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Abstract

Semi-Supervised Video Salient Object Detection (SS-VSOD) is challenging be-
cause of the lack of temporal information caused by sparse annotations in video
sequences. Most works address this problem by generating pseudo labels for unla-
beled data. However, error-prone pseudo labels negatively affect the VOSD model.
Therefore, a deeper insight into pseudo labels should be developed. In this work, we
aim to explore 1) how to utilize the incorrect predictions in pseudo labels to guide
the network to generate more robust pseudo labels and 2) how to further screen out
the noise that still exists in the improved pseudo labels. To this end, we propose an
Uncertainty-Guided Pseudo Label Generator (UGPLG), which makes full use of
inter-frame information to ensure the temporal consistency of the pseudo-labels
and improves the robustness of the pseudo labels by strengthening the learning of
difficult scenarios. Furthermore, we also introduce adversarial learning to address
the noise problems in pseudo labels, guaranteeing the positive guidance of pseudo
labels during model training. Experimental results demonstrate that our methods
outperform existing semi-supervised method and partial fully-supervised methods
across five public benchmarks of DAVIS, FBMS, MCL, ViSal, and SegTrack-V2.
Code and dataset are available at https://github.com/Lanezzz/UGPL.

1 Introduction

Video Salient Object Detection (VSOD) aims to locate and segment the objects people are most
interested in in the video consequence. With the increasing demand for video data processing,
research on VSOD has received increased attention. As a fundamental technique in computer vision,
many video-related applications adopt it as preprocessing to allocate more attention to salient regions,
such as video tracking [55] , video object segmentation [37], video action recognition [31], video
captioning [41].

Compared with still-image-based SOD tasks, VSOD is more challenging because the prediction of
salient objects in video is heavily dependent on temporal dynamics. In recent years, deep-learning-
based VSOD has achieved significant progress with the development of CNN. However, it is usually
expensive and difficult to label temporally consistent pixel-level annotations for videos. To reduce the
heavy efforts of labeling segmentation ground truth, numerous pseudo-label based semi-supervised
video methods [58, 3, 12] are proposed. These works try to use limited, sparsely annotated ground-
truth labels to generate labels for unlabeled data through self-training or label propagation, to make
up for the lack of temporal information between sparsely annotated frames. Because video data has
much redundant information (et al., 24 fps in the DAVIS [43] dataset), we believe using a small
amount of ground truth and large amounts of pseudo labels to supervise the model’s training tends to
be more efficient for VSOD.
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Figure 1: PLt+n and PLk+n are the pseudo labels generated by the pseudo label generation network
in RCR [58] for RGBt+n and RGBk+n, respectively. The areas corresponding to the red box is error-
prone. These four scenarios correspond to deformed objects, details of complex objects, interference
of similar objects, and blurred boundaries caused by fast motion.

Yan et al. [58] try to address semi-supervised VSOD by proposing a teacher network trained with
the sparsely sampled annotations (sample every n frames, n > 1) to generate pseudo labels for the
unlabeled data, which are involved in the subsequent training of the video saliency model with
manually annotated labels. Despite their great performance, further refinements for pseudo labels
should be concerned. We observe that pseudo labels tend to have obvious errors regarding difficult
scenarios, such as deformed objects, interference from similar objects, and complex contours(shown
in Fig. 1). Error-prone pseudo labels are usually detrimental to final detection. Inspired by these
observations, we think two key issues need to be considered: 1) How do we use the incorrect
information in pseudo labels to guide the pseudo labels generation network to generate more reliable
predictions in difficult scenarios. 2) How do we suppress the noise that still exists in pseudo labels
for further improving the video saliency model.

In this paper, we strive to overcome difficulties toward accurate semi-supervised VSOD. The primary
challenge toward this goal is to generate high-quality pseudo labels and avoid the interference of the
noise that still exists in the pseudo labels. The key aspect in the success of our method is to utilize the
erroneous prediction in pseudo labels to strengthen the robustness of the pseudo label generator and
formulate noise suppression as an adversarial learning problem. Concretely, our contributions are
threefold:

• We propose a pseudo label generator that is equipped with an Uncertainty-Aware Dual
Decoder Module(UADDM). It makes full use of the inter-frame information to locate the
salient objects in unlabeled frames, ensuring the temporal consistency of pseudo labels. To
our best knowledge, we first utilize the erroneous prediction in pseudo-labels to strengthen
the robustness of the pseudo-label generator by proposing UADDM in semi-supervised
VSOD.

