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Abstract

Treatment effect estimation is a fundamental problem in causal inference. We
focus on designing efficient randomized controlled trials, to accurately estimate the
effect of some treatment on a population of n individuals. In particular, we study
sample-constrained treatment effect estimation, where we must select a subset of
s ⌧ n individuals from the population to experiment on. This subset must be
further partitioned into treatment and control groups. Algorithms for partitioning
the entire population into treatment and control groups, or for choosing a single
representative subset, have been well-studied. The key challenge in our setting is
jointly choosing a representative subset and a partition for that set.
We focus on both individual and average treatment effect estimation, under a linear
effects model. We give provably efficient experimental designs and corresponding
estimators, by identifying connections to discrepancy minimization and leverage-
score-based sampling used in randomized numerical linear algebra. Our theoretical
results obtain a smooth transition to known guarantees when s equals the population
size. We also empirically demonstrate the performance of our algorithms.

1 Introduction

Experimentation has long been held as a gold standard for inferring causal effects since one can
explicitly enforce independence between treatment assignment and other variables which influence
the outcome of interest. We consider the potential outcomes framework [37, 40], where each
individual is associated with a control and treatment value (also called the potential outcomes) and
based on the treatment assignment, we can observe only one of these values. Efficient designs of
experimentation for estimating individual treatment effects which measure the difference between
treatment and control values for each individual, and the average treatment effect which measures
the average individual treatment effect has been well-studied [35]. In the absence of assumptions
on the functional form of the potential outcomes, the minimax optimal approach for conducting an
experiment is to assign individuals to treatment or control completely at random, without consideration
of baseline covariates (features) [25]. However, by considering covariates for each individual, and
using additional assumptions of smoothness, substantial gains can be made in terms of the variance
of the treatment effect estimate via alternative assignment procedures. The most common approach
attempts to minimize imbalance, i.e., the difference between the baseline covariates in the treatment
and control groups [6, 25, 35].

While experimental designs that minimize imbalance increase the power of an experiment for a given
pool of subjects, there are many practical applications where the experimenter wishes to minimize
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the total number of subjects who are placed into the experiment. For example, in medicine, clinical
trials may carry nontrivial risk to patients. Within industrial applications, experiments may carry
substantial costs in terms of testing changes, which decrease the quality of the user experience, or
have direct monetary costs.

In this paper, we examine the problem of selecting a subset of s individuals from a larger population
and assigning treatments such that the estimated treatment effect has a small error. We consider two
different estimands: individual treatment effect (ITE) and average treatment effect (ATE).

A bit more formally, we represent the d-covariates of a population of n individuals using X 2 Rn⇥d.
We assume that the treatment and control values, denoted by y1

,y0 2 Rn, are functions of the
covariates, i.e., y1 = f(X,⇣⇣⇣

1) and y0 = g(X,⇣⇣⇣
0) where ⇣⇣⇣0,⇣⇣⇣1 2 Rn are noise vectors. The ITE

for the i
th individual is y1

i � y0
i and ATE is the average of all the ITE values. We further assume

a linear model, i.e., the functions f, g are linear in X and ⇣⇣⇣
1
,⇣⇣⇣

0. The goal is to pick a subset of s
individuals and partition this subset into control and treatment groups. For an individual i in the
treatment group, we measure y1

i , and for an individual j in the control, we measure y0
j . From this

small set of measurements, we seek to estimate the ITE or ATE over the full population.

Without parametric assumptions, ITE estimation is not feasible [43]. We focus on linear models in
particular, since they are important in developing theory. E.g., in the literature on optimal designs in
active learning, much of the foundational theory is built around linear models. Identifying estimators
based on linearity assumptions is an active area of study in the causal inference literature [20, 50].

Our setup is similar to active learning [42], where the goal is to minimize the number of individual
labels that we access for solving linear regression or other downstream tasks. The key difference
is that we must select both a subset of individuals, and for each i, can measure only one of two
labels: y1

i or y0
i . In particular, ITE estimation can be thought of as solving two simultaneous active

linear regression problems – one for the treatment outcomes and one for the control outcomes. Thus,
standard active learning-based approaches, such as [11, 12, 34], fall short. Even when s equals the
population size n, i.e., when active learning becomes trivial, our problem does not. We must still
pick a partition of the full population into treatment and control groups. Overall, sample constrained
treatment effect estimation by designing efficient randomized controlled trials has received little
attention, compared to various approaches that use observational data, such as [24, 39, 46].

Our Contributions. For ITE estimation, we propose an algorithm using leverage score sampling [51],
which is a popular approach to subset selection for fast linear algebraic computation. For ATE
estimation, we employ a recursive application of a covariate balancing design [20]. We provide a
theoretical analysis in terms of root mean squared error (ITE) and deviation error (ATE).

