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A Appendix

In Section A.1, we provide the ResQ theorems and proofs. Section A.2 describes more experimental
results. We describe the exeprimental setup in Section A.2.1 in detail, the factorization results
in Section A.2.2 and shows another payoff matrix that cannot represent well by state-of-the-art
algorithms in Section A.2.3. We show more results about the SMAC benchmark in Section A.2.4.

In Section A.3, we study the differences among ResQ and others. We compare ResQ with DMIX in
Section A.3.1, with QTRAN in Section A.3.2, with QPlex in Section A.3.3, with weighted QMIX in
Section A.3.4, and study the impact of the implementation of the inequality condition in Section A.3.5,
and discuss the limitation of ResQ in Section A.3.6.

A.1 Theorems

In this section, we show the proof of all the Theorems of this work.
Theorem 1. A joint state-action function

Qjt(τ, u) = Qtot(τ, u) + wr(τ, u)Qr(τ, u) (1)

is factorized by [Qi(τi, ui)]
N
i=1, if Qr(τ, u) ≤ 0, Qtot(τ, u) and [Qi(τi, ui)]

N
i=1 satisfy the

monotonicity conditions, and

wr(τ, u) =

{
0 u = ū, (2a)
1 u 6= ū, (2b)

Proof. Theorem 1 shows that if condition (2) holds andQr(τ, u) ≤ 0, then [Qi(τi, ui)]
N
i=1 satisfy the

IGM principle forQjt. We will show that arg maxuQjt(τ, u) = ū, where ūi = arg maxui
Qi(τi, ui)

and ū = [ūi]
N
i=1.

Qjt(τ, ū) = Qtot(τ, ū) (From (1)(2a)) (3)
≥ Qtot(τ, u) ∀u 6= ū ū maximize Qtot (4)
≥ Qtot(τ, u) + wr(τ, u)Qr(τ, u) ∀u 6= ū (Monotonicity) (5)
= Qjt(τ, u) ∀u 6= ū (From (1)) (6)

(5) comes from wr(τ, u) = 1 ∀u 6= ū and Qr(τ, u) ≤ 0. (3) to (6) mean that ū = [ūi]
N
i=1 maximizes

Qjt(τ, u). Thus [Qi(τi, ui)]
N
i=1 satisfies IGM for Qjt(τ, u).
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Lemma 1. For any joint state-action functionQ(τ, u), we can find aQtot that satisfy the monotonicity
conditions, and they share the same optimal policy.

Proof. Theorem 1 of [1] shows that Weighted QMIX can always find a monotonically increasing
function Qtot that shares the same optimal policy as the true value function of Q(s, u). This indicates
that for any Q(s, u), there exists a monotonically increasing function Qtot(s, u) that shares the same
optimal policy as Q(s, u).

Theorem 2. For any joint state-action function Q(τ, u), we can find Qjt(τ, u) = Qtot(τ, u) +
wr(τ, u)Qr(τ, u) that

ū = arg max
u

Q(τ, u) = arg max
u

Qjt(τ, u) (7)

Q(τ, u) = Qjt(τ, u) ∀u 6= ū (8)

Qtot(τ, u) is a monotonic increasing function with respect to [Qi(τ, u)]Ni=1, wr(τ, u) satisfies the
condition (2), and Qr(τ, u) ≤ 0.

Proof. Lemma (1) shows that for any joint state-action function Q(τ, u), we can find a Qtot that
satisfy the monotonicity conditions and ū = arg maxQtot(τ, u) = arg maxQ(τ, u). Let

∆ = Q(τ, ū)−Qtot(τ, ū) (9)

Q
′

tot(τ, u) = Qtot(τ, u) + ∆ ∀u (10)

Without loss of generality, let’s assume that ∆ ≥ 0. Obviously, the new function Q
′

tot(τ, u) satisfy
the monotonic conditions, and arg maxuQ(τ, u) = arg maxuQ

′

tot(τ, u) and Q(τ, ū) = Q
′

tot(τ, ū).
Define the residual Q function as

Qr(τ, u) = Q(τ, u)−Q
′

tot(τ, u) (11)

Then

Qr(τ, ū) = Q(τ, ū)−Q
′

tot(τ, ū) (12)
= Q(τ, ū)−Qtot(τ, ū)−∆ (13)
= 0 (From(9)) (14)

We can write Q(τ, u) as follows.