• We introduce adversarial learning to learn the distribution of the sparsely labeled training
set, and the regions that do not conform to the ground truth distribution in pseudo labels can
be filtered out by the generative adversarial network.

• We conduct extensive experiments on 5 widely-used datasets and demonstrate that our
method outperforms existing semi-supervised VSOD method and partial fully-supervised
methods.

2 Related Work

2.1 Salient Object Detection

During the past decades, large amounts of conventional methods have been developed for SOD.
Early works [24, 2, 59] mainly rely on intrinsic cues (e.g., color and texture) to extract saliency
features. However, because low-level features cannot capture rich contextual semantic information,
the application scenarios of these traditional methods are very limited. Later on, with the development
of deep learning techniques, deep-learning-based methods (et al., [15, 6, 56, 45, 9, 22, 63, 23, 21])
are dominant in this field, which can be divided into integration-based models and edge-based models.
Integration-based models aim to aggregate multi-scale features to leverage context information of
different levels. Hou et al. [15] introduce short connections by linking the deep layers towards
shallower ones to integrate features of different layers. Wu et al. [56] aggregate partial high-level
features to generate a coarse attention map to guide the network to output more accurate maps.



Edge-based models attempt to generate prediction maps with clear boundaries by making better
use of edge information. Qin et al. [45] Propose a hybrid loss that fuses BCE, SSIM, and IoU to
supervise the training process on pixel-level, patch-level, and map-level. Feng et al. [9] introduces
a boundary-enhanced loss as an assistant to learning exquisite object contours which saves the
post-processing operations to refine the boundaries. Wei et al. [54] design pixel position aware loss
to assign higher weights to edge positions which can help the network focus more on boundary
regions. More detailed descriptions of research in SOD field can be approached in related literatures
[50, 65, 19, 30, 60, 44, 61].

2.2 Video Salient Object Detection

Existing VSOD methods can be divided into two categories: conventional models and deep learning
models. Traditional methods rely on people’s prior knowledge to extract hand-crafted features, such
as color-contrast [34], background prior [57] and morphology cues [46]. Because low-level features
have limited representational ability, these conventional methods are usually only suitable for specific
scenarios. With the development of CNN, deep-learning-based VOSD models have recently achieved
great success. Fan et al. [8] present a baseline model with a saliency-shift-aware convLSTM module to
progressively integrate temporal information. Li et al. [29] propose a dual-stream network to enhance
appearance features with motion features or motion saliency. Gu et al. [13] design a 3D pyramid
constrained self-attention module to capture local motion cues of salient objects. Liu et al. [62]
proposes a dynamic context-sensitive filtering module to dynamically generate context-sensitive
convolution kernels and introduce a bidirectional fusion strategy to fuse spatial and temporal features.
However, the remarkable performance achieved by these methods relies on densely annotated video
datasets which cost considerable expense and time. Researchers explore addressing VSOD by using
weak supervision or semi-supervision to relieve the burden of handcrafted labeling. Zhao et al. [64]
designs multiple losses from the perspectives of boundary, structure, and front-background similarity
to learn SOD by using fixation guided scribble annotations. Yan et al. [58] proposes to utilize a
self-training method to generate pseudo labels to ease the effort of acquiring high-quality manually
annotated data.

2.3 Semi-supervised Semantic Segmentation

Existing semantic segmentation methods are also being actively explored to reduce the utilization
of large amounts of annotated data. There are two mainstream methods in Semi-supervised Image
Semantic Segmentation. The first is consistency regularization which applies different perturbation to
the same image and requires their predictions or intermediate features to be consistent [10, 40, 25].
The second method is based on self-training [32, 38, 16]. A teacher network is firstly trained with
a small number of ground truth labels and then the network is used to generate pseudo-labels for
unlabeled data. Finally, a student model is jointly trained with ground truth labels and pseudo-labels.