Recall that we assume the treatment and control values are linear functions of the covariates plus
Gaussian noise, i.e., y1 = X���

1 + ⇣⇣⇣
1 and y0 = X���

0 + ⇣⇣⇣
0 where ⇣⇣⇣1,⇣⇣⇣0 2 Rn have i.i.d. mean zero,

variance �
2 Gaussian entries, and ���

1
,���

0 2 Rd are coefficient vectors.

For ITE estimation, we give a randomized algorithm that selects ⇥(d log d) individuals in expectation,
using leverage scores, which measure the importance of an individual based on their covariates. Our
algorithm obtains, with high probability, root mean squared error O

⇣p
log d/n ·(

�����1
��+
�����0

��)+�

⌘

(see Corollary 3.7). We argue that this is optimal up to constants and a
p
log d factor, even for

approaches that experiment on the full population.

The key challenge in achieving this bound is to extend leverage scores to our simultaneous linear
regression setting, ensuring that we do not share samples across the treatment and control effect
estimation problems. To do this, we introduce a smoothed covariate matrix, whose leverage scores
are bounded. This ensures that, when applying independent leverage score sampling, with high
probability few individuals are randomly assigned to both control and treatment, and thus removing
such individuals from one of the groups does not introduce too much error.

For ATE estimation we give a randomized algorithm that selects at most s individuals for treat-
ment/control assignment and obtains an error of eO

�
�/

p
s+ (

�����1
��+

�����0
��)/s

�
, where eO(·) hides

logarithmic factors (see Theorem 4.3). The error decreases with increasing values of s and when
s = n, it matches state-of-the-art guarantees due to Harshaw et al. [20].

Our algorithm for ATE estimation is based on covariate balancing. This is a popular approach where
one attempts to assign similar individuals to the treatment and control groups, to ensure that the
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observed effect is attributed to the administered treatment alone. Harshaw et al. [20] designed an
algorithm by minimizing the discrepancy of an augmented covariate matrix, which achieves low
ATE estimation error. To extend their approach to our setting, first, we need to select a subset of s
individuals that are representative of the entire population, and then balance the covariates. Uniform
sampling or importance sampling techniques give high error here. Instead, we employ a recursive
strategy, which repeatedly partitions the individuals into two subsets by balancing covariates, and
selects the smaller subset to recurse on, until we have selected at most s individuals.

We observe that our techniques for ITE and ATE estimation should extend to the setting when the
outcomes are non-linear functions of the covariates, which are linear in some higher-dimensional
kernel space. This is immediate for our discrepancy minimization design for ATE, which only
requires knowing the pairwise inner products of the covariate vectors. For ITE estimation, leverage
score sampling for kernel ridge regression [3] is most likely applicable. Extensions to broader classes
of non-linear models are beyond the scope of this work, but they are an interesting future direction.

Finally, in Section 5, we provide an empirical evaluation of the performance of our ITE and ATE
estimation methods, comparing against uniform sampling and other baselines on several datasets. Our
results suggest that our techniques can help reduce the costs associated with running a randomized
controlled trials substantially using only a small fraction of the population.

Other Related Work. For ATE estimation, the most well-studied approaches to experiment design
are covariate balancing and randomization. A variety of design techniques have been studied based
on these approaches, such as blocking [18], matching [23, 45], rerandomization [30, 35], and op-
timization [25]. Using observational data, treatment effect estimation using covariate regression
adjustment [31] and various active learning-based sampling techniques have gained recent atten-
tion [24, 38, 46]. Compared to ATE, estimating ITE is significantly harder and has received attention
only recently using machine learning methods [7, 43, 49]. There has been a lot of recent work on
efficient experimental designs to minimize experimental costs, in various domains, such as causal
discovery [1, 2, 16, 17, 28, 44], multi-arm bandits [4, 27, 36], and group testing [9, 10, 15].

2 Preliminaries

Notation. We use bold capital letters, e.g., X to denote matrices and bold lowercase letters, e.g., y to
denote vectors. We use X[i, :] and X[:, j] to denote the i

th row and j
th column of X respectively,

which we always view as column vectors. The i
th largest singular value of X is denoted by �i(X).

For any vector x, the Euclidean norm or the `2-norm is denoted by kxk.

For a population of n individuals, we represent each with an integer in [n] where we denote [n]
def
=

{1, 2, · · · , n}. Each individual j 2 [n] is associated with a treatment and a control value, denoted
y1
j ,y

0
j 2 R+, respectively. The vectors associated with all n treatment and control values are

denoted y1 and y0. Additionally, each individual is associated with a d-dimensional covariate vector.
Combined, they comprise the rows of the covariate matrix X 2 Rn⇥d.