Q(τ, u) = Q
′

tot(τ, u) +Qr(τ, u) (15)

= Q
′

tot(τ, u) + wr(τ, u)Qr(τ, u) (16)

where

wr(τ, u) =

{
0 u = ū, (17a)
1 u 6= ū, (17b)

Let

Q
′

r(τ, u) =

{
0 u = ū, (18a)
Qr(τ, u)−max

u
Qr(τ, u) u 6= ū, (18b)

Through definition, Q
′

r(τ, u) ≤ 0. Let

Q
′′

tot(τ, u) = Q
′

tot(τ, u) + max
u

Qr(τ, u) (19)

Obviously, Q
′′

tot(τ, u) satisfy the monotonic conditions with [Qi]
N
i=1. arg maxuQ(τ, u) =

arg maxuQ
′

tot(τ, u) = arg maxuQ
′′

tot(τ, u). Combining (18) and (19), we can find a function

Qjt(τ, u) = Q
′′

tot(τ, u) + wr(τ, u)Q
′

r(τ, u) (20)

arg maxuQjt(τ, u) = arg maxuQ(τ, u). Thus, we show that for any joint state action function
Q(τ, u), it can find a function Qjt that can be expressed in the form of ResQ (1), and share the same
optimal actions with Q.
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Further, we analysis the property of Qjt(τ, u) ∀u 6= ū.

Qjt(τ, u) = Q
′′

tot(τ, u) + wr(τ, u)Q
′

r(τ, u) ∀u 6= ū (21)

= Q
′

tot(τ, u) + wr(τ, u)Qr(τ, u) ∀u 6= ū (22)
= Q(τ, u) ∀u 6= ū (23)

Then, we analysis the property of Qjt(τ, ū).

Qjt(τ, ū) = Q
′′

tot(τ, ū) + wr(τ, ū)Q
′

r(τ, ū) (24)

= Q
′′

tot(τ, ū) (25)

= Q
′

tot(τ, ū) + max
u

Qr(τ, u) (26)

= Q(τ, ū) + max
u

Qr(τ, u) (27)

Combining (23) and (27), we reach the conclusion that the two functions Q(τ, u) and Qjt(τ, u) differ
only in the maximal values. And Qjt(τ, u) can be expressed as the form of the addition of one
monotonicity function Qtot(τ, u) and a residual state-action function Qr(τ, u)

Theorem 3. A stochastic joint state-action function

Zjt(τ, u) = Zdmix(τ, u) + wr(τ, u)Zr(τ, u) (28)

is factorized by [Zi(τi, ui)]
N
i=1, if Zr(τ, u) ≤ 0 and wr(τ, u) = 0 when u = ū, otherwise 1.

Zdmix(τ, u) is the factorization method proposed in [2]. Zdmix(τ, u) = Zmean(τ, u)+Zshape(τ, u),
E[Zshape(τ, u)] = 0, Qi = E[Zi(τi, ui)]. Zmean(τ, u) is a monotonically increasing function with
respect to Qi or the sum of [Qi]

N
1 .

Proof. We will show that arg maxu E[Zjt(τ, u)] = ū, where ūi = arg maxui E[Zi(τi, ui)] and
ū = [ūi]

N
i=1.

