
Appendix

Notations for set of neurons. We extra define the following notations for the proof. For 0 `
L� 1, i 2 [d`], we use FS(`)

i
to denote the set of all the elements in the vector fS(`)

i
(Eq. (5)):

FS(`)
i

:= {f : f 2 fS(`)
i
}. (19)

And we use P(`) to denote the set of all neurons in `0-th layer i.e., f (`0) defined in Eq. (4), with
0 `0 `:

P(`) := {f : f 2 f (`0), `0 `}. (20)

Activation functions. In Assumption 3.2, we assume the Lipschitz continuity and smoothness for
all the activation functions. In the proof of lemmas, e.g., Lemma B.1 and B.2, we only use the fact
that they are Lipschitz continuous and smooth, as well as bounded by a constant �0 > 0 at point
0, hence we use �(·) to denote all the activation functions like what we do in Assumption 3.2 for
simplicity.

Notations for derivatives. Additionally, in the following we introduce notations of the derivatives,
mainly used in the proof of Lemma B.1 and Lemma B.2.

By definition of feedforward neural networks in Section 2, different from the standard neural networks
such as FCNs and CNNs in which the connection between neurons are generally only in adjacent
layers, the neurons in feedforward neural networks can be arbitrarily connected as long as there is no
loop.

To that end, we define @fS(`)
i
/@f (`0) to be a mask matrix for any `0 < `, i 2 [d`] to indicate whether

the neurons fS(`)
i

appear in f (`0):

@fS(`)

i

@f (`0)

!

j,k

= I
n⇣

fS(`)
i

⌘

k
2 f (`0)

j

o
. (21)

And @f (`)
i /@fS(`)

i
and @f (`)

i /@w(`)
i are standard derivatives according to Eq. (5):

@f (`)
i

@fS(`)
i

=
1q
m(`)

i

⇣
w

(`)
i

⌘T
(�(`)

i)0(f̃ (`)
i),

@f (`)
i

@w(`)
i

=
1q
m(`)

i

⇣
fS(`)

i

⌘T
(�(`)

i)0(f̃ (`)
i).

We give a table of notations that will be frequently used (See Table 1). The same notations will be
used for ResNets and CNNs with extra subscripts res and cnn respectively.

A Examples of feedforward neural networks

Here we show that many common neural networks are special examples of the feedforward neural
networks in Definition 2.2.

Fully-connected neural networks. Given an input x 2 Rd, an `-layer fully-connected neural
network is defined as follows:

f (0) = x,

f (`) = �

✓
1

p
m`�1

W (`)f (`�1)

◆
, 8` 2 [L� 1], (22)

f(W;x) := f (`) =
1

p
m`�1

W (`)f (`�1),

14

Table 1: Table of notations
Symbol Meaning

f (`) Vector of neurons in `-th layer
d` Number of neurons in `-th layer, i.e., length of f (`)

fS(`)
i

Vector of in-coming neurons of f (`)
i

w
(l)
i Weight vector corresponding to in-coming edges of f (`)

i

m(l)
i Number of in-coming neurons of f (`)

i , i.e., length of fS(`)
i

and w
(l)
i

�(l)
i Activation function on f̃ (`)

i

w
(l) Weight vector corresponding to all incoming edges toward neurons at layer `

FS(`)
i

Set of all the elements in the vector fS(`)
i

(Eq. (19))
P(`) Set of all neurons in f (`0) with 0 `0 ` (Eq. (20))
id`1,i`2,j

Index of f (`2)
j in the vector fS(`1)

i

where each f (`) is a m`-dimensional vector-valued function, and W :=
�
W (1), ...,W (`)

�
, W (`) 2

Rm`+1⇥m` , is the collection of all the weight matrices. Here �(·) is an element-wise activation
function, e.g., sigmoid function.

For FCNs, the inputs are the 0-th layer neurons f (0) = x and the outputs are the `-th layer neurons
f (`), which have zero in-degrees and zero out-degrees, respectively. For each non-input neuron, its
in-degree is the number of neurons in its previous layer, m`�1; the summation in Eq. (2) turns out
to be over all the neurons in the previous layer, which is manifested in the matrix multiplication of
W (`)f (`�1). For this network, the activation functions are the same, except the ones on input and
output neurons, where identity functions are used in the definition above.

DenseNets [9]. Given an input x 2 Rd, an `-layer DenseNet is defined as follows:

f (0) = f (0)
temp = x,

f (`) = �

0

@ 1qP`�1
l0=0 m`0

W (`)f (`�1)
temp

1

A , (23)

f (`)
temp =

⇣
f (`�1)
temp

⌘T
,
⇣
f (`)

⌘T
�T

, 8` 2 [L� 1],

f(W;x) := f (`) =
1qPL�1
`0=0 m`0

W (`)f (`�1)
temp , (24)

where W =
�
W (1), ...,W (`)

�
is the collection of all the weight matrices. Here �(·) is an element-

wise activation function and for each ` 2 [L], W (`) 2 Rm`⇥
P`�1

`0=0
m`0 .

The DenseNet shares much similarity with the fully-connected neural network, except that each
non-input neuron depends on all the neurons in previous layers. This difference makes the in-degree
of the neuron be

P`�1
`0=0 m`0 .

Neural networks with randomly dropped edges. Given a network f built from a DAG, for any
neuron fv , where v 2 V\Vinput, according to Eq. (22), it is defined by

fv = �v(f̃v), f̃v =
1p
in(v)

X

u2Sin(v)

w(u,v)fu.

If each edge (u, v) is randomly dropped with parameter p 2 (0, 1), then the above equation becomes

fv = �v(f̃v), f̃v =
1p
in(v)

X

u2Sin(v)

w(u,v)fu · I{⇠u,v�p},

15

where ⇠u,v is i.i.d. drawn from Bernoulli(p).

To interpret such an architecture, we can simply remove the edges (u, v) in the DAG where ⇠u,v < p.
Then it is not hard to see that the new DAG network corresponds to the network with randomly
dropped edges.

Similarly, for a neural network with randomly dropped edges in multiple layers, we can remove all
the edges whose corresponding ⇠ is less than p. Then the resulting DAG can describe this network
architecture.

We note the similarity of this network with the popularly used dropout layer [20], both of which have
a mechanism of randomly dropping out neurons/edges. However, the major difference is that, neural
networks with dropout layers dynamically remove (or put mask on) neurons/edges during training,
while the networks we considered only here drop edges and are fixed during training.

B Proof of Theorem 3.6

We will first compute the Hessian matrix of the network function then show how to bound the spectral
norm of it.

We denote for each ` 2 [L],

m ` := inf
i2[d`]

m(`)
i , m` := sup

i2[d`]
m(`)

i . (25)

By Assumption 3.5, it is not hard to infer that m` and m ` are also polynomial in m.

Fixing k 2 [d`], to bound kHfkk, we will first bound the spectral norm of the each Hessian block
H(`1,`2)

fk
, which takes the form

H(`1,`2)
fk

:=
@2fk

@w(`1)@w(`2)
, k 2 [d`], `1, `2 2 [L].

Without lose of generality, we assume 1 `1 `2 L and we start with the simple case when
`2 = L.

If `1 = `2 = L, H(L,L)
fk

is simply a zero matrix since fk(w) is linear in w
(`).

If 1 `1 < `2 = L, we will use the following Lemma:
Lemma B.1. Given `0 � 1, for any `0 + 1 ` L, w 2 B(w0, R), and j 2 [d`], we have, with

probability at least 1� exp(�Cf
`,`0 log

2 m),

�����

@f
S(`)
j

@w(`0)

����� = O

0

@ max
`0+1p`

q
m(`)

j
pm p

(logm+R)`
0

1

A = Õ

0

@ max
`0+1p`

q
m(`)

j
pm p

R`
0

1

A , (26)

�����

@f
S(`)
j

@w(`0)

�����
F

= O

✓q
m(`)

j (logm+R)`�1

◆
= Õ

✓q
m(`)

j R`�1

◆
, (27)

where Cf
`,`0 > 0 is a constant.