In this paper, we consider the finite population framework, where the potential outcomes of in-
dividuals are fixed and the randomness is only due to treatment assignment [13]. We make the
SUTVA assumption, i.e., the treatment outcome value of any individual is independent of treatment
assignments of others in the population [48].
Assumption 2.1 (Linearity Assumption). Under the linearity assumption, the treatment and control
values are a linear function of the covariates. Formally, for some ���0

,���
1 2 Rd,

y1 = X���
1 + ⇣⇣⇣

1 and y0 = X���
0 + ⇣⇣⇣

0
,

where ⇣⇣⇣1,⇣⇣⇣0 2 Rn are noise vectors, with each coordinate drawn independently from the Gaussian
distribution with zero mean and variance �

2, i.e., N(0,�2). We further assume that X is row-
normalized, i.e., kX[i, :]k  1 8i 2 [n].

Definition 2.2 (Individual Treatment Effect). Given a population of n individuals, the individual
treatment effect (ITE) of j 2 [n] is the difference between the treatment and control values:

ITE(j) def
= y1

j � y0
j .
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Definition 2.3 (Average Treatment Effect). Given a population of n individuals, the average treatment
effect (ATE), denoted by ⌧ , is the average individual treatment effect:

⌧
def
=

1

n

X

j2[n]

ITE(j) =
1

n

X

j2[n]

y1
j � y0

j .

Definition 2.4 (Root Mean Squared Error). For a set of estimated individual treatment effects, dITE(j)
for j 2 [n], the root mean squared error (RMSE) is defined as:

RMSE def
=

1p
n
·
���dITE(j)� ITE(j)

��� .

Definition 2.5 (Leverage Score). Given a matrix X 2 Rn⇥d, the leverage score of jth row X[j, :],
denoted by `j(X), is defined as:

`j(X)
def
= X[j, :]T (XTX)

+
X[j, :],

where + denotes the Moore–Penrose pseudo-inverse.

3 Individual Treatment Effect Estimation

We now describe our algorithm for ITE estimation. The algorithm identifies a subset of the population
to experiment on, using importance based sampling techniques, that are well-studied in randomized
numerical linear algebra [51]. Missing proof details in this section are presented in Appendix A.1.

Overview of our approach. Under the linearity assumption (Assumption 2.1), we can reformulate
the problem of estimating the ITE for every individual as simultaneously solving two linear regression
instances: one for control and one for treatment, i.e., we regress y0

,y1 on X. However, there are two
challenges: 1) we would like to solve these regression problems using measurements from just a small
subset of s individuals and 2) we only have access to either the control or treatment measurement y0

j

or y1
j for any individual in this set.

To tackle the first challenge, we use a sampling technique based on the importance of each row
in X, captured via its leverage score (Defn. 2.5). Intuitively, we want to select s individuals (or
equivalently rows) that capture the entire row space of X and use them to estimate the ITE of all
other individuals. Leverage scores capture the importance of a row in making up the row space. E.g.,
if a row is orthogonal to all the other rows, it’s leverage score will be the maximum value of 1.

Unfortunately, if we apply leverage score sampling independently to the regression problems for y0

and y1, rows with high leverage leverage scores may be sampled for both instances. This presents
a problem, since we can only read at most one of y0

j or y1
j . To mitigate this issue, we construct

a smoothed matrix X⇤, which consists of X projected onto its singular vectors with high singular
values. Intuitively, this dampens the effects of high leverage score ‘outlier’ rows that don’t contribute
significantly to the spectrum of X. Formally, we prove that the maximum leverage score of X⇤ is
bounded, which let’s us solve our two regression problems via independent sampling. There will be
few repeated samples across our subsets, which introduce minimal error.

3.1 Leverage Score Sampling

For some � � 0, to be fixed later, we define a smoothed matrix for X, the projection onto singular
vectors with high singular values, as follows:
Definition 3.1 (Smoothed matrix). Given X 2 Rn⇥d with singular value decomposition X =

U⌃VT , let �⇤ be the set of indices corresponding to singular values greater than p
�, i.e., �⇤ def

= {i |
�i(X) � p

�}; we denote d
0 def
= |�⇤|. Let ⌃⇤ = ⌃(�⇤

,�⇤) denote the principal sub-matrix of
⌃ associated with these large singular values. Similarly, let U⇤ 2 Rn⇥d0

,V⇤ 2 Rd⇥d0
be the

associated column sub-matrices of U and V. Then, we define:

X⇤ def
= U⇤⌃⇤V⇤T

.
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Sampling Matrix. Our algorithm will sample individuals, corresponding to rows of the smoothed
matrix of X, i.e., X⇤, independently – the ith row is included in the sample with some probability ⇡⇡⇡i.
Let the set of rows sampled be denoted by S. We can associate a sampling matrix W with S. The jth
row of W is associated with the jth element in the set S (under some fixed order). If the jth element
in S is the row for individual i for some i 2 [n], then, W[j, :] is equal to ei/

p
⇡⇡⇡i. Here, ei 2 Rn

denotes the i
th standard basis vector. In this way, WX⇤ consists of the subset of rows sampled in

S, reweighted by the inverse squareroot of their sampling probabilities, which is necessary to keep
expectations correct in solving the linear regression.