E[Zjt(τ, ū)] = E[Zdmix(τ, ū)] (From (28) w(τ, ū) = 0) (29)
= E[Zmean(τ, ū) + Zshape(τ, ū)] (30)
= E[Zmean(τ, ū)] (From E[Zshape(τ, u)] = 0) (31)
= E[Qmix(τ, ū)] (Definition) (32)
≥ E[Qmix(τ, u)] ∀u 6= ū (Mononicity relation) (33)
= E[Zmean(τ, u)] ∀u 6= ū (Definition) (34)
= E[Zmean(τ, u) + Zshape(τ, u)] ∀u 6= ū (From E[Zshape(τ, u)] = 0) (35)
= E[Zdmix(τ, u)] ∀u 6= ū (Definition) (36)
≥ E[Zdmix(τ, u)] + wr(τ, u)E[Zr(τ, u)] ∀u 6= ū (37)
= E[Zdmix(τ, u) + wr(τ, u)Zr(τ, u)] ∀u 6= ū (38)
= E[Zjt(τ, u)] ∀u 6= ū (From (28)) (39)

(37) comes from wr(τ, u) = 1 ∀u 6= ū and Zr(τ, u) ≤ 0. (29) to (39) mean that ū = [ūi]
N
i=1

maximizes E[Zjt(τ, u)]. Thus [Zi(τi, ui)]
N
i=1 satisfies DIGM for Zjt(τ, u).

Theorem 4. A stochastic joint state-action function

Zjt(τ, u) = Ztot(τ, u) + wr(τ, u)Zr(τ, u) (40)

is factorized by [Zi(τi, ui)]
N
i=1, if Zr(τ, u) ≤ 0, Ztot(τ, u) =

∑N
i=1 kiZi(τi, ui) ki ≥ 0 and

wr(τ, u) = 0 when u = ū, otherwise 1.

Proof. Theorem 4 shows that if Zr(τ, u) ≤ 0, Ztot(τ, u) =
∑N

i=1 kiZi(τi, ui) ki ≥ 0 and
wr(τ, u) = 0 when u = ū, otherwise 1, then [Zi(τi, ui)]

N
i=1 satisfy the DIGM principle for Zjt(τ, u).
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We will show that arg maxu E[Zjt(τ, u)] = ū, where ūi = arg maxui E[Zi(τi, ui)] and ū = [ūi]
N
i=1.

E[Zjt(τ, ū)] = E[Ztot(τ, ū)] (From (40) w(τ, ū) = 0) (41)
≥ E[Ztot(τ, u)] ∀u 6= ū (42)
≥ E[Ztot(τ, u)] + wr(τ, u)E[Zr(τ, u)] ∀u 6= ū (43)
= E[Ztot(τ, u) + wr(τ, u)Zr(τ, u)] ∀u 6= ū (44)
= E[Zjt(τ, u)] ∀u 6= ū (From (40)) (45)

Because Ztot(τ, u) =
∑N

i=1 kiZi(τi, ui) ki ≥ 0, the inequality formula (42) is established. (43)
comes from wr(τ, u) = 1 ∀u 6= ū and Qr(τ, u) ≤ 0. (44) comes from wr(τ, u)Zr(τ, u) =
E[wr(τ, u)Zr(τ, u)]. (41) to (45) mean that ū = [ūi]

N
i=1 maximizes E[Zjt(τ, u)]. Thus

[Zi(τi, ui)]
N
i=1 satisfies DIGM for Zjt(τ, u).

In Theorem 4, the main function Ztot is a positive weighted sum of Zi instead of a monotonic mixing
of Zi, because not all monotonic mixing functions satisfy the DIGM principle. We will show an
example in the proof of Theorem 5.
Theorem 5. The factorization method CW/OW QMIX may fail to satisfy the DIGM theorem.

Proof. We prove this theorem through an example.