See the proof in Appendix H.

By Lemma B.1, with probability at least 1� exp(�⌦(log2 m)),

���H(`1,L)
fk

��� =

������
1q
m(`)

k

@fS(`)
k

@w(`1)

������
= O

✓
max

`1+1`L

1
p
m `

(logm+R)`1
◆

= Õ(R`1/
p
m).

For the rest of blocks that 1 `1 `2 L � 1, we will use the following lemma to bound their
spectral norms:

16

Lemma B.2. Given 1 `1 `2 L � 1, for any `2 < ` L, w 2 B(w0, R), and j 2 [d`], we

have, with probability at least 1� exp(�⌦(log2 m)),
�����

@2f̃ (`)
j

@w(`1)@w(`2)

����� = O

max

`1+1p`

1
pm p

(logm+R)`
2

!
= Õ

max

`1+1p`

R`
2

pm p

!
. (28)

See the proof in Appendix I.
Remark B.3. Note that the above results hold for any ` L. When ` = L, f̃ (`)

j = fj which is what
we need to show the transition to linearity of fj . When ` < L, as discussed before, we can regard
f̃ (`)
j as a function of its parameters. We note that f̃ (`)

j with ` < L will also transition to linearity by
applying the same analysis for fj , which is the result of Theorem 3.8.

By letting ` = L in Lemma B.2, for any 1 `1 `2 L � 1, with probability at least 1 �
exp(�⌦(log2 m)),
���H(`1,`2)

fk

��� = O

✓
max
`1`L

1
p
m `

(logm+R)`
2

◆
= O((logm+R)L

2

/
p
m) = Õ(RL2

/
p
m).

Finally by Lemma K.1, the spectral norm of Hfk can be bounded by the summation of the spectral
norm of all the Hessian blocks, i.e.,kHfkk

P
`1,`2

kH(`1,`2)
fk

k. Applying the union bound over the
indices of layers `1, `2, we finish the proof.

C Feedforward neural networks with multiple output

In cases of multiple output neurons, the network function is vector-valued and its Hessian is a
three-order tensor. The spectral norm of Hessian is defined in a standard way, i.e.,

kHf (w)k := sup
kvk=kuk=ksk=1

X

i,j,k

(Hf (w))i,j,k viujsk,

where s 2 Rd` and v, u have the same dimension with w. It is not hard to see that kHf (w)k
d`maxk2[d`] kHfk(w)k.

If the number of output neurons d` is bounded (as in most practical cases), the spectral norm of
the Hessian of f is also of the order Õ(1/

p
m), with high probability, as a direct consequence of

Theorem 3.6.
Corollary C.1. Suppose Assumption 3.1, 3.2 and 3.5 hold. Given a fixed radius R > 0, for all

w 2 B(w0, R), with probability at least 1� exp(�⌦(log2 m)) over the random initialization w0, a

vector-valued feedforward neural network f satisfies

kHf (w)k = Õ

RL2

p
m

!
. (29)

D Feedforward neural networks with skip connections

In this section, we discuss the property of transition to linearity holds for networks with skip
connection.

We formally define the skip connection in the following. We add a skip connection to each neuron
then the neuron functions Eq. (5) become

f (`)
i,res = �(`)

i

⇣
f̃ (`)
i,res

⌘
+ f (A(`,i))

B(`,i),res, f̃ (`)
i,res =

1q
m(`)

i

⇣
w

(`)
i

⌘T
fS(`)

i ,res
, (30)

where 1 ` L � 1 and i 2 [d`]. Here A(`, i) 2 {0, · · · , ` � 1} denotes the layer index of the
connected neuron by skip connection with respect to f (`)

i,res and B(`, i) 2 [dA(`,i)].

17

And for the output layer ` = L, we define

f (L)
i,res = f̃ (L)

i,res =
1q
m(L)

i

⇣
w

(L)
i

⌘T
fS(L)

i ,res
,

where i 2 [dL].

The following theorem shows the property of transition to linearity holds for networks with skip
connections. The proof of the theorem follows the almost identical idea with the proof of Theorem 3.6,
hence we present the proof sketch and focus on the arguments that are new for fres.
Theorem D.1 (Scaling of the Hessian norm for fres). Suppose Assumption 3.1, 3.2 and 3.5 hold.

Given a fixed radius R > 0, for all w 2 B(w0, R), with probability at least 1� exp(�⌦(log2 m))
over the random initliazation of w0, each output neuron fk,res satisfies

��Hfk,res(w)
�� = Õ

RL2

p
m

!
, ` 2 [L], k 2 [d`]. (31)

Proof sketch of Theorem D.1. For each output fk,res, where k 2 [d`], similar to the proof of The-
orem 3.6, we bound the spectral norm of each Hessian block, i.e., @2fk,res

@w(`1)@w(`2) . Without loss of
generality, we assume 1 `1 `2 L.

Similar to Eq.(13), we derive the expression of the Hessian block by definition:

@2fk,res
@w(`1)@w(`2)

=
LX

`0=`2

d`0X

i=1

@2f (`0)
i,res

@w(`1)@w(`2)

@fk,res

@f (`0)
i,res

:=
LX

`0=`2

GL,`0

k,res.

And again by chain rule of derivatives, each GL,`0

k,res can be written as

GL,`0

k,res =
1q
m(L)

k

L�1X

r=`0

X

s:f(r)
s,res2F

S(L)
k

⇣
w

(L)
k

⌘

idL,k
r,s

�0
⇣
f̃ (r)
s,res

⌘
Gr,`0

s,res

| {z }
T1

+
1q
m(L)

k

L�1X

r=`0

X

s:f(r)
s,res2F

S(L)
k

⇣
w

(L)
k

⌘

idL,k
r,s

�0
⇣
f̃ (A(`0,s))
B(`0,s),res

⌘
GA(`0,s),`0

B(`0,s),res

| {z }
T2

+
1q
m(L)

k

X

i:f(`0)
i,res2F

S(L)
k,res

⇣
w

(L)
k

⌘

idL,k
`0,i

0

@�00
⇣
f̃ (`0)
i,res

⌘ @f̃ (`0)
i,res

@w(`1)

@f̃ (`0)

i,res

@w(`2)

!T1

A

| {z }
T3

+
1q
m(L)

k

X

i:f(`0)
i,res2F

S(L)
k,res

⇣
w

(L)
k

⌘

idL,k
`0,i

0

B@�00
⇣
f̃ (A(`0,i))
B(`0,i),res

⌘ @f̃ (A(`0,i))
B(`0,i),res

@w(`1)

0

@
@f̃ (A(`0,i))

B(`0,i),res

@w(`2)

1

A
T
1

CA

| {z }
T4

,

where FS(L)
k,res

:= {f : f 2 fS(L)
k,res

} and idL,k
`0,i := {p :

⇣
fS(L)

k ,res

⌘

p
= f (`0)

i,res}.

Note that the new terms which are induced by the skip connection in the above equation are

T2 =
1q
m(L)

k

L�1X

r=`0

X

s:f(r)
s,res2F

S(L)
k

⇣
w

(L)
k

⌘

idL,k
r,s

�0
⇣
f̃ (A(`0,s))
B(`0,s),res

⌘
GA(`0,s),`0

B(`0,s),res,

18

and

T4 =
1q
m(L)

k

X

i:f(`0)
i,res2F

S(L)
k,res

⇣
w

(L)
k

⌘

idL,k
`0,i

0

B@�00
⇣
f̃ (A(`0,i))
B(`0,i),res

⌘ @f̃ (A(`0,i))
B(`0,i),res

@w(`1)

0

@
@f̃ (A(`0,i))

B(`0,i),res

@w(`2)

1

A
T
1

CA .