Algorithm 1 SAMPLING-ITE

Input: Smoothed covariates X⇤ 2 Rn⇥d, sampling probabilities ⇡⇡⇡ 2 [0, 1]n.
Output: Estimates for ITE(j) for each individual j 2 [n].

1: Add each j 2 [n] to set S0 independently, with prob. ⇡⇡⇡j .
2: Add each j 2 [n] to set S1 independently, with prob. ⇡⇡⇡j .
3: Construct sampling matrix W0 from S0 using probabilities ⇡⇡⇡.
4: Construct sampling matrix W1 from S1 \ S0 using probabilities ⇡⇡⇡(1� ⇡⇡⇡).
5: Let e���

i
= argmin���2Rd

��WiX⇤��� �Wiyi
��2 for i = 0, 1.

6: For each j 2 [n], let dITE(j) be the jth entry of the vector X⇤e���
1
�X⇤e���

0
.

7: return dITE(j) 8j 2 [n].

Algorithm SAMPLING-ITE. We perform row sampling twice, with probabilities proportional to the
leverage scores of X⇤, to construct two sets S0

, S
1. See the discussion below for the exact definition

of the sampling probabilities ⇡⇡⇡i, which are proportional to the leverage scores of X⇤. These two sets
are used to estimate the vectors y0 and y1, respectively. It is possible that a row gets included in both
S
0 and S

1. In that case, we simply remove the row from S
1. As a result, jth row is included in S

1

with probability ⇡⇡⇡j · (1� ⇡⇡⇡j) for every j 2 [n]. We construct sampling matrices W0 and W1 using
probabilities ⇡⇡⇡ and ⇡⇡⇡(1 � ⇡⇡⇡) respectively. Finally, in Algorithm 1, we solve the following linear
regressions, for i = 0, 1 separately:

e���
i
= arg min

���2Rd

��WiX⇤
��� �Wiyi

��2

Our estimate for each ITE(j), denoted by dITE(j) is set to j
th entry of the vector X⇤e���

1
�X⇤e���

0
.

Observe that by construction, S0 \ S
1 is empty. This ensures that we have access to only one of y0

j

or y1
j for any individual j in solving the above two subsampled regression problems.

We note that in Algorithm 1, we could remove j from one of S0, S1, or with equal probability from
either of the two sets, and obtain the exact same guarantees.

3.2 Theoretical Guarantees

First, we bound the error due to sampling. Critically, we show that the leverage scores of X⇤, and in
turn the probabilities ⇡⇡⇡, are bounded by 1/�. Thus, the sampling probabilities for S1

, ⇡⇡⇡(1� ⇡⇡⇡) are
not too far from ⇡⇡⇡ itself.

As we assume the row norms of X are bounded by 1, the row norms of X⇤ are also bounded. Thus,
there can be no rows in X⇤ that are nearly orthogonal to all other rows – i.e., there can be no rows
with very high leverage scores. Such rows would lead to small singular values. However, we know
that the smallest singular value of X⇤ is at least p�. In particular, we prove:
Claim 3.2. `j(X⇤)  1/�, for all j 2 [n].

Setting ⇡⇡⇡. It is well known that if we sample rows of X⇤ with probabilities ⇡⇡⇡ proportional to the
leverage scores, we will obtain a (1± ✏) relative error approximation for linear regression [41]. The
result of Sarlos [41] applies to sampling s rows with replacement, each equal to j with probability
⇡⇡⇡j/ k⇡⇡⇡k. It is not hard to observe that it extends to the variant where each row is included in the
sample independently with similar probability. Therefore, we have:
Lemma 3.3 (Follows from [41]). For X 2 Rn⇥d, y 2 Rn, let S ✓ [n] include each j 2 [n]
independently with probability ⇡⇡⇡j satisfying ⇡⇡⇡j � min

�
1, `j(X) · c · [log(rank(X)) + 1

�✏ ]
 

for
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some large enough constant c. Let W 2 R|S|⇥n be a sampling matrix that includes row ej/
p
⇡⇡⇡j

if j 2 S, where ej 2 Rn is the j
th standard basis vector. Let e��� = argmin���2Rd kWX��� �Wyk2 .