In expectation case, CW/OW QMIX learn Qtot(τ, u) to approximate the optimal policy of the state-
action value function Q(τ, u), where Qtot is a monotonic increasing function with respect to Qi. For
the stochastic case, CW/OW QMIX learn Ztot(τ, u) to approximate the true value function, where
Ztot is a monotonic increasing function with respect to Zi. That is ∂Ztot(τ, u)/∂Zi(τi, ui) ≥ 0

Let’s consider a simple one-step matrix game where there are only two agents each with actions a and
b. Let’s assume that the state is full observational. The learned function is Ztot(τ, u) = Ztot(s, u) =
Z2
1 (s, u1) + Z2

2 (s, u2), where Z1 = Z2. Ztot is the summation of the square of the stochastic
utilities. Ztot could lead to incorrect estimation of the optimal actions. Let’s assume that, for action a,
Z1(s, a) = 2 for 100% of the time; for action b Z1(s, b) = 3 for 50% of the time and Z1(s, b) = 0
for 50% of the time. Clearly EZ1(s, a) = 2 and EZ1(s, b) = 1.5. If Ztot and Zi satisfy the DIGM the-
orem, then the optimal action for Ztot should be (a, a) = (arg maxEZ1(τ, u), arg maxEZ2(τ, u)).
However, EZ2

1 (τ, a) = 4 and EZ2
1 (τ, b) = 4.5. arg maxEZtot = (b, b) rather than (a, a)

A.2 Experimental Results

A.2.1 Experimental Setup

We adopt the PyMARL [3] implementation of QMIX,VDN, QAtten, QTran, OW QMIX, CW QMIX,
QPlex, and DMIX from their open-source repositories234. Their code are released under the Apache
License V2.0. Their hyper-paramters are the same as that in PyMARL. ResQ is designed based on
PyMARL as well. All the algorithms is trained with 1 rollout process for 2 million steps (the default
setup for Weighted QMIX). At each 10,000 training step, the algorithm is tested on test episodes
to evaluate their performance. For ResQ, the RMSProp optimizer (lr = 1e−3) is used. The batch
size and buffer size are 32 and 5,000, respectively. In the matrix game and SMAC, QMIX is chosen
as the main function Qtot. Qtot has 32 hidden dimensions, equiped with 2 hypernets, each with 64
dimensions. In predator-predy, VDN is chosen as Qtot. The ε used in ε−greedy annealed from 1 to
0.05 within 100K steps. TD lambda is used, and λ = 0.6. All the experiments are ran within a local
cluster. Each experiment is ran within a NVIDIA 3090 GPU.

A.2.2 A one-step Matrix Game

Table 1 show the detailed factorization results of the one-step pay-off matrix (depicted in Figure 1).

Table 2 shows another difficult pay-off matrix. In this matrix, only ResQ and QTran can recover the
optimal action, the other algorithms cannot.

2https://github.com/oxwhirl/pymarl
3https://github.com/oxwhirl/wqmix
4https://github.com/wjh720/QPLEX
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Table 1: The Qjt, Qtot, V , and Adv of different methods

Q1

Q2 0.108 (A) -0.300 (B) 0.106 (C)

0.108(A) 8.03 -12.00 -11.99
-0.300(B) -12.00 0.00 0.00
0.106(C) -12.00 0.00 7.87

(a) ResQ: Q1, Q2, Qjt

u1

u2 A B C

A 8.03 7.50 8.02
B 7.50 6.97 7.50
C 8.02 7.50 8.02

(b) ResQ: Qtot.

u1

u2 A B C

A 0 -19.51 -20.04
B -19.48 -6.96 -7.50
C -20.00 -7.50 -0.16

(c) ResQ: wrQr .