These two new terms take the same form with the original two terms i.e., T1 and T3, which are matrix
Gaussian series with respect to the random variables w(L)

k . Therefore, we can use the same method
as T1 and T3 to bound the spectral norm of T2 and T4.

As A(`0, i) < `0 by definition, the bound on T2 and T4 will be automatically included in our recursive
analysis. Then the rest of the proof is identical to the one for feedforward neural networks, i.e., the
proof of Theorem 3.6.

E Feedforward neural networks with shared weights, e.g., convolutional
neural networks

In this section, we consider the feedforward neural networks where weight parameters are shared, e.g.,
convolutional neural networks, as an extension to our result where we assume each weight parameter
we 2 W is initialized i.i.d. We will show that such feedforward neural networks in which the weight
parameters are shared constant times, i.e., independent of the width m, the property of transition to
linearity still holds.

We formally define the networks with shared weights in the following:

f (`)
i,j,cnn = �(`)

i

⇣
f̃ (`)
i,j,cnn

⌘
, f̃ (`)

i,j,cnn =
1q
m(`)

i,j

⇣
w

(`)
i

⌘T
fS(`)

i,j ,cnn
, (32)

where 1 ` L, i 2 [d`]. We introduce new index j 2 [D(`, i)] where D(`, i) denotes the
number of times that weights w(`)

i are shared. Note that the element in fS(`)
i,j ,cnn

is allowed to be 0,
corresponding to the zero padding which is commonly used in CNNs.

We similarly denote the output of the networks f (L)
i,j,cnn by fi,j,cnn.

To see how CNNs fit into this definition, we consider a CNN with 1-D convolution as a simple
example.

Convolutional neural networks Given input x 2 Rd, an `-layer convolutional neural network is
defined as follows:

f (0) = x,

f (`) = �

✓
1p

m`�1 ⇥ p
W (`) ⇤ f (`�1)

◆
, 8l 2 [L� 1],

fi(W;x) =
1p

m`�1 ⇥ d

D
W (`)

[i,:,:], f
(`�1)

E
, 8i 2 [d`], (33)

where W =
�
W (1), ...,W (`)

�
is the collection of all the weight matrices.

We denote the size of the window by p⇥ 1, hence W (`) 2 Rm`⇥m`�1⇥p for ` 2 [L� 1]. We assume
the stride is 1 for simplicity, and we do the standard zero-padding to each f (`) such that for each
` 2 [L� 1], f (`) 2 Rm`⇥d. At the last layer, as f (`�1) 2 Rm`�1⇥d and W (`) 2 RmL⇥m`�1⇥d, we
do the matrix inner product for each i 2 [d`].

Now we show how Eq. (33) fits into Eq. (32). For ` 2 [L � 1], in Eq. (33), each component of
f (`) 2 Rm`⇥d is computed as

f (`)
i,j = �

✓
1p

m`�1 ⇥ p

⌧
W (`)

[i,:,:], f
(`�1)

[:,j�d p�1
2 e:j+d p�1

2 e]

�◆
.

19

Therefore, m(`)
i,j , w

(`)
i and fS(`)

i,j ,cnn
in Eq. (32) correspond to m`�1 ⇥ p, W (`)

[i,:,:] and

f (`�1)

[:,j�d p�1
2 e:j+d p�1

2 e] respectively. For ` = L, m(L)
i,j corresponds to mL�1 ⇥ d and fS(L)

i,j ,cnn
corre-

sponds to f (L�1). Then we can see our definition of networks with shared weights, i.e., Eq. (32)
includes standard CNN as an special example.

Similar to Theorem 3.6, we will show that the spectral norm of its Hessian can be controlled, hence
the property of transition to linearity will hold for f (`)

cnn. The proof of the following theorem follows
the almost identical idea with the proof of Theorem 3.6, hence we present the proof sketch and focus
on the arguments that are new for fcnn.
Theorem E.1. Suppose Assumption 3.1, 3.2 and 3.5 hold. Given a fixed radius R > 0, for all

w 2 B(w0, R), with probability at least 1� exp(�⌦(log2 m)) over the random initliazation of w0,

each output neuron fi,j,cnn(w) satisfies

��Hfi,j,cnn(w)
�� = O

⇣
(logm+R)`

2

/
p
m
⌘
= Õ

⇣
R`

2

/
p
m
⌘
, ` 2 [L], i 2 [d`], j 2 [D(i, `)].

(34)

Proof sketch of Theorem E.1. Similar to the proof of Theorem 3.6, by Lemma K.1, the spectral
norm of Hfi,j,cnn can be bounded by the summation of the spectral norm of all the Hessian blocks,
i.e., kHfi,j,cnnk

P
`1,`2

kH(`1,`2)
fi,j,cnn

k, where H(`1,`2)
fi,j,cnn

:= @2fk
@w(`1)@w(`2) . Therefore, it suffices to

bound the spectral norm of each block. Without lose of generality, we consider the block with
1 `1 `2 L.

By the chain rule of derivatives, we can write the Hessian block into:

@2fi,j,cnn
@w(`1)@w(`2)

=
LX

`0=`2

d`0X

k=1

D(k,`0)X

t=1

@2f (`0)
k,t,cnn

@w(`1)@w(`2)

@fi,j,cnn

@f (`0)
k,t,cnn

:=
LX

`0=`2

GL,`0

i,j,cnn. (35)

For each GL,`0

i,j,cnn, since f (`0)
i,j,cnn = �

⇣
f̃ (`0)
i,j,cnn

⌘
, again by the chain rule of derivatives, we have

GL,`0

i,j,cnn =

d`0X

k=1

D(k,`0)X

t=1

@2f̃ (`0)
k,t,cnn

@w(`1)@w(`2)

@fi,j,cnn

@f̃ (`0)
k,t,cnn

+
1q
m(L)

i,j

X

k,t:f(`0)
k,t,cnn2F

S(L)
i,j,cnn

⇣
w

(L)
i

⌘

idL,i,j
`0,k,t

�00
⇣
f̃ (`0)
k,t,cnn

⌘ @f̃ (`0)
k,t,cnn

@w(`1)

0

@@f̃ (`0)
k,t,cnn

@w(`2)

1

A
T

=
1q
m(L)

i,j

L�1X

r=`0

X

k,t:f(r)
k,t,cnn2F

S(L)
i,j,cnn

⇣
w

(L)
i

⌘

idL,i,j
r,k,t

�0
⇣
f̃ (r)
k,t,cnn

⌘
Gr,`0

k,t,cnn

+
1q
m(L)

i,j

X

k,t:f(`0)
k,t,cnn2F

S(L)
i,j,cnn

⇣
w

(L)
i

⌘

idL,i,j
`0,k,t

�00
⇣
f̃ (`0)
k,t,cnn

⌘ @f̃ (`0)
k,t,cnn

@w(`1)

0

@@f̃ (`0)
k,t,cnn

@w(`2)

1

A
T

,

where FS(L)
i,j,cnn

:= {f : f 2 fS(L)
i,j,cnn

} and idL,i,j
`0,k,t := {p :

⇣
fS(L)

i,j ,cnn

⌘

p
= f (`0)

k,t,cnn}.

Compared to the derivation for standard feedforward neural networks, i.e., Eq. (14), there is an extra
summation over the index t, whose carnality is at most D(k, `0). Recall that D(k, `0) denotes the
number of times that the weight parameters w(`0)

k is shared. Therefore, as we assume D(k, `0) is
independent of the width m, the norm bound will have the same order of m. Consequently, the
spectral norm of each GL,`0

i,j,cnn can be recursively bounded then Eq. (34) holds.

20

F Feedforward neural networks with bottleneck neurons

In this section, we show that constant number of bottleneck neurons which serve as incoming neurons
will not break the linearity.

We justify this claim based on the recursive relation in Eq. (13), which is used to prove the small
spectral norm of the Hessian of the network function, hence proving the transition to linearity.