Then, E[|S|] =
Pn

j=1 ⇡⇡⇡j and with probability � 1� �:
���Xe��� � y

���  (1 + ✏) ·min
���

kX��� � yk .

If the ⇡⇡⇡j’s are within constants of the required bound, E[|S|] = O
�
d log d+ d

✏�

�
.

Note that the bound on E[|S|] follows from the well known fact that the sum of leverage scores, is
equal to the rank, i.e.,

Pn
j=1 `j(X) = rank(X)  d [51].

The sampling probabilities are set to ⇡⇡⇡j = min {1, `j(X⇤) · c0 · [log(rank(X⇤)) + 30/✏]} for some
constant c0 � 2c, where c is the constant in Lemma 3.3. Thus, by the lemma, we will have, with
probability � 29/30,

���X⇤e���
0
� y0

���  (1 + ✏)
��X⇤

���
0 � y0

�� .

It remains to show that we will have a similar guarantee for the control group. The rows in S
1 are

included independently with probability ⇡⇡⇡j · (1� ⇡⇡⇡j). If we can prove that ⇡⇡⇡j · (1� ⇡⇡⇡j) � ⇡⇡⇡j

2 , then
Lemma 3.3 will still apply, since we have set c0 = 2c. To do so, it suffices to argue that ⇡⇡⇡j  1/2 by
setting the parameters appropriately.
Claim 3.4. If � = 4c0 max {log(rank(X⇤)), 30/✏} and⇡⇡⇡j = min{1, `j(X⇤) ·c0 · [log(rank(X⇤))+
30/✏]}, we have ⇡⇡⇡j  1/2 for every j 2 [n].

Proof.

⇡⇡⇡j  `j(X
⇤) · c0 · [log(rank(X⇤)) + 30/✏]  1/� · c0 · [log(rank(X⇤)) + 30/✏] (Claim 3.2)

 c0[log(rank(X⇤)) + 30/✏]

4c0 max {log(rank(X⇤)), 30/✏}  1

2
.

In Appendix A.1, we argue that using the smoothed matrix X⇤ introduces an error of p�. Combining
all of them, we have the following corollary:
Corollary 3.5. Suppose � and ⇡⇡⇡j are set as in Claim 3.4, for some sufficiently large constant c0.
Then, Algorithm SAMPLING-ITE satisfies, for i = 0, 1, with probability at least 14/15:

���X⇤e���
i
� yi

���  (1 + ✏) ·
�p

�
�����i
��+

��⇣⇣⇣i
��� for i = 0, 1.

RMSE Guarantees. The root mean squared error (Defn. 2.4) for the ITE estimates is given by:

RMSE =
1p
n

���(X⇤e���
1
�X⇤e���

0
)� (y1 � y0)

��� .

By setting ✏ = 120c0d log d/s in Corollary 3.5, we get the following theorem for our Algorithm 1:
Theorem 3.6. Suppose s � 120c0d log d. There is a randomized algorithm that selects a subset
S ✓ [n] of the population with E[|S|]  s, and, with probability at least 9/10, returns ITE estimates
dITE(j) for all j 2 [n] with error:

RMSE = O

⇣r 1

n
max

n
s

d
, log d

o
· (
�����1

��+
�����0

��) + �

⌘
.

For the sake of simplicity of analysis, we used a constant success probability in Theorem 3.6. All
our claims can easily be updated with a general failure probability of �, with a dependence of

p
1/�,

using Lemma 3.3. The corollary below follows immediately from Theorem 3.6.
Corollary 3.7 (Main ITE Error Bound). The root mean squared error obtained by Algorithm 1 is
minimized when s = ⇥(d log d) and is given by:

RMSE = O

⇣r log d

n
· (
�����1

��+
�����0

��) + �

⌘
.
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Our upper bound on RMSE for Algorithm 1 increases with s, if s grows strictly faster than d log d
asymptotically, i.e., s = !(d log d). Therefore, to obtain low error, we set s = c · d log d for some
constant c, even if the sample constraint allows for larger values. We believe this is an artifact of our
analysis. In Section 5, we observe empirically that the error decreases with increasing s.

Remark. We observe that the RMSE bound in Corollary 3.7 is nearly optimal, even for algorithms
that experiment on the full population. The O(�) term cannot be improved by more than constants,
as a consequence of our noise model (see Assumption 2.1). Even if we knew the true ���1 and ���

0, our
RMSE would be O(�).