u1

u2 A B C

A 8.00 4.67 7.98
B 4.88 1.55 4.86
C 7.99 4.65 7.97

(d) QTran: Qjt =
∑n

i=1 Qi + V

u1

u2 A B C

A 6.74 3.62 6.73
B 3.41 0.30 3.40
C 6.71 3.60 6.71

(e) QTran: Qtot =
∑n

i=1 Qi

u1

u2 A B C

A 8.00 -5.04 -5.04
B -5.04 -5.04 -5.04
C -5.04 -5.04 -5.04

(f) CW QMIX: Qtot

u1

u2 A B C

A 6.07 -0.87 6.86
B -0.86 -0.87 -0.16
C 5.49 -0.87 6.29

(g) OW QMIX: Qtot

u1

u2 A B C

A 11.82 -26197 13.80
B -26918 -53128 -26916
C 13.85 -26195 15.83

(h) QPlex: V

u1

u2 A B C

A 3.94 26194 -13.46
B 26915 53140 26928
C -15.06 26208 0

(i) QPlex: Adv

Table 2: Payoff matrix of a one-step matrix game and reconstructed Qjt. Boldface means greedy actions. Red
color indicates wrongly estimated optimal actions, whereas blue color represents the opposite.

u1

u2 A B C

A 2.5 0 -100
B 0 2 0
C -100 -100 3

(a) Game Payoff matrix.

Q1

Q2 -0.04 (A) -0.84 (B) 0.08 (C)

-0.04(A) 2.34 0.15 -99.4
-0.84(B) -0.17 2.11 0.03
0.08(C) -99.4 -99.3 2.98

(b) ResQ: Q1, Q2, Qjt

Q1

Q2 1.79(A) 1.66(B) 1.81(C)

0.89(A) 2.89 2.76 2.91
0.78(B) 2.78 2.65 2.80
1.01(C) 3.01 2.87 3.02

(c) QTran: Q1, Q2, Qjt

Q1

Q2 1.98(A) 1.86(B) 1.99(C)

2.82(A) 1.80 -1.51 -5.78
2.83(B) 1.70 1.79 1.80
2.81(C) -11.32 -11.32 1.79

(d) QPlex: Q1, Q2, Qjt

Q1

Q2 -0.02(A) -0.03(B) -3.35(C)

-0.02(A) 2.73 1.88 -57.38
-0.03(B) 1.82 0.97 -57.38
-4.42(C) -57.38 -57.38 -57.38

(e) CW QMIX: Q1, Q2, Qjt

Q1

Q2 -0.17(A) -2.27(B) -20.31(C)

10.40(A) 1.71 -0.51 -19.49
19.04(B) 19.28 17.07 -2.02
-20.71(C) -19.52 -19.52 -19.52

(f) OW QMIX: Q1, Q2, Qjt

A.2.3 A distributional one-step Matrix Game

We study the representation power of multipe methods for a distributional matrix game. The matrix
game is modified from the matrix depicted in Figure 1. We add a nomral distribution (mean = 0,
std=1) value into all action-value of the matrix. The payoff matrix of the game is depicted in Table 3
(a). All the cells show the mean and the variance of a normal distributed reward. For example, (8,1)
indicates that the mean and the variance of the reward distribution are 8 and 1, respectively.

In this matrix game, all the algorithm are ran through a full exploration ε = 1 for ε-greedy conducted
over 20,000 steps. This setting guarantees the exploration of all possible actions.

As it is observed in Table 3, ResQ/ResZ, and QTRAN can obtain the optimal policy, DMIX, DDN,
CW QMIX, and QPlex learn the second-best policy, and OW QMIX learns a wrong policy.

These result demonstrates the ability of ResQ to factorize difficult state-action value functions
with low approximation error and high sample efficiency. Moreover, we find that ResZ has lower
approximation error than ResQ for this stochastic pay-off matrix.

A.2.4 StarCraft II Multi-Agent Challenge (SMAC)

We study the performance of ResQ and other algorithms on a well known MARL benchmark, the
StarCraft II Multi-Agent Challenge (SMAC). In each environment of SMAC, two teams of agents
fight against each other. One team is controlled by the built-in game artificial intelligence, which is
handcrafted carefully. We choose the highest difficult built-in game script. Another team of agents
are controlled by the decentralized policies learned by the MARL algorithms. Each agent can receive
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Table 3: Payoff matrix of a didactic distributional matrix game and reconstructed Qjt. Boldface means greedy
actions. Red color indicates wrongly estimated optimal actions, whereas blue color represents the opposite.

u1

u2 A B C

A (8, 1) (-12,1) (-12,1)
B (-12,1) (0,1) (0,1)
C (-12,1) (0,1) (7.9,1)

(a) Game Payoff matrix.