Due to the lack of strong data augmentation for video data, it is difficult to apply the consistency
regularization to video-related tasks. Current Semi-supervised Video Semantic Segmentation mainly
relys on self-training. Chen et al. [3] train a teacher network to generate pseudo-labels for unlabeled
data and then train the student network with human-annotated labels and pseudo-labels iteratively.
Ganeshan et al. [12] combines optical flow and the prediction of models to generate a coarse pseudo-
label, followed by a refine network to achieve better pseudo labels.

3 Our methods

3.1 Overview

To avoid low-quality pseudo labels that negatively affect VSOD, our method aims to progressively
enhance the quality of pseudo labels and strictly filter out the noise in pseudo labels: (shown in
Fig. 2)) We propose an Uncertainty-Guided Pseudo Label Generator (UGPLG) which uses inter-
frame information to generate consecutive pseudo labels and enhances the learning of difficult
scenarios to further improve the robustness of pseudo labels. 2) We introduce adversarial learning for
noise suppression (NS-GAN) to screen out the regions in pseudo labels that do not conform to the
distribution of ground truth, making pseudo labels more reliable.
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Figure 2: The overall process of our method.

The proposed UGPLG (shown in Stage 1 of Fig. 2) follows the encoder-decoder architecture. The
sharing encoder is based on ResNet50 [14] with ASPP [4]. It consists of a Cross-Frame Global
Matching Module (CFGMM) and an Uncertainty-Aware Dual Decoder Module (UADDM). CFGMM
aims to refer to the saliency cues in the same video to guarantee the temporal consistency of pseudo
labels. And UADDM aims to enhance the learning of uncertain regions in pseudo labels to improve
the robustness of pseudo labels. Equipped with the two modules, UGPLG can generate high-quality
pseudo labels for complex scenerios.

The proposed NS-GAN (shown in Stage 2 of Fig. 2) uses a video saliency model as the generator. In
the process of adversarial learning, the discriminator can accurately distinguish between the ground
truths and the predictions of the generator. Thus by using the discriminator to filter the noise for the
pseudo labels, the training process of the generator is free from the negative effects of noise.

3.2 Uncertainty-Guided Pseudo Label Generator

Cross-Frame Global Matching. Generating pseudo labels for unlabeled video data is very de-
pendent on temporal information because it contains motion cues and location information of the
salient objects. The generated pseudo labels are temporally inconsistent if temporal information is
not fully utilized. A straightforward utilization of temporal information [11] is computing the optical
flow to warp labels to the unlabeled frames. However, optical flow generated from [17] [48] usually
cannot accurately predict the geometric relationship between two frames within a long time interval.
Therefore, to model the long-term temporal relationship, we select inter-frame global matching which
can ignore time intervals to build a bridge for the saliency information propagation between labeled
frames and unlabeled frames.

The whole propagation process is divided into two steps. In the first step, shown as Stage 1 in Fig. 2,
given two video frames It and frame It+n in the same video, Ft ∈ RC×(HW ) and Ft+n ∈ RC×(HW )

represent the corresponding features from the sharing encoder. We aim to compute the similarity
matrix S between Ft and Ft+n by leveraging the non-local [53] mechanism:

S = (flat(Ft ∗ Lt))
TWflat(Ft+n) ∈ R(HW )×(HW ), (1)

where W ∈ RC×C means a weight matrix and flat means the operation of flatten. Then we
normalize S in a column-wise way with a softmax function:

Sc = softmax(S) ∈ R(HW )×(HW ). (2)



Each column of the matrix S represents the relevance between a position on the unlabeled frame and
each position on the salient regions of the labeled frame. In the second step, we aim to find out the
features in Ft+n that are most correlated to salient objects in Ft. The transposed Ft is multiplied by
the similarity matrix S, and we can get the warped feature F̃t+n propagated from Ft,

F̃t+n = Ft
TSc ∈ RC×(HW ). (3)

Each element of F̃t+n represents the sum of the similarity of all positions on Ft and current position
on Ft+n. By concatenating F̃t+n and Ft+n, we can achieve Ffuse which not only retains the spatial
information of current frame but also integrates the prior information about salient objects of other
frames in the same video. In this way, our UGPLG can generate temporally consistent pseudo labels.

Ffuse = [Ft+n, F̃t+n] ∈ R2C×(HW ), (4)
where [ · , · ] means concatenation operation.

