU) on the validation set are evaluated. In DeepLabv3+, the atrous spatial pyramid
pooling (ASPP) module probes multi-scale features by applying atrous/dilated convolutions with three
different rates. For DeepLabv3+LPSC, we replace the dilated convolution with the largest rate by
LPSC in ASPP. The kernel size, Lr, Lθ, and g of LPSC are set to 9, 2, 8, 2, respectively. Comparisons
with the reported and reproduced results are shown in Tab. 4. LPSC improves DeepLabv3+ by a
margin of 1.1% on mIoU. All hyper-parameters and setups such as the learning rate, batch size, etc,
remain the same, so the performance gains are only attributed to the proposed LPSC.

3https://github.com/facebookresearch/fvcore
4https://github.com/bearpaw/pytorch-classification
5https://github.com/VainF/DeepLabV3Plus-Pytorch
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Figure 4: Visualization of the learned circular LPSC kernels without center convolution in the first
convolution layer of Alexnet on the CIFAR-10 dataset.

(a) (b) (c) (d)

Figure 5: Estimated RFs with (a) conventional convolution and (b) LPSC. The normalized gradient
map with (c) conventional convolution and (d) LPSC at a sampled location.

On the DRIVE dataset [55] for retinal vessel detection, we adopt CE-Net [61] as the baseline.
Sensitivity (Sen), accuracy (Acc), and AUC are evaluated on the test set. The dense atrous convolution
(DAC) block of CE-Net uses four cascade branches with increasing numbers of dilated convolutions.
For CE-Net-LPSC-1, we replace the dilated convolutions with rates of 3 and 5 by LPSCs with sizes
of 5 and 11 in DAC, respectively, so that LPSCs have the same LRFs with dilated convolutions. Lr,
Lθ, and g of LPSCs are set to 2, 6, 3, respectively. For CE-Net-LPSC-2, we increase the kernel sizes
of LPSCs to 9 and 15, respectively, to further increase LRFs. We accordingly use more parameters
by setting Lr, Lθ, and g to 3, 8, 1.5, respectively. Other hyper-parameters remain the same6. We
run our models ten times and report the average performances. Comparisons with the reported
results are shown in Tab. 5. Our LPSC achieves good generalization performances on medical image
segmentation with limited training samples.

4.3 Visualization

Visualization of the learned LPSC kernels. In Fig. 4, we visualize the learned LPSC kernels in
the first convolution layer of AlexNet on the CIFAR-10 dataset. The 11×11 LPSC kernels have 3
distance levels and 8 direction levels. In LPSC kernels, the closer to the center, the higher the regional
resolution; the more outward, the larger the range for parameter sharing. We observe that the learned
LPSC kernels capture some special local structures and contextual configuration. In some kernels, the
weights for adjacent regions are continuous; some kernels are sensitive to specific directions, edges,
colors, or local changes; in some other kernels, specific combinations of regions are highlighted.
More visualizations are shown in Appendix A.4.

Comparison of effective receptive field (ERF): Fig. 5(a) and (b) show the estimated RFs of
SimpleVGGNet on the default example using conventional convolutions and LPSCs in the first two
layers by the gradient-based RF estimation7, respectively. LPSC enlarges the estimated RFs from
14× 14 to 22× 22. The normalized gradient maps w.r.t. a position of the output for estimating the
RF using conventional convolutions and LPSCs are shown in Fig. 5(c) and (d). With LPSC, gradients
can be back-propagated to more pixels of the input image.

6https://github.com/Guzaiwang/CE-Net
7https://github.com/fornaxai/receptivefield
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5 Conclusion

In this paper, we have presented LPSC that naturally encodes the local contextual structures. LPSC
distinguishes regions with different distance levels and direction levels, reduces the resolution of
remote regions, and reduces the number of parameters by weight sharing for pixels in the same
region. The LRF of LPSC increases exponentially with the number of distance levels. We impose a
regularization on the parameters and implement LPSC with conventional convolutions by log-polar
space pooling and separable center pixel convolution. We analyze the interests and drawbacks of
LPSC from different aspects. We empirically show the effectiveness of the proposed LPSC on five
datasets for classification and segmentation tasks.
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