Recall that each Hessian block can be written into:

@2fk
@w(`1)@w(`2)

=
LX

`0=`2

d`0X

i=1

@2f (`0)
i

@w(`1)@w(`2)

@fk

@f (`0)
i

:=
LX

`0=`2

GL,`0

k . (36)

For each GL,`0

k , we have a recursive form

GL,`0

k =

d`0X

i=1

@2f̃ (`0)
i

@w(`1)@w(`2)

@fk

@f̃ (`0)
i

+
1q
m(L)

k

X

i:f(`0)
i 2F

S(L)
k

⇣
w

(L)
k

⌘

idL,k
`0,i

�00
⇣
f̃ (`0)
i

⌘ @f̃ (`0)
i

@w(`1)

@f̃ (`0)

i

@w(`2)

!T

=
1q
m(L)

k

L�1X

r=`0

X

i:f(r)
i 2F

S(L)
k

⇣
w

(L)
k

⌘

idL,k
r,i

�0
⇣
f̃ (r)
s

⌘
Gr,`0

i

+
1q
m(L)

k

X

i:f(`0)
i 2F

S(L)
k

⇣
w

(L)
k

⌘

idL,k
`0,i

�00
⇣
f̃ (`0)
i

⌘ @f̃ (`0)
i

@w(`1)

@f̃ (`0)

i

@w(`2)

!T

, (37)

where FS(L)
k

:= {f : f 2 fS(L)
k

} and idL,k
`0,i := {p :

⇣
fS(L)

k

⌘

p
= f (`0)

i }.

As mentioned in Section 3.1, to prove the spectral norm of GL,`0

k is small, we need to bound the
matrix variance, which suffices to bound the spectral norm of

1q
m(L)

k

X

i:f(r)
i 2F

S(L)
k

Gr,`0

i and
1q
m(L)

k

X

i:f(`0)
i 2F

S(L)
k

@f̃ (`0)
i

@w(`1)

@f̃ (`0)

i

@w(`2)

!T

.

For the first quantity, if all f̃ (r)
i are neurons with large in-degree, which is the case of our analysis

by Assumption 3.5, then each f̃ (r)
i will transition to linearity by Theorem 3.8. This is manifested

as small spectral norm of Gr,`0

i for all i. If some of f̃ (r)
i are neurons with small in-degree, their

corresponding Gr,`0

i can be of a larger order, i.e., O(1). However, note that the cardinally of the set
FS(L)

k
is m(L)

k . As long as the number of such neurons is not too large, i.e., o
⇣
m(L)

k

⌘
, the order of

the summation will be not affected. Therefore, the desired bound for the matrix variance will be the
same hence the recursive argument can still apply.

The same analysis works for the second quantity as well. Neurons with small in-degree can make the

norm of @f̃(`0)
i

@w(`1)

✓
@f̃(`0)

i

@w(`2)

◆T

be of a larger order. However, as long as the number of such neurons is

not too large, the bound still holds.

For example, for the bottleneck neural network which has a narrow hidden layer (i.e., bottleneck
layer) while the rest of hidden layers are wide, all neurons in the next layer to the bottleneck layer
are bottleneck neurons. Such bottleneck neural networks were shown to break transition to linearity
in [14]. However, we observe that for such bottleneck neural networks, the number of bottleneck
neurons is large, a fixed fraction of all neurons. With our analysis, if we add trainable connections to
the bottleneck neurons such that almost all (except a small number of) bottleneck neurons become
neurons with sufficiently large in-degrees, then the resulting network can have the property of
transition to linearity.

21

G Proof of Proposition 4.4

Note that for any k 2 [d`],

krwfk(w0)k � krw(`)fk(w0)k =

������
1q
m(`)

k

fS(`)
k

������
=

1q
m(`)

k

���fS(`)
k

��� .

Since fS(`)
k

contains neurons from P(`) (defined in Eq. (20)), in the following we prove Ex,w0

���f (`)
i

���
2

is uniformly bounded from 0 for any ` 2 {0, 1, ..., L� 1}, i 2 [d`].

Specifically, we will prove by induction that 8 ` 2 {0, 1, ..., L� 1}, 8 i 2 [d`],

ExEw0 [|f
(`)
i |2] � min

⇢
1, min

1j`
C

Pj�1
`0=0

r`
0

�

�
.

When ` = 0, Ex

⇥
|xi|2

⇤
= 1 for all i 2 [d0] by Assumption 4.1.

Suppose for all ` q � 1, ExEw0 [|f
(`)
i |2] � min

✓
1,min1jq C

Pj�1
`0=0

r`
0

�

◆
. When ` = q,

ExEw0 [|f
(q)
i |2] = Ew0

2

64

������
�(q)
i

0

@ 1q
m(`)

i

(w(q)
i)T fS(q)

i

1

A

������

2
3

75 = ExEw0Ez⇠N (0,1)

2

64

������
�(q)
i

0

@
kfS(q)

i
k

q
m(q)

i

z

1

A

������

2
3

75 .

By Assumption 4.2,

ExEw0Ez⇠N (0,1)

2

64

������
�(q)
i

0

@
kfS(q)

i
k

q
m(q)

i

z

1

A

������

2
3

75 = Ez⇠N (0,1)[|�
(q)
i (z)|2]ExEw0

"
kfS(q)

i
k2

m(q)
i

!r#

� C�ExEw0

"
kfS(q)

i
k2

m(q)
i

!r#

We use Jensen’s inequality,

C�ExEw0

"
kfS(q)

i
k2

m(q)
i

!r#
� C�

0

@
ExEw0

h
kfS(q)

i
k2
i

m(q)
i

1

A

r

Then according to inductive assumption, we have

C�

0

@
ExEw0

h
kfS(q)

i
k2
i

m(q)
i

1

A

r

� C�

✓
min

✓
1, min

1jq
C

Pj�1
`0=0

r`
0

�

◆◆r

� min
1jq+1

C
Pj�1

`0=0
r`

0

� .

Hence for all l q, ExEw0 [|f
(`)
i |2] � min

✓
1,min1jq+1 C

Pj�1
`0=0

r`
0

�

◆
, which finishes the induc-

tive step hence the proof.

Therefore,

Ex,w0 [krw(`)fk(w0)k] = Ex,w0

2

4 1q
m(`)

k

���fS(`)
k

���

3

5 �

s

min

✓
1, min

1jL
C

Pj�1
`0=0

r`0

�

◆
= ⌦(1).

22

H Proof of Lemma B.1

We prove the result by induction.

For the base case when ` = `0 + 1,�����

@f
S(`)
j

@w(`�1)

����� =

�����
@f (`�1)

@w(`�1)

@f
S(`)
j

@f (`�1)

�����

 max
i:f(`�1)

i 2F
S(`)
j

1q
m(`�1)

i

����0(f̃ (`�1)
i)

���
���fS(`�1)

i

���

 max
i:f(`�1)

i 2F
S(`)
j

�1q
m(`�1)

i

���fS(`�1)
i

��� .

and
�����

@f
S(`)
j

@w(`�1)

�����
F

=

vuuuut
X

i:f(`�1)
i 2F

S(`)
j

�����
@f (`�1)

i

@w(`�1)

�����

2

q
m(`)

j max
i:f(`�1)

i 2F
S(`)
j

1q
m(`�1)

i

����0(f̃ (`�1)
i)

���
���fS(`�1)

i

���

q
m(`)

j max
i:f(`�1)

i 2F
S(`)
j

�1q
m(`�1)

i

���fS(`�1)
i

��� .

By Lemma K.3, with probability at least 1 � m(`�1)
i exp(�CP

`�1 log
2 m),

���fS(`�1)
i

��� =

O

✓
(logm+R)`�2

q
m(`�1)

i

◆
= Õ

✓
R`�2

q
m(`�1)

i

◆
.

