
A1 More details of Formulations

A1.1 Representative Subgraph Sampling Schemes

? Node Sampler [25, 24]: P(u) = ||eA:,u||
2, where all nodes are sampled independently based

on the normalized distribution of P. This sampling strategy is logically equivalent to layer-wise
sampling [25].

? Edge Sampler [24]: P(u, v) = 1
deg(u) +

1
deg(v) , where all edges are sampled independently based

the edge distribution above. In our implementation, we utilize the sampled nodes (once contained in
the sampled edges) to induce the subgraph as input, which should include more edges to help boost
the performance.

? Random Walk Sampler [61, 24]: Here, we first sample a subset of root nodes uniformly, based
on which we perform a random walk at a certain length to obtain the subgraph as a batch.

? Graph Partitioner [23, 39]: We first partition the entire graph into clusters with graph clustering
algorithms and then select multiple clusters to form a batch.

A2 Additional Experiment Results

A2.1 Additional Hyperparameter Searching Results

Figure A5: The greedy hyperparameter searching results for other methods.

Table A5: The searched optimal hyperparameters for all tested methods
Category Methods Datasets

Flickr Reddit ogbn-products

Sampling

GraphSAGE [3] LR: 0.0001, WD: 0.0001, DP: 0.5,
EP: 50, HD: 512, #L: 4, BS: 1000

LR: 0.0001, WD: 0.0 DP: 0.2,
EP: 50, HD: 512, #L: 4, BS: 1000

LR: 0.001, WD: 0.0 DP: 0.5,
EP: 50, HD: 512, #L: 4, BS: 1000

FastGCN [25] LR: 0.001, WD: 0.0002, DP: 0.1,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.5,
EP: 50, HD: 256, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 50, HD: 256, #L: 2, BS: 5000

LADIES [26] LR: 0.001, WD: 0.0002, DP: 0.1,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0001 DP: 0.2,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 30, HD: 256, #L: 2, BS: 5000

ClusterGCN [23] LR: 0.001, WD: 0.0002, DP: 0.2,
EP: 30, HD: 256, #L: 2, BS: 5000

LR: 0.0001, WD: 0.0 DP: 0.5,
EP: 50, HD: 256, #L: 4, BS: 2000

LR: 0.001, WD: 0.0001 DP: 0.2,
EP: 40, HD: 128, #L: 4, BS: 2000

GraphSAINT [24] LR: 0.001, WD: 0.0004, DP: 0.2,
EP: 50, HD: 512, #L: 4, BS: 5000

LR: 0.01, WD: 0.0002 DP: 0.7,
EP: 30, HD: 128, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 40, HD: 128, #L: 2, BS: 5000

Decoupling

SGC [27] LR: 0.01, WD: 0.0002,
EP: 100, #L:2, DP: 0.5

LR: 0.01, WD: 0.0001,
EP: 50, #L:2, DP: 0.1

LR: 0.001, WD: 0.0001,
EP: 500, #L:8, DP: 0.1

SIGN [28] LR: 0.001, WD: 0.0002,
EP: 100, HD:256, #L:4, DP: 0.2

LR: 0.01, WD: 0.0002,
EP: 50, HD: 512, #L:8, DP: 0.7

LR: 0.01, WD: 0.0001,
EP: 500, HD:256, #L:4, DP: 0.2

SAGN [29] LR: 0.01, WD: 0.0001,
EP: 20, HD:64, #L:4, DP: 0.7

LR: 0.001, WD: 0.0002,
EP: 50, HD: 256, #L:2, DP: 0.5

LR: 0.001, WD: 0.0,
EP: 500, HD:512, #L:4, DP: 0.5

GAMLP [30] LR: 0.001, WD: 0.0002,
EP: 20, HD:64, #L:2, DP: 0.5

LR: 0.001, WD: 0.0001,
EP: 30, HD: 128, #L:6, DP: 0.5

LR: 0.001, WD: 0.0002,
EP: 500, HD:768, #L:8, DP: 0.7

LP [38, 40]
DT: residual, #Prop: 20, AR: 0.9,

Adj: D�1/2AD�1/2, AS: True, #ML:2
DT: residual, #Prop: 50, AR: 0.9,

Adj: D�1A, AS: True, #ML:2
DT: residual, #Prop: 20, AR: 0.9,

Adj: D�1A, AS: True, #ML:3

A15

A2.2 A Joint Comparison of Effectiveness and Efficiency

To further facilitate a comprehensive understanding of the benchmark results, we provide an illustra-
tion in Figure A6 to jointly compare the effectiveness and efficiency of the methods. An empirical
summary could be found in Section 5.1.

Figure A6: The joint comparison of effectiveness (accuracy) and efficiency (throughput) for sampling-
based and precomputing-based methods.

A2.3 The Hyperparameter Settings for EnGCN

The searched HPs for EnGCN includes learning rate (0.01, 0.001, 0.0001), weight decay (0, 1e-5,
1e-4), dropout (0.2, 0.5, 0.7), epochs (30, 50, 70), hidden dimension (128, 256, 512), batch size (5000,
10000), batch norm (True, False), self learning threshold (↵=0.8, 0.9, 0.95), and number of layers (4,
5, 8). The searching results are shown in Figure A7. The searched HPs that produce the reported
results on Flickr, Reddit, and ogbn-products are shown in Table A6.

Figure A7: The hyperparameter searching results of EnGCN.