Uncertainty-aware Dual Decoder. Since conventional pseudo label generators are difficult to
make accurate predictions in difficult scenarios, to achieve robust pseudo labels, we design an
Uncertainty-Aware Dual Decoder Module (UADDM) to detect and utilize the uncertain regions in
pseudo labels to improve the performance of UGPLG. During training, when we feed the temporally
enhanced feature Ffuse to the UADDM, the auxiliary decoder makes a coarse prediction for It+n

and it is supervised by Lt+n:

laux = lbce(Aux(Ffuse), Lt+n) ∈ RH×W , (5)
where Aux(·) means the auxiliary decoder and Lt+n means the label of It+n. Due to the lack of
a superior training strategy, the prediction map of the auxiliary decoder often has obvious errors
regarding difficult scenarios. When a certain position of laux is greater than a fixed value, we consider
the auxiliary decoder’s prediction for that position to be uncertain. Since the structure of the main
decoder is exactly the same as that of the auxiliary decoder, the prediction error of the auxiliary
decoder in difficult scenarios has a great probability to occur on the main decoder. We assign a higher
weight to the uncertain regions the auxiliary decoder predicts to guide the main decoder to train the
network to generate more robust pseudo-labels.

weight = 1 + α ∗ I(laux > Tloss) ∈ RH×W , (6)
lmain = weight ∗ (lbce(Main(Ffuse), Lt+n) + liou(Main(Ffuse), Lt+n)), (7)

where I(·) is the indicator function, and Main(·) means main decoder. Tloss is a fixed threshold
which is empirically set as 0.3, and α is empirically set as 5. Thus, the pseudo labels generated by
UGPLG can be more robust. As training goes on, the ability of the auxiliary decoder is gradually
improved, the number of erroneous predictions is gradually reduced, and the uncertain areas also
gradually shrink. Therefore the auxiliary decoder can better guide the main decoder to pay more
attention to the real complex scenarios. It is noted that the auxiliary decoder is used only in the
training stage. Apart from the standard BCELoss, we also introduce IoU loss to enable the model to
focus on global structure. lbce and liou are defined as:

lbce = −
HW∑
x=1

HW∑
y=1

(L(x, y)log(P (x, y)) + (1− L(x, y))log(1− P (x, y))), (8)

liou = 1−
∑HW

x=1

∑HW
y=1 L(x, y)P (x, y)∑HW

x=1

∑HW
y=1 L(x, y) + P (x, y)− L(x, y)P (x, y)

, (9)

where (x, y) means the location of the pixel, H , W means the height and width, P (·) means the
prediction of the model, and L(·) means ground truth.

3.3 Adversarial Learning for noise suppression

Generative Adversarial Network. To further improve the reliability of pseudo labels, we propose
a GAN-based noise suppression mechanism to filter out the regions that do not conform to the
distribution of ground truth. The generator is trained to confuse the discriminator so that the
distribution of the generator can be closer to the ground truth distribution. Correspondingly, in the
process of adversarial learning, the ability of the discriminator also becomes stronger. In that case, the
discriminator can accurately identify the noise that still exists in the pseudo labels. By suppressing
the noise, we can ensure that pseudo labels are always providing positive guidance to the generator.
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Figure 3: The overall architecture of our video saliency
model.

The detailed structure of the generator is
shown in Fig. 3, which is a classic two-
stream network. The upper symmetrical
branch is the RGB branch which learns in-
formation such as color and outline, and
the lower branch is the optical flow branch
which learns information such as posi-
tion and semantics. The two symmetri-
cal branches perform information fusion
through a well-designed cross-modality in-
formation integration module CRM [20].
Since the information of the two branches is
complementary, the fused features of the aggregation branch retain both local detailed information
and global structural information. The generator takes both labeled and unlabeled data as input and
outputs the predictions of the three branches. The encoder of each symmetrical branch is based on
ResNet50 [14] with ASPP [4]. The decoder of the symmetrical branch consists of three convolutional
layers, and the decoder of the aggregation branch has one more than that of the symmetrical branch.
Similar to [16], our discriminator network is based on FCN [35]. It takes the prediction maps of the
saliency model or ground truth labels as input and then outputs a probability map of size H ×W × 1.