Q1

Q2 0.003 (A) -0.007 (B)0.0001 (C)

0.003(A) 8.57 -11.46 -11.43
-0.007(B) -11.42 0.54 0.54
0.0001(C) -11.42 0.55 8.53

(b) ResQ Q1, Q2, Qjt

Z1

Z2 0.68(A) -0.27(B) 0.66(C)

0.68(A) 8.52 -11.59 -11.71
-0.27(B) -11.39 0.53 0.44
0.66(C) -11.35 0.53 8.43

(c) ResZ: E[Ztot],E[Z1],E[Z2]

Q1

Q2 -6.33(A) -0.08(B) 0.04(C)

-6.72(A) -9.48 -9.03 -8.99
-0.09(B) -9.04 0.24 0.67
0.04(C) -9.01 0.66 8.44

(d) DMIX: Q1, Q2, Qjt

Q1

Q2 -6.31(A) -0.00(B) 1.64(C)

-6.34(A) -12.65 -6.34 -4.71
0.07(B) -6.24 0.06 1.70
1.56(C) -4.74 1.56 3.20

(e) DDN: Q1, Q2, Qjt

Q1

Q2 4.49(A) 0.20(B) 4.47

2.12(A) 8.62 4.33 8.60
0.12(B) 8.62 2.33 6.60
2.11(C) 8.61 4.32 8.59

(f) QTran: Q1, Q2, Qjt

Q1

Q2 0.08(A) -134(B) 0.11(C)

0.07(A) 10.19 -8.96 -6.90
-134(B) -7.65 5.55 5.43
0.01(C) -6.02 5.43 10.20

(g) QPlex: Q1, Q2, Qjt

Q1

Q2 -0.57(A) -760.2(B) 0.24(C)

-0.58(A) 4.33 -4.46 4.39
-760.3(B) -4.47 -4.48 -4.47
0.24(C) 4.36 0.48 8.32

(h) CW QMIX: Q1, Q2, Qjt

Q1

Q2 4.58(A) -17.83(B) 3.32(C)

6.73(A) 6.54 -0.30 6.15
-132(B) -0.33 -0.33 -0.33
7.29(C) 6.98 0.10 6.59

(i) OW QMIX: Q1, Q2, Qjt

circular observation around the agent, and attack enemies close-by. In each episode, if the agents
eliminate all the enemies within a limited time, the game episode is counted as won. Otherwise, the
game is counted as a failure. For the SMAC tasks, the agents must learn the policies which maximize
their expected total rewards. The reward of SMAC is based on the damage dealt, enemy agents killed,
and the game won. We adopt the default SMAC reward schema.

The Starcraft II version used in ResQ is 2.4.6.2.69232, which is the same version used in QMIX and
Weighted QMIX. For pymarl2 [4], it used another version SC 2.4.10. As it is indicated in Weighted
QMIX and confirmed by us, "performance is not comparable across versions". We have shown in
Figure 5 (f), ResQ/ResZ perform better than the fine-tuned QMIX [4] for SC2.4.10 in the MMM2
scenario.

We have shown the results for ResQ, ResZ, QPLEX, QTran, QMIX, VDN, DMIX, OW QMIX, and
CW QMIX. We have also evaluated the performance of DDN [2], and REFIL [5]. Their results are
ploted in Figure 1. Due to the poor performance of REFIL, we only evaluate its performance on
the MMM2, MMM, 3s_vs_5z, 1c3s5z, 8m_vs_9m scenarios. As it is shown in the picutre, ResQ
performs better than REFIL and DDN.