The term (
�����0

��+
�����1

��)/
p
n is also necessary. Suppose the matrix X is such that all rows, except

row j, are zero vectors. Row j is a standard basis vector, i.e., its ith entry is 1 for some i. Suppose
also that ���1 and ���

0 are both independently set to the same standard basis vector with probability
1/2, and set to zero otherwise. Then, with probability 1/2, ITE(j) = 0 and with probability 1/2,
ITE(j) = ±1. No algorithm which observes just one of y1

j or y0
j can obtain expected error o(1) in

estimating ITE(j). That is, no algorithm can obtain RMSE o(1/
p
n) = o

�
(
�����0

��+
�����1

��)/
p
n
�
.

4 Average Treatment Effect Estimation

In this section, we describe our approach for estimating the average treatment effect, under the sample
constraint, by building upon a recent work on efficient experimental design by Harshaw et al. [20].
Missing details from this section are collected in Appendix A.2.

Horvitz-Thompson Estimator. Suppose S+ ✓ [n] is the population assigned to the treatment group
and S� = [n] \ S+ is the remaining population, i.e., the control group. A well-studied estimator for
estimating the average treatment effect is the Horvitz-Thompson estimator [22], denoted by b⌧ . If
every individual is assigned to S+ (or S�) with probability 0.5, then, b⌧ is defined as follows:

b⌧ =
2

n

 
X

i2S+

y1
i �

X

i2S�

y0
i

!
.

Algorithm 2 RECURSIVE-COVARIATE-BALANCING

Input: Covariate matrix X 2 Rn⇥d, number of experiments to be run s.
Output: Estimate for ATE.

1: Set t = 1,Zt := X, nt = n.
2: while True do
3: Z+

t ,Z
�
t  GRAM-SCHMIDT-WALK(Zt, �

0) where �0 = log(16 log(n/s)).
4: if nt  s then
5: break
6: else if size(Z+

t ) � size(Z�
t ) then

7: Set Zt+1  Z�
t and nt+1  size(Z�

t ).
8: else
9: Set Zt+1  Z+

t and nt+1  size(Z+
t ).

10: end if
11: t t+ 1
12: end while
13: Use Z+

t ,Z
�
t to construct the ATE estimator as: b⌧s = 2t/n ·

⇣P
j2Z+

t
y1
j �

P
j2Z�

t
y0
j

⌘
.

14: return b⌧s.

Harshaw et al. [20] present an experimental design based on the Gram-Schmidt-Walk algorithm for
discrepancy minimization [8]. Their Gram-Schmidt-Walk design produces a random partition of the
population with a good balance in every dimension, i.e., control and treatment groups have similar
covariates. For the Horvitz-Thompson estimator, they give a tradeoff between covariate balancing
and robustness (estimation error). Formally, they obtain:
Lemma 4.1 (Proposition 3 in [20]). For all � > 0, with probability at least 1 �
2 exp

⇣
��2n

8L

⌘
, the Gram-Schmidt-Walk design satisfies: |b⌧ � ⌧ |  �, where L =

2
n min���2Rd

✓���y1+y0

2 �X���

���
2
+ k���k2

◆
.
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Overview of RECURSIVE-COVARIATE-BALANCING. Our main idea in Algorithm 2 is to partition
the population using the Gram-Schmidt-Walk design (GSW) recursively until the total size of
population that we can experiment on reduces to s. In each recursive call, we start by partitioning the
available individuals Zt into treatment and control groups, denoted by Z+

t ,Z
�
t using GSW. Next,

we identify the smaller of these two subsets, say Z+
t and recurse on Z+

t . We stop after k recursive
calls when there are only s individuals to experiment on, i.e., |Z+

k [ Z�
k |  s. Finally, we construct

our estimator b⌧s, similar to the Horvitz-Thompson estimator, by scaling the treatment and control
contributions due to Z+

k and Z�
k using a factor 2k.

We note that our experimental design ensures that every individual is assigned to treatment or control
with equal probability. This implies that on expectation, the sizes of the treatment and control groups
are equal (for every partitioning). However, when we consider a particular assignment, it is possible
that the size of the smaller partition is not exactly half of the population. As a result, the total number
of samples used might be smaller by a factor of at most 2.

Theoretical Guarantees. Our analysis approach, inspired by the coreset construction for discrepancy
minimization [26], is based on the observation that if we can obtain good estimates for the contribu-
tions

P
i2[n] y

1
i and

P
i2[n] y

0
i , we obtain a good estimate for ATE (⌧ ). Using the next lemma, we

argue that after a call to GSW algorithm that partitions [n] into the sets S+ and S�, we can obtain
additive approximations of

P
i2[n] y

1
i and

P
i2[n] y

0
i . Our approximations are the contributions of

treatment and control values in S+ and S� scaled appropriately, i.e.,
P

i2S+ 2 ·y1
i and

P
i2S� 2 ·y0

i .