Training with labeled data. The generator and the discriminator are alternately trained on labeled
data. For the training of the discriminator. We minimize the loss using:

lD = lbce(D(Gfuse(Il, Ol)),M0) + lbce(D(Yl),M1), (10)

where Gfuse(·) is the output of the aggregation branch in the saliency model, M0 is an all-zero
matrix and M1 is an all-one matrix. Il, Ol, and Yl are the image, optical flow, and ground truth of the
labeled frame, respectively. When the input is from ground truth, the discriminator output an all-one
map, and when the input comes from the prediction map of the generator, the discriminator output an
all-zero map.

To enable the generator to generate prediction maps with the similar distribution as ground truth,
Grgb(·), Gopt(·), Gfuse(·) are all supervised by standard BCEloss, and Gfuse(·) is additionally
supervised by the adversarial loss ladv . The total loss of the generator supervised by labeled data lGL

is defined as:

lGL = lbce(Grgb(Il), Yl) + δ(lbce(Gopt(Ol), Yl)) + lbce(Gfuse(Il, Ol), Yl), (11)

Where δ is a hyperparameter with its value of 0.2, and Grgb(·), Gopt(·) mean the prediction map of
RGB branch, Optical Flow branch, respectively. ladv is defined as:

ladv = −
∑

log(D(Gfuse(Il, Ol))). (12)

With ladv , the generator is trained to confuse the discriminator by maximizing the probability of the
confidence map. Then the distribution of the prediction output by the generator gets closer to the
distribution of ground truth.

Training with unlabeled data. Before using pseudo labels for supervised training, to avoid noise
providing wrong guidance to the saliency model, we need to filter out the noise in pseudo labels at
first. We feed the pseudo labels to the discriminator and obtain the corresponding confidence maps.
Then the confidence map D(PLu)is directly used as the weight of lGU which is the total loss of the
generator supervised by unlabeled data:

lGU = D(PLu) ∗ (lbce(Grgb(Iu), PLu) + δ(lbce(Gopt(Ou), PLu)) + lbce(Gfuse(Iu, Ou), PLu)), (13)

Where the δ is the same as in Eq. 11. Iu, Ou, and PLu are the image, optical flow, and pseudo label
of the unlabeled frame, respectively. Because the weights of the noisy regions are very small, the
noisy regions have little effect on the loss lGU , thus avoiding the model learning from the noise in the
pseudo-labels, ensuring the stability of saliency model training and helping the model to converge
better. At last, the total loss of the generator is composed of the three types of loss:

lG = lGL + ladv + lGU . (14)



4 Experiments

4.1 Datasets

To evaluate the performance of our method, we conduct experiments on five widely-used VSOD
datasets for fair comparisons. DAVIS [43] is the most popular VSOD dataset, with 50 high-quality
fully annotated video sequences. The whole dataset is split into 30 sequences (2079 frames) for
training and 20 sequences (1376 frames) for testing. FBMS [39] includes 59 natural video sequences
which contains 13860 frames while only 780 of them are sparsely annotated. The whole dataset is
split into 29 sequences (353 frames) for training and 30 sequences (720 frames) for testing. ViSal [51]
is the first specially collected dataset for VSOD. It contains 17 video sequences with 193 sparsely
annotated frames. MCL [26] includes 9 video sequences about objects with fast movement. There
are total 463 sparsely annotated frames. SegTrack-V2 [27] is the earliest VOS dataset which contains
13 videos, with a total of 1025 annotated frames.

4.2 Experimental Setup

Evaluation Metrics. We use three universally-agreed criterions to evaluate our results, i.e., mean
absolute error (MAE) [42], max F-measure (Fmax

β ) [1] and structure-measure (Sα) [7].

Implementation Details. Our network is implemented on the Pytorch framework with 4 × GTX
1080Ti GPU and it is also adapted to the MindSpore framework of Huawei with an Ascend-910. We
choose the train set of DAVIS and FBMS as our training set to train both Uncertainty-Guided Pseudo
Label Generator (UGPLG) and Noise-Suppressed Generative Adversarial Network (NS-GAN). For
the training of UGPLG, the initial learning rate is set as 0.005 and decays 0.1 times every 25 epochs
with a batch size of 8. For the training of NS-GAN, the initial learning rate is set as 0.015 and
decays 0.1 times every 20 epochs. Images are uniformly resized to 448 × 448. We adopt an SGD
optimizer in which the momentum and weight decay are set to 0.9, 5e-4. In the pre-train phase for
NS-GAN, we pretrain the RGB branch on DUTS [49] which is a commonly used static-image SOD
dataset. The initial learning rate is set as 0.01 and decays 0.1 times every 30 epochs.