For the maximum norm maxi
���fS(`�1)

i

��� /
q
m(`�1)

i , we apply union bound over the indices i such

that f (`�1)
i 2 FS(`)

j
, the cardinality of which is at most

���FS(`)
j

��� = m(`)
j . Hence with probability at

least 1�m(`�1)
i m(`)

j exp(�CP
`�1 log

2 m),

max
i

���fS(`�1)
i

��� /
q
m(`�1)

i = O
�
(logm+R)`�2

�
= Õ(R`�2).

Since m(`�1)
i m`�1 and m(`)

j m` where m`�1,m` are polynomial in m, we can find a constant
Cf
`,`�1 > 0 such that exp(�Cf

`,`�1 log
2 m) � exp(�CP

`�1 log
2 m) · exp(log(m`�1 · m`)). As a

result, with probability at least 1� exp(�Cf
`,`�1 log

2 m),
�����

@f
S(`)
j

@w(`�1)

����� = O
�
(logm+R)`�1

�
= Õ(R`�1),

�����

@f
S(`)
j

@w(`�1)

�����
F

= O

✓q
m(`)

j (logm+R)`�1

◆
= Õ

✓q
m(`)

j R`�1

◆
.

Supposing ` k, Eq. (26) and (27) hold with probability at least 1� exp(�Cf
k,`0 log

2 m).

For ` = k + 1, since elements of fS(k+1)
j

are from P(k) where only f (`0), ..., f (k) possibly depend on

w
(`0), we have

@fS(k+1)
j

@w(`0)
=

kX

q=`0+1

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

. (38)

23

With simple computation, we know that for any i s.t. f (q)
i 2 FS(k+1)

j
:

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

=
1q
m(q)

i

�0(f̃ (q)
i)w(q)

i

@fS(k+1)
j

@f (q)
i

,

where
@f

S(k+1)
j

@f(q)
i

is a mask matrix defined in Eq. (21).

Supposing @fS(q)
i

/@w(`0), i 2 [dq] in Eq. (38) is fixed, for each q, we apply Lemma K.6 to bound the

spectral norm. Choosing t =
q
m(k+1)

j logm, with probability at least 1� 2 exp(�m(k+1)
j log2 m),

for some absolute constant C > 0,
��������

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q�1)
i

@fS(k+1)
j

@f (q)
i

��������

 C�1

0

@max
i

1q
m(q)

i

�����
@fS(q)

i

@w(`0)

�����

✓q
m(k+1)

j +
q
m(k+1)

j logm+R

◆
+max

i

1q
m(q)

i

�����
@f

S(q)
i

@w(`0)

�����
F

1

A .

(39)

To bound the Frobenious norm of Eq. (38) for each q, we apply Lemma K.7 and choose
t =

���@fS(q)
i

/@w(`0)
��� logm. By union bound over indices i such that f (q)

i 2 FS(k+1)
j

, then with

probability at least 1� 2m(k+1)
j exp(�c0 log2 m), where c0 > 0 is a constant, we have

��������

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

��������
F

=

vuuuut
X

i:f(q)
i 2F

S(k+1)
j

�����
@fS(q)

i

@w(`0)

@f (q)
i

@fS(q)
i

�����

2

q
m(k+1)

j max
i

������

@fS(q)
i

@w(`0)

1q
m(q)

i

⇣
w

(q)
i

⌘T
�0(f̃ (q)

i)

������

 �1

q
m(k+1)

j max
i

1q
m(q)

i

 �����
@fS(q)

i

@w(`0)

����� (logm+R) +

�����
@fS(q)

i

@w(`0)

�����
F

!
. (40)

To bound the maximum of
���@fS(q)

i
/@w(`0)

��� /
q

m(q)
i and

���@fS(q)
i

/@w(`0)
���
F
/
q

m(q)
i that appear

in Eq. (39) and (40), with the induction hypothesis, we apply union bound over indices i such that
f (q)
i 2 FS(k+1)

j
. Therefore, with probability at least 1�m(k+1)

j exp(�Cf
q,`0 log

2 m),

max
i

1q
m(q)

i

�����
@fS(q)

i

@w(`0)

����� = O

max

`0+1pq

1
pm p

(logm+R)`
0

!
= Õ

max

`0+1pq

R`
0

pm p

!
,

max
i

1q
m(q)

i

�����
@fS(q)

i

@w(`0)

�����
F

= O
�
(logm+R)q�1

�
= Õ

�
Rq�1

�
.

24

Putting them in Eq. (39) and (40), we have��������

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

��������
= Õ

0

@max

0

@

0

@ max
`0+1pq

q
m(k+1)

j
p

mp

1

A , 1

1

A

1

A ,

��������

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

��������
F

= Õ

✓q
m(k+1)

j

◆
,

with probability at least 1 � 2 exp(�m(k+1)
j log2 m) � m(k+1)

j exp(�Cf
q,`0 log

2 m) �
2m(k+1)

j exp(�c0 log2 m).

As the current result is for fixed q, applying the union bound over indices q 2 {`0 + 1, ..., k}, we
have with probability at least 1 � 2(k � `0) exp(�m(k+1)

j) �
P

q m
(k+1)
j exp(�Cf

q,`0 log
2 m) �

2m(k+1)
j exp(�c0 log2 m),

��������

kX

q=`0+1

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

��������
= O

0

@max

0

@ max
`0+1pk

q
m(k+1)

j
pm p

, 1

1

A (logm+R)`
0

1

A

= Õ

0

@ max
`0+1pk+1

q
m(k+1)

j
pm p

R`
0

1

A ,

��������

kX

q=`0+1

X

i:f(q)
i 2F

S(k+1)
j

@fS(q)
i

@w(`0)

@f (q)
i

@fS(q)
i

@fS(k+1)
j

@f (q)
i

��������
F

= O

✓q
m(k+1)

j (logm+R)k
◆

= Õ

✓q
m(k+1)

j Rk

◆
.

Since m(k+1)
j is upper bounded by mk+1 which is polynomial in m, we can find a constant Cf

k+1,`0 >

0 such that for each j, the result holds with probability at least 1�exp(�Cf
k+1,`0 log

2 m) for ` k+1.
Then we finish the inductive step which completes the proof.

I Proof of Lemma B.2

Before the proof, by Assumption 3.5, we have the following proposition which is critical in the
tail bound of the norm of the matrix Gaussian series, i.e., Lemma K.8. In the bound, there will
be a dimension factor which is the number of parameters (see Eq. (50)). Note that the number of
parameters at each layer can be exponentially large w.r.t. the width m. If we naively apply the bound,
the bound will be useless. However, each neuron in fact only depends on polynomial in m number of
parameters, which is the dimension factor we should use.

Proposition I.1. Fixed `0 2 [L], we denote the maximum number of elements in w
(`0)

that f (`)
i

depends on for all ` 2 [L], i 2 [d`] by m⇤
`0 , which is polynomial in m.

The proof the proposition can be found in Appendix J.

Now we start the proof of the lemma. In fact, we will prove a more general result which includes
the neurons in output layer, i.e. `-th layer. And we will use the result of Lemma B.1 in the proof.
Specifically, we will prove the following lemma:
Lemma I.2. Given 1 `1 `2 L, for any `2 ` L, w 2 B(w0, R), and j 2 [d`], we have,

with probability at least 1� exp(�⌦(log2 m)),
�����

@2f̃ (`)
j

@w(`1)@w(`2)

����� = O

max

`1+1p`

1
pm p

(logm+R)`
2

!
= Õ

max

`1+1p`

R`
2

pm p

!
. (41)

25

We will prove the results by induction.

For the base case that ` = `2,
�����

@2f̃ (`2)
j

@w(`1)@w(`2)

����� =

������
1q
m(`2)

j

@f
S

(`2)
j

@w(`1)

������
.