Table A6: The searched optimal hyperparameters for EnGCN on Flickr, Reddit, and ogbn-products

Datasets Searched HPs

Flickr lr 0.0001 weight decay 0.0001 dropout 0.2 epoch 70 hidden dimension 256 number of layers 4 batch size 10000 ↵ 0.9
Reddit lr 0.001 weight decay 0 dropout 0.2 epochs 70 hidden dimension 512 number of layers 4 batch size 5000 ↵ 0.95
ogbn-products lr 0.01 weight decay 0 dropout 0.2 epochs 70 hidden dimension 512 number of layers 8 batch size 10000 ↵ 0.8

A2.4 Ablation Study for EnGCN

Ablating Ensembling. Here we provide an ablation study to confirm the effectiveness of ensembling
(inference with majority voting). For ablated models, we directly use the ones after l-hop training,
0 l 3. The experiment results are shown in Table A7. Notably, with majority voting, the
performance is boosted by a large margin on Flickr and also has noticeable improvement on Reddit
and ogbn-products. Besides, we find that the test accuracy of EnGCN after l-hop training keeps
increasing as l grows. This phenomenon is consistent with the empirical results in AdaGCN [56].

Table A7: The test accuracy (%) for ablated EnGCNs.

Category Flickr Reddit ogbn-products

EnGCN after 0-hop training 46.11±0.14 74.51±0.09 61.97±0.08
EnGCN after 1-hop training 46.26±0.17 94.26±0.05 83.48±0.13
EnGCN after 2-hop training 50.00±0.49 95.23±0.03 87.69±0.06
EnGCN after 3-hop training 50.56±0.80 95.28±0.04 87.80±0.33
EnGCN with majority voting 56.43±0.21 97.14±0.03 87.99±0.04

A16

Ablating SLE. Here we provide another simple ablation study to confirm the contribution of SLE to
EnGCN. From another perspective, the results further demonstrate the importance of label propagation
in graph representation learning, especially for large-scale graphs.

Table A8: The accuracy (%) of ablating SLE from EnGCN

Methods Flickr Reddit ogbn-products

EnGCN w.o. SLE 50.22 ± 0.30 96.92 ± 0.10 76.35 ± 0.06
EnGCN 56.43 ± 0.21 97.14 ± 0.03 87.99 ± 0.04

A3 Additional Implementation Details

A3.1 Access and Statistics of Benchmark Datasets

All datasets we used could be accessed through the APIs provided py PyTorch Geometric3 [62]. The
statistics of Flickr, Reddit, and ogbn-products are provided as follows.

Table A9: The statistics of Flickr, Reddit, and ogbn-products

Dataset Nodes Edges Classes splitting (Train/Validation/Test) Task

Flickr 89,250 899,756 7 0.50 / 0.25 / 0.25 Multi-Class Classification
Reddit 232,965 11,606,919 41 0.66 / 0.10 / 0.24 Multi-Class Classification
ogbn-products 2,449,029 61,859,140 47 0.10 / 0.02 / 0.88 Multi-Class Classification

A3.2 Implementation details of testing GPU memory and throughput

Here we provide the details of implementation and hyperparameters for the throughput and memory us-
age experiments. Regarding the implementation, we evaluate the hardware throughput based on Chen
et.al. [63]. For the activation memory, we measure it based on torch.cuda.memory_allocated.

Regarding the hyperparameter setting in the throughput and memory usage measurement, we set
the hidden dimension to 128 across different models and datasets. We control the number of nodes
whose embedding requires gradients roughly equal to 5,000 across different models and datasets.
Thus, our method is fair in the sense that we control the number of active nodes per batch in the
same for different methods. We note that for graph-wise sampling-based methods (e.g., ClusterGCN,
GraphSAINT), the number of nodes whose embedding requires gradients equals the number of
nodes retained in the GPU memory. However, for other sampling-based methods (e.g., GraphSAGE,
FastGCN), they need to gather the neighbor embeddings to update the node embedding in the current
batch. These embeddings of nodes that are outside the current batch do not require gradients. We also
want to clarify that the hyperparameter “batch_size” in our script has a different meaning for different
methods. For example, for precomputing methods, a 5,000 “batch_size” means each mini-batch
contains 5,000 input samples (i.e., nodes). For GraphSAINT, “batch_size” means the number of
roots in the random walk sampler. Thus, the number of nodes in each mini-batch roughly contains
“batch_size” ⇥ “walk_length”.

A4 Intended Use
The license of our repository is MIT license. For more information, please refer to https://github.
com/VITA-Group/Large_Scale_GCN_Benchmarking/blob/main/LICENSE. Our benchmark is
for researchers and scientists in graph mining and data science community to propose innovative
methods, especially for large-scale graph training. We implement a number of representative scalable
GNN models, provide several abstract classes for further inheriting, and define a unified training
process for a fair comparison. In our code base, we implement two abstract classes for sampling-based

and precomputing-based methods based on our unified formulations in Section 2 , respectively. One
could build up his/her new sampling-based or precomputing-based GNN models upon the code base
by solely overwriting a few specific functions. For detailed usage including installation, reproduction,
etc., please refer to our documentation in the repository.

3https://github.com/pyg-team/pytorch_geometric

A17

https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking/blob/main/LICENSE
https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking/blob/main/LICENSE
https://github.com/pyg-team/pytorch_geometric