Table 1: Quantitative comparisons of Sα, Fmax
β and MAE on five widely-used VSOD datasets. The

best three results are shown in boldface, red, and blue fonts respectively. ∗ means conventional
methods. - means no available results. † means semi-supervised methods.

DAVIS FBMS ViSal MCL SegTrack-V2
Methods Sα ↑ Fmax

β ↑ MAE↓ Sα ↑ Fmax
β ↑ MAE↓ Sα ↑ Fmax

β ↑ MAE↓ Sα ↑ Fmax
β ↑ MAE↓ Sα ↑ Fmax

β ↑ MAE↓
SGSP∗ 0.692 0.655 0.138 0.661 0.630 0.172 0.706 0.677 0.165 0.670 0.605 0.102 0.681 0.673 0.124
SCOM∗ 0.832 0.783 0.048 0.794 0.797 0.079 0.762 0.831 0.122 0.569 0.422 0.204 0.815 0.764 0.030
SCNN 0.783 0.714 0.064 0.794 0.762 0.095 0.847 0.831 0.071 0.730 0.628 0.054 - - -
DLVS 0.794 0.708 0.061 0.794 0.759 0.091 0.881 0.852 0.048 0.682 0.551 0.060 - - -
FGRN 0.838 0.783 0.043 0.809 0.767 0.088 0.861 0.848 0.045 0.709 0.625 0.044 - - -
SSAV 0.893 0.861 0.028 0.879 0.865 0.040 0.943 0.939 0.020 0.819 0.773 0.026 0.851 0.801 0.023
PCSA 0.902 0.880 0.022 0.868 0.837 0.040 0.946 0.940 0.017 - - - 0.865 0.810 0.025
FDS 0.922 0.912 0.020 0.888 0.875 0.041 0.903 0.869 0.029 0.866 0.823 0.024 0.849 0.773 0.028
DCF 0.914 0.900 0.016 0.873 0.840 0.039 0.952 0.953 0.010 0.767 0.713 0.028 0.883 0.839 0.015
RCR† 0.886 0.848 0.027 0.872 0.859 0.053 0.922 0.906 0.026 0.820 0.742 0.028 0.842 0.781 0.035
Ours† 0.914 0.900 0.019 0.899 0.892 0.027 0.930 0.926 0.019 0.860 0.822 0.018 0.844 0.778 0.027

4.3 Comparison with State-of-the-Art

Table 2: Quantitative comparisons with the number
of training data used by state-of-the-art method DCF.
The colummn Total calculates the sum of training
video frames. † means semi-supervised methods.

Model Video Total

DCF DAVSOD + DAVIS + VOS 11.5K

RCR† 20%(DAVIS + FBMS + VOS) 1406
Ours† 10%(DAVIVS) + FBMS 568

As shown in Table. 1, we compare
our methods with two conventional video
salient object methods (remarked with
∗): SGSP [33]∗, SCOM [5]∗, and eight
deep-learning based methods: SCNN [47],
DLVS [52], FGRN [28], SSAV [8],
PCSA [13], FDS [18], DCF [62], RCR [58].
To guarantee fair comparisons, we utilize
the widely-used evaluation code provided by
[8]. First, compared to the existing Semi-
Supervised VSOD method RCR, our method
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Figure 4: Qualitative comparisons of state-of-the-art methods. The ground truth (GT) is shown in
the foremost column. The prediction map generated by our model in some difficult scenarios can
approach or even exceed fully supervised methods.

significantly outperforms them on all datasets.
Specifically, our method improves the MAE by 29.6%, 49.1%, 26.9%, 35.7% on DAVIS, FBMS,
ViSal, and SegTrack-V2, respectively, using only 40% of their labeled data (568 versus 1406, shown
in Table. 2). Second, compared to the fully supervised methods, our method achieves state-of-the-art
on FBMS dataset, and achieves 98.7%, 97.2%, 99.9% and 92.7% of the SOTA accuracy on Fmax

β

on DAVIS, ViSal, MCL and SegTrack-V2, respectively. Despite our great performance, the number
of ground truths we use is only 5% of current state-of-the-art fully-supervised methods. Finally,
Fig. 4 shows visual comparisons to demonstrate the effectiveness of our proposed method to deal
with complex scenarios, such as interference of complex background objects (1st and 2nd rows),
similar foreground and background (3rd and 4th rows) and multiple objects (5rd and 6th rows). In
these complex cases, it can be observed that our saliency model generalizes better than most VSOD
models, which proves that our method can help the network to generate more robust predictions in a
variety of complex scenarios.