Figure 2 depicts the results for three super-hard scenarios (Corridor, 3s5z_vs_3s6z, 6h_vs_8z) of the
SMAC benchmark. As it is shown in the figure, all algorithms perform poorly for these super-hard
scenarios. This indicates that better exploration techniques should be used together with the value
factorization methods.

A.3 Comparison to DMIX, QTRAN, QPlex, and weighted QMIX

In this section, we compare ResQ with DMIX, QTRAN, QPlex, and weighted QMIX.

A.3.1 Larger DMIX

ResQ and ResZ use more parameters than DMIX with the residual functions. By modifying the
dimension of the last layer of the hypernet inside DMIX, we have increased the number of parameters
of DMIX from 85K to 350K, which is bigger than that of ResQ (320K) and that of ResZ(316K). Let’s
denote DMIX with more parameters as DMIX-larger, and test its performance in the MMM2, the
MMM, and the 3s_vs_5z scenarios. The experimental results are depicted in Figure 3. DMIX-larger
performs slightly better than DMIX in the MMM2 scenario but worse than DMIX in the MMM
and the 3s_vs_5z scenarios. ResQ and ResZ performs better than DMIX and DMIX-larger in these
scenarios. This means that the performance improvement of ResQ over DMIX does not come from
the use of more parameters.
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Figure 1: The test win rate of ResQ, DDN and REFIL for the SMAC benchmark.

Figure 2: The test win rate of different algorithms for the SMAC benchmark: Corridor (Left), 3s5z_vs_3s6z
(Middle), and 6h_vs_8z (Right).

Figure 3: The test win rate of ResQ, ResZ, DMIX and DMIX-larger for the SMAC benchmark.

A.3.2 Comparison to QTRAN

We can reformulate QTRAN in the form of ResQ. QTRAN approximates the true value func-
tion Q(τ ,u) via Qtran(τ ,u). Qtran(τ ,u) = Qtot(τ ,u) + wr(τ ,u)V (τ ), where Qtot(τ ,u) =∑

iQi(τi, ui) and wr(τ ,u) = 1. And it must satisfy the inequality condition from 4b of Theorem 1
of QTRAN, which requires that Qtran(τ ,u) ≥ Q(τ ,u) for all non-optimal actions. Thus, QTRAN
could over-estimate state-action value pairs. Further, QTRAN uses MSE loss to implement the
inequality conditions, which could lead to violation of the IGM principle.

ResQ learns Qjt(τ ,u) to approximate the state-action value function Q(τ ,u). Theorem 1 in
ResQ shows that the state-action value function Qjt(τ ,u) satisfy Qjt(τ , ū) ≥ Qjt(τ ,u), where
ū = [ūi]

n
i=1 ūi = argmaxui

Qi(τi, ui). Further, as it is shown in Formula 8 of Theorem 2 in

7



Figure 4: The test win rate of ResQ, Qtot-VDN, Qtot-VDN-MSE, and QTran for the SMAC benchmark.

ResQ, Qjt(τ ,u) = Q(τ ,u) ∀u 6= ū, ResQ can find a Qjt(τ ,u) that matches the sub-optimal
state-actions of Q(τ ,u) closely. QTRAN cannot guarantee that the learned approximated function
Qtran satisfies this property. Further, ResQ uses Qr(τ, u) to model the residual part; it has more
input (i.e., u); it can consider the impact of actions. Thus, ResQ is more flexible than the residual
part V (τ) of QTRAN.

To study the reason why ResQ performs better than QTRAN, We use two variants of ResQ: Qtot-VDN
and Qtot-VDN-MSE. Qtot-VDN uses VDN as the main function same as QTRAN. The difference
between Qtot-VDN between QTran is the residual function, the mask, and the inequality conditions.
Qtot-VDN-MSE uses MSE loss to implement Qr ≤ 0, and it uses VDN as its main function. Their
results are depicted in Figure 4. For MMM2, Qtot-VDN can obtain a win rate of 0.6. The win
rate for QTRAN is 0. For the 8m_vs_9m scenario, Qtot-VDN can obtain a win rate of 0.8. And
QTRAN can obtain a win rate of 0.4. The performance gap does not come from the implementation
of the main function; it comes from the residual function, the mask function, and the inequality
conditions. Further, Qtot-VDN-MSE performs similarly to Qtot-VDN, and it performs better than
QTRAN. This suggests that the performance gap between ResQ and QTRAN does not come from
the implementation of inequality conditions for ResQ.