By Lemma B.1, we can find a constant M (`2),j
`1,`2

> 0 such that with probability at least

1� exp
⇣
�M (`2),j

`1,`2
log2 m

⌘
,

������
1q
m(`2)

j

@f
S

(`2)
j

@w(`1)

������
= O

max

`1+1p`2

1
pm p

(logm+R)`1

!
.

Suppose for `2 `0 `, with probability at least 1 � exp
⇣
�M (`),j

`1,`2
log2 m

⌘
for some constant

M (`),j
`1,`2

> 0, Eq. (28) holds.

When `0 = `+ 1, we have
�����

@2f̃ (`+1)
j

@w(`1)@w(`2)

����� =

������

X̀

`0=`2

d`0X

i=1

@2f (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f (`0)
i

������

X̀

`0=`2

������

d`0X

i=1

@2f (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f (`0)
i

������
.

(42)

We will bound every term in the above summation. For each term, by definition,
d`0X

i=1

@2f (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f (`0)
i

=

d`0X

i=1

@2f̃ (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f̃ (`0)
i

+
1q

m(`+1)
j

X

i:f(`0)
i 2F

S(`+1)
j

(w(`+1)
j)id`+1,j

`0,i
�00(f̃ (`0)

i)
@f̃ (`0)

i

@w(`1)

@f̃ (`0)

i

@w(`2)

!T

.

(43)

For the first term in Eq. (43), we use Lemma K.10. Specifically, we view Ui =
@2f̃(`0)

i

@w(`1)@w(`2) , hence

with probability at least 1�
P`�`0+1

k=1 k(m⇤
`1
+m⇤

`2
) exp(� log2 m/2),

������

d`0X

i=1

@2f̃ (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f̃ (`0)
i

������
= O

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

�����
@2f̃ (`0)

i

@w(`1)@w(`2)

�����(logm+R)`�`
0+1

1

CA .

Here we’d like to note that from Lemma K.8, the tail bound depends on the dimension of w(`1)

and w
(`2) which are

Pd`1
i=1 m

(`)
i and

Pd`2
i=1 m

(`)
i respectively. By Assumption 3.5, for any `, m(`)

i is
polynomial in m. Therefore, the number of elements in w

(`) that f (`+1)
j depends on is polynomial

in m by Proposition I.1. And the matrix variance ⌫̃(`
0) in Lemma K.10 is equivalent to the matrix

variance that we only consider the elements in w
(`1) and w

(`2) that f (`+1)
j depends on, in which case

the dimension is polynomial in m. Therefore we can use m⇤
` here. It is the same in the following

when we apply matrix Gaussian series tail bound.

Then we apply union bound over indices i such that f (`0)
i 2 FS(`0+1)

j

, whose cardinality is

at most m(`+1)
j . By the inductive hypothesis, with probability at least 1 �

P`�`0+1
k=1 k(m⇤

`1
+

26

m⇤
`2
) exp(� log2 m/2)�m(`+1)

j exp
⇣
�M (`),j

`1,`2
log2 m

⌘
,

������

d`0X

i=1

@2f̃ (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f̃ (`0)
i

������
= O

max

`1+1p`0
1

pm p

(logm+R)(`
0)2+`�`0+1

!
.

For the second term in Eq. (43), we view it as a matrix Gaussian series with respect to w
(`+1)
j . The

matrix variance takes the form

⌫(`
0),j

`1,`2
=

1

m(`+1)
j

max

8
>><

>>:

��������

X

i:f(`0)
i 2F

S(`+1)
j

⇣
�00(f̃ (`0)

i)
⌘2

�����
@f̃ (`0)

i

@w(`1)

�����

2
@f̃ (`0)

i

@w(`2)

@f̃ (`0)

i

@w(`2)

!T

��������
,

��������

X

i:f(`0)
i 2F

S(`+1)
j

⇣
�00(f̃ (`0)

i)
⌘2

�����
@f̃ (`0)

i

@w(`2)

�����

2
@f̃ (`0)

i

@w(`1)

@f̃ (`0)

i

@w(`1)

!T

��������

9
>>=

>>;
.

We use Lemma K.9. By the definition in Eq. (51), here ⌫(`
0),j

`1,`2
= max

n
µ(`0),j
`1,`2

, µ(`0),j
`2,`1

o
. Hence with

probability at least at least 1� exp
⇣
�C(`0),j

`1,`2
log2 m

⌘
� exp

⇣
�C(`0),j

`2,`1
log2 m

⌘
for some constant

C(`0),j
`1,`2

, C(`0),j
`2,`1

> 0, we have

⌫(`
0),j

`1,`2
= O

✓
max

✓
1/m(`+1)

j , max
`1+1p`

1/m p

◆
(logm+R)4`

0�2

◆
.

Using Lemma K.8 again and choosing t = logm
q
⌫(`

0),j
`1,`2

, we have with probability at least 1 �
(m⇤

`2
+m⇤

`1
) exp(� log2 m/2),

��������

1q
m(`+1)

j

X

i:f(`0)
i 2F

S(`+1)
j

⇣
w

(`+1)
j

⌘

id`+1,j
`0,i

�00
⇣
f̃ (`0)
i

⌘ @f̃ (`0)
i

@w(`1)

@f̃ (`0)

i

@w(`2)

!T

��������
 (logm+R)

q
⌫(`

0),j
`1,`2

.

Combined the bound on ⌫(`
0),j

`1,`2
, we have with probability at least 1 � exp

⇣
�C(`0),j

`1,`2
log2 m

⌘
�

exp
⇣
�C(`0),j

`2,`1
log2 m

⌘
� (m⇤

`2
+m⇤

`1
) exp(� log2 m/2),

��������

1q
m(`+1)

j

X

i:f(`0)
i 2F

S(`+1)
j

⇣
w

(`+1)
j

⌘

id`+1,j
`0,i

�00
⇣
f̃ (`0)
i

⌘ @f̃ (`0)
i

@w(`1)

@f̃ (`0)

i

@w(`2)

!T

��������

= O

✓
max

✓
1/
q
m(`2+1)

j , max
`1+1p`

1/
p
m p

◆
(logm+R)2`

0
◆

= Õ

✓
max

✓
1/
q
m(`2+1)

j , max
`1+1p`

1/
p
m p

◆
R2`0

◆

= Õ

✓
max

`1+1p`+1
R2`0/

p
m p

◆
.

27

Now we have bound both terms in Eq. (43). Combining the bounds, we have with proba-
bility at least 1 �

P`�`0+1
k=1 k(m⇤

`1
+ m⇤

`2
) exp(� log2 m/2) � m(`+1)

j exp
⇣
�M (`),j

`1,`2
log2 m

⌘
�

exp
⇣
�C(`0),j

`1,`2
log2 m

⌘
� exp

⇣
�C(`0),j

`2,`1
log2 m

⌘
� 2(m⇤

`2
+m⇤

`1
) exp(� log2 m/2)

������

d`0X

i=1

@2f (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f (`0)
i

������
= O

✓
max

`1+1p`+1
1/
p
m p(logm+R)(`

0+1)2+`�`0
◆
.

With the above results, to bound Eq. (42), we apply the union bound over the layer indices l0 = `2, ..., `.
We have with probability at least 1 �

Pl
`0=`2

P`�`0+1
k=1 k(m⇤

`1
+ m⇤

`2
) exp(� log2 m/2) �

(` � `2 + 1)m(`+1)
j exp

⇣
�M (`),j

`1,`2
log2 m

⌘
�

Pl
`0=`2

exp
⇣
�C(`0),j

`1,`2
log2 m

⌘
�

Pl
`0=`2

exp
⇣
�C(`0),j

`2,`1
log2 m

⌘
� 2(`� `2 + 1)(m⇤

`2
+m⇤

`1
) exp(� log2 m/2)

�����
@2f̃ (`+1)

j

@w(`1)@w(`2)

�����
X̀

`0=`2

������

d`0X

i=1

@2f (`0)
i

@w(`1)@w(`2)

@f̃ (`+1)
j

@f (`0)
i

������

= O

✓
max

`1+1p`+1
1/
p
m p(logm+R)(`+1)2

◆

= Õ

✓
max

`1+1p`+1
R(`+1)2/

p
m p

◆
.

