
A Appendix

A.1 Reinforcement learning notation

We adopt standard reinforcement learning notation [58]. An agent progresses through a sequence of
states st by executing actions at which influence transition probabilities between states. We focus on
the case where actions are continuous, vector valued quantities at 2 RD, where D is the dimension
of the action space. The agent’s policy—the probability distribution from which it samples actions
given the state s—is written as ⇡(a|s). States are associated with scalar rewards rt = r(st). The
value function associated with a policy ⇡ is defined as follows
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Where the expectation is taken over the policy ⇡ and transitions of the environment, and conditioned
on st=0 = s, � 2 [0, 1] is a discount factor, and T indicates the potentially finite horizon of an
episode. An agent’s goal is to learn a policy ⇡ that maximizes V⇡(s). We are often also interested
in the action-value function Q⇡(s,a), defined exactly the same as V⇡(s) except the sum is also
conditioned on the initial action at=0 = a. The Q-learning algorithm in Eq. 6 learns an estimate
Q̂(s,a) of the Q-function under the assumption that the current policy ⇡ to be deterministic such that
the action selected in state a is always argmaxa0Q̂(s,a0).

A.2 Biological implementations of three-factor learning rules for continuous action spaces

The three-factor learning rule in Eq. 3 and the analogous rule for the action surprise model involve
a product of a presynaptic term �j(st), a dopaminergic term �t (or �+t in the action surprise model
model), and a postsynaptic factor (at)i � µi(st). Three-factor plasticity rules involving pre-synaptic,
post-synaptic, and neuromodulatory factors have been observed experimentally [63, 9, 11] and
are commonly used in RL modeling [58, 44]. However, the difference (at)i � µi(st) involved in
the postsynaptic term, which arises in our framework from the use of a continuous action space,
requires more biological justification. Note that µi(st) is the contribution to to the postsynaptic
neuron’s activity driven by the cortico-striatal synapses subject to the RL algorithm, while (at)i takes
into account exploration noise and influence from external controllers. Biologically, the difference
between these terms may contribute to the plasticity in a number of ways, which we summarize here.

Option 1: Multi-compartment neurons. Potentially, the original basal ganglia-driven action signal
µi(st) and the difference signal (at)i�µi(st) could arrive at different dendritic compartments. In this
case, the total activity of the neuron would reflect the efferent copy (ai)t, but a compartment-specific
plasticity rule would enable the synaptic weight update to depend only on the appropriate term.

Option 2: Time-varying striatal activity and a temporal plasticity kernel. If striatal projection
neuron activity initially represents µi(st) before receiving additional inputs which cause it to represent
(at)i, then a spike-timing dependent three-factor learning rule with a suitable temporal kernel can
result in an update that makes use of the difference in activity between the two phases. Indeed, such
temporal kernels have been observed at cortico-striatal synapses [51].

Option 3: Normalization. Alternatively, the plasticity rule may only explicitly depend on projection
neuron activity representing (at)i, with normalization mechanisms across the striatal population
implicitly contributing the �µi(st) term. For concreteness, suppose the ith action dimension of the
basal ganglia network policy µi(s) is a linear function of the normalized, nonnegative firing rates x
of the striatal projection neuron population in response to s:

µi(s) =
w · x(s)P

i xi(s)
. (17)

Further suppose that as the agent takes an action, the population activity is updated to y to reflect an
efferent copy of the action a:
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ai =
w · y(s)P

i yi(s)
. (18)

If cortico-striatal synapses are updated according to a three factor learning rule �w / ��(s)y(s),
then at subsequent occurrences of state s, the basal ganglia network will drive will evoke population
activity:

xnew = x+ ✏�y, (19)

for some learning rate ✏. Note that, taking into account the normalization mechanism, the directional
derivative of µi with respect to x along y is

Dyµi(x) =

⇣P
j xj(s)

⌘
w � (w · x)1

⇣P
j xj(s)

⌘2 . (20)

And so following the weight update the action µnew
i driven by the basal ganglia network in state s

will be
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for some constant c, which up to a scalar factor is exactly the update that would be induced by Eq. 3
in the absence of a normalization mechanism. Note that the update to the cortico-striatal weights
does not necessarily follow the policy gradient in weight space, but we have shown that it induces the
appropriate update to the basal ganglia network policy.