A.3.3 Comparison to QPlex

ResQ can be viewed as a generalization of QPlex. According to QPlex, QPlex learns a function
Qplex(τ, u) to approximate the state-action value functionQ(τ, u). Qplex(τ, u) = V (τ)+Adv(τ, u),
where V (τ) = maxuQ(τ, u).

According to Formula (11) of the QPlex paper [6], we can rewrite Qplex in the form of ResQ as

Qplex(τ, u) = Qtot(τ, u) + wplex
r (τ, u)Qplex

r (τ, u) (46)

where wplex
r (τ, u) = 1, Qtot(τ, u) =

∑
iQi(τ, ui) and Qplex

r (τ, u) =
∑

i(λi − 1)Ai(τ, ui). Qtot

is implemented as a summation of the utilities, which has limited representation abilities. To ensure
the IGM principle, QPlex places restrictions Ai(τ, ui) = Qi(τ, ui) −maxuiQi(τ, ui) among the
main and the residual function. Different from QPlex, ResQ does not require any relationships among
the main and the residual functions, it only requires that Qr ≤ 0.

In summary, ResQ places fewer restrictions on the relationships between the main and the residual
function than QPlex. And ResQ can use a more expressive neural network to model the main function
than QPlex. Thus, ResQ can model Q value function in a better and more flexible way than QPlex.

A.3.4 Comparison to weighted QMIX

CW/OW QMIX can be viewed as variants of ResQ (see Formula 4 in Section 4). CW/OW QMIX
learns Qwqmix = wtot(τ, u)Qtot(τ, u) + (1 − wtot(τ, u))Qr(τ, u) to approximate the true value
function, where wtot(τ, ū) = 1 and wtot(τ, u) = 0 ∀u 6= ū. They assign high learning priorities to
Qtot, which puts the learning of sub-optimal state-action pairs and Qwqmix in trouble.

A.3.5 Inequality condition implementations

ResQ does not significantly affect by the implementation of the inequality conditions (6b of Theorem
1). We have evaluated the performance of a variant of ResQ, ResQ-MSE, which uses the MSE loss
to implement Qr ≤ 0. For ResQ-MSE, using MSE loss could lead to potential violation of the

8



Figure 5: The test win rate of ResQ and ResQ-MSE for the SMAC benchmark.

inequality condition. We have studied the performance of ResQ-MSE in the MMM2, MMM, and
8m_vs_9m scenarios. The results are depicted in Figure 5. The performance of ResQ-MSE and ResQ
are similar in these three scenarios. This indicates that using MSE loss does not significantly affect
the performance for these two scenarios for ResQ.

A.3.6 Limitations

Knowing the optimal action over Q is computationally intractable, we make approximations to derive
a practical algorithm. It is difficult for ResQ to find the optimal actions for a scenario requiring
highly-coordinated agent exploration. The approximated mask function will fail if the approximated
optimal action differs significantly from the optimal action. In ResQ, we assume that the argmax
operator of Qtot can lead to correct optimal actions. However, this assumption does not always hold.
For a discrete-action environment with a tabular Q value, we think that all state-action values can be
factorized using ResQ if the masking function can find the correct optimal action. As we use neural
networks to represent states and actions, the approximation error of neural networks can interact with
the error of the approximated argmax operator. This may make ResQ fail. We think that combining
efficient-exploration approaches (e.g., MAVEN) with ResQ can make the mask function more robust
than using ResQ alone.
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