By Proposition I.1, m⇤
`1
,m⇤

`2
are also polynomial in m. Hence, we can find a constant M (`+1),j

`1,`2
> 0

such that

exp
⇣
�M (`+1),j

`1,`2
log2 m

⌘

>
X̀

`0=`2

`�`0+1X

k=1

k(m⇤
`1 +m⇤

`2) exp(� log2 m/2)� (`� `2 + 1)m(`+1)
j exp

⇣
�M (`),j

`1,`2
log2 m

⌘

�
X̀

`0=`2

exp
⇣
�C(`0),j

`1,`2
log2 m

⌘
�

X̀

`0=`2

exp
⇣
�C(`0),j

`2,`1
log2 m

⌘
� 2(`� `2 + 1)(m⇤

`2 +m⇤
`1) exp(� log2 m/2)

+ exp
⇣
�M (`),j

`1,`2
log2 m

⌘
.

Then Eq. (43) holds with probability at least 1� exp
⇣
�M (`+1),j

`1,`2
log2 m

⌘
for any `2 `+ 1 L,

j 2 [d`+1], which finishes the induction step hence completes the proof.

J Proof of Proposition I.1

Fixing `0 2 [L], for any ` 2 {`0, ..., L}, i 2 [d`], we first show f (`)
i depends on polynomial number

of elements in w
(`0). We prove the result by induction.

If ` = `0, then the number of elements in w
(`) that f (`)

i depend on is m(`)
i .

Suppose `0 ` k that f (`)
i depends on polynomial number of elements in w

(`0). Then at ` = k+1,
we know

f (k+1)
i = �(k+1)

i

0

@ 1q
m(k+1)

i

D
w

(k+1)
i , fS(k+1)

i

E
1

A .

As fS(k+1)
i

contains m(k+1)
i neurons where each one depends on polynomial number of elements in

w
(`0) by the induction hypothesis. The composition of two polynomial functions is still polynomial,

hence f (k+1)
i also depends on polynomial number of elements in w

(`0).

28

The maximum number of elements in w(`0) that f (`)
i depends on among all layers ` is polynomial since

it is the maximum of a finite sequence. By Assumption 3.5 that sup`2{2,...,L�1},i2[d`] m
(`)
i = O(mc),

it is not hard to see that the maximum among all i 2 [d`] is also polynomial.

K Useful Lemmas and their proofs

Lemma K.1. Spectral norm of a matrix H is upper bounded by the sum of the spectral norm of its

blocks.

Proof.

kHk =

��������

0

BB@

H(1,1) 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

1

CCA+

0

BB@

0 H(1,2) · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

1

CCA+ · · ·+

0

BB@

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · H(L,L)

1

CCA

��������

X

`1,`2

kH(`1,`2)k.

Lemma K.2. For ` = 0, 1, .., L, with probability at least 1� exp(�CP
` log2 m) for some constant

CP
` > 0, the absolute value of all neurons in P(`)

Eq. (20) is of the order Õ(1) in the ball B(w0, R).

Proof. We prove the result by induction.

When ` = 0, P(0) = f (0) = {x1, ..., xd0} therefore for all i, |f (0)
i | Cx surely by Assumption 3.1.

Suppose when ` = k, with probability at least 1 � exp(�CP
k log2 m), the absolute value of each

neuron in P(k) is of the order O
�
(logm+R)k

�
where CP

k > 0 is a constant. Then when ` = k+1,
there will be new neurons f (k+1) added to P(k), where each f (k+1)

i can be bounded by

|f (k+1)
i | =

������
�

0

@ 1q
m(k+1)

i

⇣
w

(k+1)
i

⌘T
fS(k+1)

i

1

A

������

 �1q
m(k+1)

i

⇣
w

(k+1)
i

⌘T
fS(k+1)

i
+ �(0).

By the union bound over all the elements in fS(k+1)
i

which are in P(k) and the induction hypothesis,

with probability at least 1�m(k+1)
i exp(�CP

k log2 m),

kfS(k+1)
i

k =

vuuut
m(k+1)

iX

j=1

⇣
fS(k+1)

i

⌘

j
= O

✓q
m(k+1)

i (logm+R)k
◆
.

By Lemma K.4, supposing fS(k+1)
i

is fixed, choosing t = logm
���fS(k+1)

i

���, with probability at least

1� 2 exp(� log2 m/2), in the ball B(w0, R),
���(w(k+1)

i)T fS(k+1)
i

��� (logm+R)
���fS(k+1)

i

��� .

Combined with the bound on kfS(k+1)
i

k, with probability at least 1 � 2 exp(� log2 m/2) �

m(k+1)
i exp(�CP

k log2 m),
���f (k+1)

i

���
�1q

m(k+1)
i

(logm+R)
���fS(k+1)

i

���+ �0 = O
�
(logm+R)k+1

�
= Õ(Rk+1).

29

Since m(k+1)
i mk+1 which is polynomial in m, we can find a constant CP

k+1 > 0 such that for all
i,

exp(�CP
k+1 log

2 m) � 2 exp(� log2 m/2) + exp(�CP
k log2(m) + log(mk+1)) + exp(�CP

k log2 m).

Hence the above results hold with probability 1� exp(�CP
k+1 log

2 m), which completes the proof.

Lemma K.3. For ` 2 [L], i 2 [d`], with probability at least 1�m(`)
i exp(�CP

` log2 m), in the ball

B(w0, R),
���fS(`)

i

��� = O

✓q
m(`)

i (logm+R)`�1

◆
= Õ

✓q
m(`)

i R`�1

◆

Proof. By Lemma K.2, each neuron is of order Õ(1). Then we apply union bound over m(`)
i neurons

and we get the result.

Lemma K.4. Given a fixed vector b 2 Rn
and a random vector a0 ⇠ N (0, In), for any a in the ball

B(a0, R), we have with probability at least 1� 2 exp(�t2/(2kbk2)),

|aT b| t+ kbkR. (44)

Proof. We can write a
T b = (a0 + �a)T b = a

T
0 b + �a

T b. Since a0 ⇠ N (0, 1), we have
a
T
0 b ⇠ N (0, kbk2). By Proposition 2.5.2 in [23], for any t > 0, with probability at least 1 �

2 exp(�t2/(2kbk2)),

|aT0 b| t.

Therefore, with the same probability

|aT b| |aT0 b|+ |�a
T b| t+ kbkR.

Lemma K.5. For a random m⇥n matrix W = [B1a1, B2a2, ..., Bnan] where A = [a1,a2, ...,an]
is an Ni ⇥ n random matrix whose entries i.i.d. follow N (0, 1) and B1, B2, ..., Bn is a sequence of

m⇥Ni non-random matrices, we have for some absolute constant C > 0, for any t � 0

kWk C
⇣
max

i
kBik(

p
n+ t) + max

i
kBikF

⌘
(45)

with probability at least 1� 2 exp(�t2).

Proof. We prove the result using an ✏-net argument. Choosing ✏ = 1/4, by Corollary 4.2.13 in [23],
we can find an ✏-net N of the sphere Sn�1 with cardinalities |N | 9n.

By Lemma 4.4.1 in [23], kWk 2 supx2N kWxk.

Fix x 2 N , it is nor hard to see that

Wx =
nX

i=1

xiBiai ⇠ N

0,

nX

i=1

x2
iBiB

T
i

!
,

which can be viewed as B0z where B0 =
qPn

i=1 x
2
iBiBT

i and z ⇠ N (0, Im).

By Theorem 6.3.2 in [23], we have

kkB0zk � kB0kF k 2
 CK2kB0k,

where K = maxi kzik 2 and k · k 2 is the sub-guassian norm (see Definition 2.5.6 in [23]) and C is
an absolute constant.