A.3 Alternative approaches to off-policy learning in continuous action spaces

A popular approach to continuous off-policy deep RL, adopted in the DDPG [35] and SAC [24]
algorithms, is to parameterize Q̂(s,a) with a neural network taking s and a as inputs, and to use a
second neural network to learn argmaxa0Q̂(s,a0) (or, in the case of SAC, a probability distribution
peaked at this value). This second network can be used both as the policy network and for the
purpose of computing the factor maxa0 Q̂(s,a0) used in updates to Q̂. While this strategy has proven
to be effective in deep RL, a biological implementation is not readily apparent. In particular, in
this approach, the parameter updates for the actor require computing raQ(s,a), which depends a
substantial amount of information that is not local to the actor. By contrast, in our approach, updates
to the actor network depend on the critic network only through the scalar factor �, which biologically
can be signalled by dopamine release. Previous studies have suggested that a quadratic approximation
to the Q-function, as we implement in our model, can approach or exceed the performance of DDPG
[23].

Another class of approaches to off-policy learning, which does not involve any form of Q-learning, is
based on importance sampling [48, 40, 59]. These methods modulate the size of learning updates by
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the likelihood of an action (or sequence of actions) given the current policy. Such an approach could
be implemented by decreasing the gain of phasic dopamine fluctuations following surprising actions,
quite unlike the action surprise model we propose. We regard this possibility as unlikely given
the experimental evidence (discussed in the main text) for surprise and action initiation signals in
dopamine activity. Moreover, importance sampling-based approaches have a disadvantage compared
to Q-learning-based methods in that they learn slowly from data that is sufficiently far off-policy.
However, it should be noted that our approach to circumventing this problem, while it is able to
learn faster from off-policy data, requires assuming a parameterization of the Q-function which, if
inaccurate, can ultimately harm performance.

A.4 Learning confidence parameters
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Figure 5: Same information as Fig. 3C, but in this case the black trace was learned with the action
surprise coefficient 1

�2 learned online, following the update rule Eq. 28.

In the on-policy case introduced in Section 2, following the policy gradient (Eq. 1) yields the following
update for the variance parameter �:

�� / � 1

�2
+

2

�3
�t kat � µ(st)k2 . (27)

In the action surprise model, under the parameterization of Eq. 8, following gradient updates of the
loss function of Eq. 6 gives the following update for the action surprise coefficient �:

�� =
2

�3
�+t kat � µ(st)k2 . (28)

Note that this update is exactly the same as in the off-policy case but without the decay term � 1
�2

providing an impulse toward increasing confidence (decaying �) with increasing training data. This
difference reflects the fact that the role of � in the Q-learning model algorithm is not to measure
uncertainty as in the on-policy case, but rather to approximate the width of the Q-function, which
will have some finite value independent of the amount of data observed.

In Fig A.4 we show the result of using this update rule to learn the coefficient � online (after
initializing 1

�2 at 0, rather than optimizing it as a hyperparameter) for the full off-policy learning case.
The model is capable of converging to an appropriate � such that it learns successfully, while (as
discussed in the main text) the RPE-only models are incapable of learning.

A.5 Further simulation details

For all experiments, we optimized hyperparameters over the following ranges: exploration noise
variance 2 {0.5, 1.0, 2.0, 4.0, 8.0}, learning rate 2 {0.05, 0.1, 0.2}. The critic learning rate was
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always set to 0.1. For the RPE-only algorithms, the learning rate of the actor was optimized over
{0.0315, 0.0625, 0.125, 0.25, 0.5}, and for the action surprise model, the value of 1

�2 was optimized
over the same set. The velocity and acceleration penalties in the task cost functions, ↵1 and ↵2, were
each always set to 0.1, and the discount factor � always set to 0.99.

For all simulations, training was conducted for 100000 episodes, each with a length of 10 timesteps.
Each training run was performed on a single NVIDIA GeForce RTX 2080 Ti GPU on an internal
cluster.

A.6 Results for averaging-based combination of basal ganglia network and external

controller policies
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Figure 6: Same information as Fig. 3B, for the case where the basal ganglia policy and external
controller policy are combined by taking their mean, rather than sampling. Additionally blue trace
shows an alternative in which output of the basal ganglia network is added to (rather than averaged
with) the external controller policy.
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A.7 Results for task variant with sparse rewards for reaching the goal location
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Figure 7: For the two-joint arm task, same information as Fig. 3B and Fig. 3C, for the case where
the cost associated with distance from the goal location is sparse (equal to 1 when squared distance
exceeds 0.25, and 0 otherwise).
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