Lemma 4.2. Suppose the Gram-Schmidt-Walk design [20] partitions the population [n] into two
disjoint groups S+ and S�. Under the linearity assumption, with probability 1� 1/3 log(n/s), for
both the control and treatment groups, the following holds:

������

X

j2S+

2yi
j �

X

j2[n]

yi
j

������
 4

p
log(16 log(n/s)) ·

⇣
2�
p
n+

������i
���
⌘

for i = 0, 1.

Building upon the previous lemma, we argue in Theorem 4.3 that the additive approximation errors
obtained from repeated use of GSW in our algorithm RECURSIVE-COVARIATE-BALANCING result
in a low estimation error.
Theorem 4.3 (Main ATE Error Bound). The estimator b⌧s in Algorithm RECURSIVE-COVARIATE-
BALANCING obtains the following guarantee, with probability at least 2/3:

|b⌧s � ⌧ | = O

 
p
log log(n/s) ·

 
�p
s
+

�����1
��+

�����0
��

s

!!
.

Remark. When s = n, the above theorem matches the guarantees obtained by GSW design described
in Lemma 4.1. Moreover, we obtain a better dependence compared to sampling s rows uniformly at
random and using the y1

,y0 values of the sampled rows to estimate the population mean of treatment
and control groups in ATE. An application of standard concentration inequalities or the central limit
theorem, will yield a multiplicative factor increase in one of the error terms, with a dependence of
eO
�
1/s · kXk2 (

�����1
��+

�����0
��)
�
, instead of the eO

�
1/s · (

�����1
��+

�����0
��)
�

obtained by our algorithm,
where kXk2 denotes the spectral norm of X and eO(·) hides the logarithmic factors.

5 Experimental Evaluation

In this section, we provide an evaluation of our algorithms on various semi-synthetic datasets. Missing
details about data generation and additional results are collected in Appendix A.3.

Data Generation. We evaluate our approaches on five datasets: (i) IHDP. This contains data regarding
the cognitive development of children, and consists of 747 samples with 25 covariates describing
properties of the children and their mothers, and whose outcome values are simulated [21, 14]. (ii)
Twins. This contains data regarding the mortality rate in twin births in the USA between 1989-
1991 [5]. Following the work of [32], we select twins belonging to same-sex, with weight less
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than 2kg, resulting in about 11984 twin pairs, each with 48 covariates. We use the post-treatment
mortality outcomes of the twins as potential outcomes. (iii) LaLonde. This contains data regarding
the effectiveness of a job training program on the real earnings of an individual after completion of
the program [29], which is also the outcome value. The corresponding covariate matrix contains
445 rows and 10 covariates per row. (iv) Boston. This is constructed based on the housing prices in
the Boston area [19]. The outcome value for each sample represents the median house price. The
corresponding covariate matrix contains 506 rows and 12 covariates per row. (v) Synthetic. We
construct a covariate matrix X 2 R2000⇥25, using an approach due to [33]. There is a high disparity
in leverage score values in X, similar to what we observe in other datasets. Using a random linear
function on X and adding Gaussian noise, we generate the potential outcomes.

For IHDP and Twins datasets, we use the simulated values for potential outcomes, similar to Shalit et
al. [43] and Louizos et al. [32]. For the Synthetic dataset, we simulate values for the outcomes using
linear functions of the covariate matrix. For Boston, Lalonde datasets, as we have access to only one
of the outcome values, we chose to compare our algorithms for a fixed shift in treatment effect (i.e.,
the true treatment effect is equal to a constant), similar to Arbour et al. [6].

(a) IHDP

(b) Twins

Figure 1: We compare the performance of various
methods for estimating ATE, measured using devia-
tion error on y-axis, against different sample sizes (as
proportion of dataset size) on x-axis.

(a) IHDP

(b) Synthetic

Figure 2: We compare the performance of various
methods for estimating ITE, measured using RMSE
on y-axis, against different sample sizes (as proportion
of dataset size) on x-axis.

Baselines. (i) ATE. We compare the performance of our Algorithm RECURSIVE-COVARIATE-
BALANCING (referred to as ‘Recursive-GSW’) to three baselines: (i) Uniform. We sample s rows
uniformly at random and assign them to treatment and control groups with equal probability. By
scaling the total sum of treatment values from the sampled set by the inverse sampling probability, we
estimate the contribution of treatment values in ATE and follow a similar procedure for the control
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group. (ii) GSW-pop. We use the GSW algorithm to partition the full population and return the
estimate obtained using the Horvitz-Thompson estimator for ATE. (iii) Complete Randomization. We
partition the population into treatment and control using complete randomization, i.e., with equal
probability, and return the estimate obtained using the Horvitz-Thompson estimator for ATE. The last
two baselines are overall n individuals rather than a subset of size s.