4.4 Ablation Studies

The Effectiveness of UGPLG. Uncertainty-Guided Pseudo Label Generator (UGPLG) consists
of Cross-Frame Global Matching Module(CFGMM) and Uncertainty-Aware Dual Decoder Module
(UADDM), aiming to generate high-quality pseudo labels to guide the training of the saliency model.
We perform abundant experiments to validate the effectiveness of each component of UGPLG. As
shown in Table. 4, case (1) refers to our baseline model which only retrains the encoder and the main
decoder in UGPLG, and the generator in NS-GAN.

Table 3: Quantitative comparisons on the quality of
the pseudo labels generated for the training set of
DAVIS.

UGPLG DAVIStrain

Case CFGMM-O CFGMM UADDM Sα ↑ Fmax
β ↑ MAE↓

(1) - - - 0.937 0.927 0.016
(2) ✓ - - 0.943 0.931 0.015
(3) ✓ - 0.952 0.942 0.012
(4) ✓ ✓ 0.958 0.951 0.007

First, compared to the baseline, case (3)
equips with CFGMM additionally. The great
performance improvement achieved in case
(3) powerfully demonstrates the effectiveness
of CFGMM. To further prove the effectivity
of CFGMM on introducing temporal infor-
mation, we propose case (2) by removing
the reference to the adjacent ground truth in
CFGMM. Compared to case (3), case (2) en-
counters obvious performance degradation
which demonstrates that our CFGMM can effectively utilize inter-frame information to generate
high-quality pseudo labels. Second, to prove the effect of UADDM on strengthening the learning
of difficult scenarios, we add UADDM (denoted as case (4)) based on case (3). Compared to case
(3), the performance improves by 14% and 15% on DAVIS and MCL respectively in terms of MAE.
Moreover, we directly test the performance of pseudo labels on the DAVIS dataset, shown in Table. 3.
Specifically, we train case (1) to case (4) with 10% of the ground truth in DAVIS and then generate
pseudo-labels for the remaining 90% of the dataset. The experimental results show that the modules
in UGPLG can gradually improve the performance of pseudo labels, finally reaching an impressive
performance of 0.007 on MAE. At last, we provide the corresponding visualization results in Fig. 5.
It can be found that the pseudo labels are getting more consistent temporally. The boundaries of the
pseudo labels are getting clearer and the content of salient objects is getting more complete.
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Figure 5: Case (2) to case (4) represent the pseudo labels generated by case (2) to case (4). Case (6a)
and case (6b) are the confidence maps generated for case (4) by the discriminator of NS-GAN in the
early and middle stages of training process, respectively.

Table 4: Quantitative comparisons of the performance of our method on the DAVIS and MCL datasets.

UGPLG NS-GAN DAVIS MCL
Case CFGMM-O CFGMM UADDM GAN NS MAE↓ Sα ↑ Fmax

β ↑ MAE↓ Sα ↑ Fmax
β ↑

(1) - - - - - 0.031 0.900 0.887 0.027 0.839 0.803
(2) ✓ - - - - 0.030 0.902 0.887 0.027 0.842 0.807
(3) - ✓ - - - 0.028 0.907 0.892 0.026 0.848 0.803
(4) - ✓ ✓ - - 0.024 0.909 0.888 0.022 0.854 0.805
(5) - ✓ ✓ ✓ - 0.019 0.910 0.894 0.019 0.860 0.815
(6) - ✓ ✓ ✓ ✓ 0.019 0.914 0.900 0.018 0.860 0.822

The Effectiveness of NS-GAN. To highlight the importance of the noise suppression mechanism,
we conduct a comparative experiment between an ordinary GAN [36] (denoted as case (5)) and NS-
GAN (denoted as case (6)), shown in Table. 4. It can be observed that under the condition that case
(5) has achieved a great performance, our NS-GAN still creates a further performance improvement
which demonstrates the effectiveness of further suppressing the noise of high-quality pseudo labels.
Case (6a) and case (6b) in Fig. 5 show the confidence maps generated by the discriminator at different
training stages for case (4). As the training process goes on, the discriminator can accurately identify
noise areas, ensuring that pseudo labels always provide positive guidance to the saliency model.