(ii) ITE. We compare the performance of our Algorithm SAMPLING-ITE (referred to as ‘Leverage’)
with respect to three baselines: (i) Uniform. We run Algorithm 1 on X and uniform sampling
distribution given by ⇡⇡⇡j = s/n 8j.(ii) Leverage-nothresh. We run Algorithm 1 on X, instead of
X⇤ with the probability distribution ⇡⇡⇡j / `j(X)8j.(iii) Lin-regression. This captures the best linear
fit regression error, i.e., assuming we have access to both y1

,y0, we regress these vectors on X to
obtain ���

1
,���

0, and use the resultant ITE estimates X���
1 �X���

0.

Evaluation. To evaluate the performance of average treatment effect estimation (⌧ ) on the datasets,
we compare the deviation error of the estimator b⌧s, given by |b⌧s � ⌧ | for different sample sizes. To
evaluate the performance of individual treatment effect estimates, we compare the root mean squared
error RMSE (see Defn. 2.4) for different sample sizes.

Results. For every dataset, we run each experiment for 1000 trials and plot the mean using a
colored line. Also, we shade the region between 30 and 70 percentile around the mean to signify the
confidence interval as shown in Figures 1, 2 representing ATE and ITE results respectively.

(i) ATE. For all datasets, we observe that the deviation error obtained by our algorithm labeled as
Recursive-GSW in Figure 1, is significantly smaller than that of Uniform baseline. Surprisingly, for
the IHDP dataset, our approach is significantly better than Complete-randomization, for all sample
sizes, including using just 10% of data. For all the remaining datasets using a sample of size 30%, we
achieve the same error (up to the confidence interval) as that of Complete-randomization. Complete
randomization is one of the most commonly used methods for experimental design and our results
indicate a substantial reduction in experimental costs. For IHDP dataset, a sample size of about 10%
of the population is sufficient to achieve a similar error as that of GSW-pop. For the remaining datasets,
we observe that for sample sizes of about 30% of the population, the deviation error obtained by our
algorithm is within the shaded confidence interval of the error obtained by GSW-pop. Therefore, for a
specified error tolerance level for ATE, we can reduce the associated experimental costs using just a
small subset of the dataset using our algorithm.

(ii) ITE. For all sample sizes, we observe that the RMSE obtained by our algorithm labeled as
Leverage in Figure 2, is significantly smaller than that of all the other baselines, including Uniform
and Leverage-nothresh. E.g., we observe that when the sample size is 20% of the population in
IHDP dataset, the error obtained by Leverage is at least 50% times smaller than that of Uniform and
Leverage-nothresh. For the Synthetic dataset, the error obtained by Leverage is extremely close to
that of the error due to the best linear fit, Lin-regression (see the zoomed in part of the figure). Similar
to ATE results, our algorithms result in a reduction of experimental costs for ITE estimation using
only a fraction of the dataset.

6 Conclusion

We study the sample constrained treatment effect estimation problem and give efficient algorithms
for both ITE and ATE estimation. Our empirical evaluation shows that our algorithms, using only a
fraction of the data, perform well compared to popular baselines that are widely used and require
running experiments on the entire population. There are several interesting directions for future work.
It would be interesting to study sample constrained treatment effect estimation under interference [47].
For ITE estimation, we leave it as an open question to extend our approach to give an algorithm with
an error growing smaller with s for all values of s  n. Moreover, the

p
log d factor in Corollary 3.7

likely can be improved, using recent work which improves standard leverage score sampling bounds
by a log d factor [11], yielding a bound that is optimal up to constants. For ATE estimation, the
Horvitz-Thompson estimator can include sampling probabilities different from 0.5. It is an interesting
open question to extend our recursive balancing approach when the estimator contains arbitrary
probabilities.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]

We do not foresee any direct negative outcomes of our work. As with all theoretical
work, our results are based on simplified models of the real world, and this is important
to keep in mind. In designing randomized controlled trials using our algorithms, e.g., a
medical study, attempting to select individuals or samples based on an error threshold,
while ignoring other complex factors would be irresponsible.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
Our code is publicly accessible using the following github repository. All the datasets
are already public, and we have provided instructions on all the parameters along with
the experimental setup in Sections 5 and Appendix A.3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
All our datasets are already public.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

https://github.com/raddanki/Sample-Constrained-Treatment-Effect-Estimation

	Introduction
	Preliminaries
	Individual Treatment Effect Estimation
	Leverage Score Sampling
	Theoretical Guarantees

	 Average Treatment Effect Estimation
	Experimental Evaluation
	Conclusion
	Appendix
	Individual Treatment Effect Estimation
	Average Treatment Effect Estimation
	Experimental Evaluation