Table 5: The utility of all output streams.

DAVIS MCL

Cfg Sα ↑ Fmax
β ↑ MAE↓ Sα ↑ Fmax

β ↑ MAE↓

F 0.867 0.834 0.043 0.821 0.748 0.038
RF 0.874 0.843 0.039 0.830 0.772 0.027
OF 0.882 0.867 0.036 0.848 0.793 0.029
ROF 0.889 0.864 0.033 0.849 0.788 0.026

The Effectiveness of Multiple Output
Streams. To explore the importance
of all output streams in the generator,
we compare the performance differences
of supervised training under four output
configurations, shown in Table. 5. F, R,
O are fused features branch, rgb features
branch, and flow features branch, corre-
sponding to Fuse pred, RGB pred, OPT
pred in Fig. 3 of the paper, respectively. The training set is 20% of annotated frames. As we can see
that the outputs we employ for the generator help the model achieve the best performance.

Different Ratios of Ground Truth to Pseudo Labels. We set up multiple comparative experiments
to verify the effectiveness of our method on different ratios of ground truths (GT) to pseudo labels (PL).
Table. 6 shows that in all three configurations, our method using 50% pseudo labels already achieves
the results that are comparable to the fully-supervised VSOD methods, which fully demonstrates
the superiority of our method. Finally, since the training time with 90% pseudo-labels is more than
double that with 50% pseudo labels and considering the trade-off between performance and training
time, we chose the configuration M using 50% pseudo labels as our final configuration.



Table 6: Quantitative comparisons on different ratios of GT to PL. The best three results are shown
in boldface, red, and blue fonts, respectively. The configuration S contains 5% GT of DAVIS and
50% GT of FBMS. The configuration M contains 10% GT of DAVIS and 100% GT of FBMS. The
configuration L contains 30% GT of DAVIS and 100% GT of FBMS. We generate pseudo labels
for all unused data in DAVIS and FBMS. All proportional experiments are divided according to the
proportion of the pseudo labels for training. All experiments involving pseudo labels are equipped
with noise suppression strategy. GT means ground truth and PL means pseudo labels.

S M L

Dataset Metrics 0% 20% 50% 100% 0% 20% 50% 100% 0% 20% 50% 100%

DAVIS
Sα ↑ 0.873 0.899 0.911 0.911 0.880 0.902 0.914 0.910 0.894 0.903 0.915 0.918

Fmax
β ↑ 0.847 0.880 0.895 0.901 0.851 0.882 0.900 0.895 0.867 0.878 0.901 0.905

MAE↓ 0.040 0.022 0.019 0.018 0.034 0.023 0.019 0.020 0.032 0.023 0.018 0.018

FBMS
Sα ↑ 0.870 0.885 0.893 0.897 0.887 0.889 0.889 0.892 0.885 0.891 0.896 0.891

Fmax
β ↑ 0.860 0.880 0.890 0.893 0.873 0.879 0.892 0.894 0.877 0.881 0.901 0.893

MAE↓ 0.054 0.034 0.030 0.028 0.043 0.032 0.027 0.031 0.041 0.032 0.031 0.032

5 Conclusion

In this paper, we strive to face the challenge of error-prone pseudo labels are usually detrimental to
final detection. We propose an Uncertainty-Guided Pseudo Label Generator, which makes full use of
temporal information to generate temporally consistent pseudo labels, and enhances the learning of
uncertain regions to improve the robustness of pseudo labels. To screen out the noise that still exists in
the pseudo labels, we further propose an adversarial learning strategy for noise suppression to ensure
that the pseudo labels can always guide the network positively. Experimental results demonstrate that
our method outperforms the existing semi-supervised VSOD method and partial fully-supervised
VSOD model while using only 5% labeled data used by the SOTA fully-supervised methods.
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