By the definition of sub-gaussian norm, we can use the tail bound. For some positive absolute constant
c and for any µ > 0,

P {kB0zk � kB0kF � u} 2 exp(�cu2/(K4kB0k2)).

30

Then we unfix x using a union bound. With probability at least 1� 9n2 exp(�cu2/(K4kB0k2))
sup
x2N

kB0zk � kB0kF µ.

Choose u = CK2kB0k(
p
n+ t). If the constant C is chosen sufficiently large, we can let cu2/K4 �

3n+ t2. Thus,

P
⇢
sup
x2N

kB0zk � kB0kF � u

�
 9n2 exp

�
�3n� t2

�
 2 exp(�t2).

Combined with kWk 2 supx2N kWxk, we conclude that

P
�
kWk � 2CK2kB0k(

p
n+ t) + 2kB0kF

 2 exp(�t2).

Noticing that kB0k maxi kBik and kB0kF maxi kBikF , we have

P
n
kWk � 2CK2 max

i
kBik(

p
n+ t) + 2max

i
kBikF

o
 2 exp(�t2).

We absorb K into C as K is a constant. With abuse of notation of C which is absolute, we have

P
n
kWk � C(max

i
kBik(

p
n+ t) + max

i
kBikF)

o
 2 exp(�t2).

Lemma K.6. For a random m⇥n matrix W = [B1a1, B2a2, ..., Bnan] where A = [a1,a2, ...,an]
and B1, B2, ..., Bn is a sequence of m ⇥ N non-random matrices. Here A = A0 + �A where

A0 is an N ⇥ n random matrix whose entries i.i.d. follow N (0, 1) and �A is a fixed matrix with

k�AkF R given constant R > 0. We have for some absolute constant C > 0, for any t � 0

kWk C
⇣
max

i
kBik(

p
n+R+ t) + max

i
kBikF

⌘
(46)

with probability at least 1� 2 exp(�t2).

Proof. Comparing to Lemma K.5, we only need to bound the norm of �W :
�W := [B1�a1, B2�a2, , ..., Bn�an],

where �A = [�a1,�a2, ...,�an].

By the definition that kA0kF =
pPn

i=1 k�aik2, we have

k�Wk k�WkF =

vuut
nX

i=1

kBi�aik2 max
i

kBikk�AkF max
i

kBikR.

Therefore, for any t � 0, with probability at least 1� 2 exp(�t2),

kWk kW ��Wk+ k�Wk C
⇣
max

i
kBik(

p
n+R+ t) + max

i
kBikF

⌘
.

Lemma K.7. Consider a fixed matrix B 2 Rm⇥n
and a random vector a0 ⇠ N (0, In). For any

a 2 Rn
in the ball B(a0, R) given constant R > 0, for any t > 0, we have with probability at least

1� 2 exp(�ct2/kBk2),where c is an absolute constant,

kBak t+ kBkF + kBkR. (47)

Proof. By Theorem 6.3.2 in [23], for any t > 0,
P{|kBa0k � kBkF | � t} 2 exp(�ct2/kBk2),

where c > 0 is an absolute constant.

Note that kBak kBa0k + kB(a � a0)k kBa0k + kBkR. With probability at least 1 �
2 exp(�ct2/kBk2), we have

kBak t+ kBkF + kBkR.

31

Lemma K.8 (Matrix Gaussian series). For a sequence of fixed matrices {Bk}nk=1 with dimension

d1 ⇥ d2 and a sequence of independent standard normal variables {�k}, we define Z =
Pn

k=1(�k +
��k)Bk where {��k}nk=1 is a fixed sequence with

Pn
k=1 ��2

k R2
given constant R > 0. Then

we have for any t � 0, with probability at least 1� (d1 + d2) exp(�t2/(2⌫)),

kZk t+R⌫, (48)

where

⌫ = max

(�����
X

k

BkB
T
k

����� ,

�����
X

k

BT
k Bk

�����

)
. (49)

Proof. By Theorem 4.1.1 in [22], for all t � 0,

P(
�����

nX

k=1

�kBk

����� � t) (d1 + d2) exp

✓
�t2

2⌫

◆
. (50)

Since �����Z �
nX

k=1

�kBk

����� =

�����

nX

k=1

��kBk

�����

vuut
nX

k=1

(��k)2

vuut
�����

nX

k=1

BkBT
k

�����

 R
p
⌫.

Then for Z, we have

P(kZk � t+R
p
⌫) (d1 + d2) exp

✓
�t2

2⌫

◆
.

Lemma K.9 (Bound on matrix variance). For any ` 2 [L], `1, `2 2 [`], j 2 [d`+1], with probability

at least 1� exp(�C(`),j
`1,`2

log2 m) for some constant C(`),j
`1,`2

> 0, we have

µ(`),j
`1,`2

:=
1

m(`+1)
j

��������

X

i:f(`)
i 2F

S(`+1)
j

⇣
�00

⇣
f̃ (`)
i

⌘⌘2
�����
@f̃ (`)

i

@w(`1)

�����

2
@f̃ (`)

i

@w(`2)

@f̃ (`)

i

@w(`2)

!T

��������

= O

✓
max

✓
1/m(`+1)

j , max
min(`1,`2)+1p`

1/m p

◆
(logm+R)4`�2

◆

= Õ

✓
max

✓
1/m(`+1)

j , max
min(`1,`2)+1p`

1/m p

◆
R4`�2

◆
. (51)

Proof. Without lose of generality, we assume `1 `2 `.

We consider two scenarios, (a) `1 `2 = ` and (b) `1 `2 < `.

In the scenario (a), we analyze `1 = `2 = ` and `1 < `2 = ` respectively.

When `1 = `2 = `, by definition,

@f̃ (`)
i

@w(`1)
=

1q
m(`)

i

fS(`)
i
.

By Lemma K.3, with probability at least 1 � m(`)
i exp(�CP

` log2 m),
���fS(`)

i

��� =

O

✓q
m(`)

i (logm+R)`�1

◆
= Õ

✓q
m(`)

i

◆
. Applying union bound over the indices i such

32

that f (`)
i 2 fS(`+1)

j
, the carnality of which is at most m(`+1)

j , we have with probability at least

1�m(`)
i m(`+1)

j exp(�CP
` log2 m),

max
i:f(`)

i 2F
S(`+1)
j

�����
@f̃ (`)

i

@w(`1)

����� = max
i:f(`)

i 2F
S(`+1)
j

���fS(`)
i

���
q

m(`)
i

= O
�
(logm+R)`�1

�
= Õ(R`�1).

It is not hard to see that

X

i:f(`)
i 2F

S(`+1)
j

@f̃ (`)
i

@w(`)

@f̃ (`)

i

@w(`)

!T

is a block diagonal matrix with i-th block in the form 1

m(`)
i

fS(`)
i

⇣
fS(`)

i

⌘T
· I
n
f (`)
i 2 fS(`+1)

j

o
.

Therefore, µ(`),j
`,` can be bounded by

µ(`),j
`,` 1

m(`+1)
j

�2
2

0

B@ max
i:f(`)

i 2F
S(`+1)
j

���fS(`)
i

���
q

m(`)
i

1

CA

20

B@ max
i:f(`)

i 2F
S(`+1)
j

�����
1

m(`)
i

fS(`)
i

⇣
fS(`)

i

⌘T
�����

1

CA

= O
⇣
(logm+R)4`�4/m(`+1)

j

⌘
= Õ

⇣
R4`�4/m(`+1)

j

⌘
,

with probability at least 1� 2m(`)
i m(`+1)

j exp(�CP
` log2 m), where we apply the union bound on���fS(`)

i

��� once again.

By definition Eq. (25), m(`)
i m` and m(`+1)

j m`+1. By Assumption 3.5, m`,m`+1 are
polynomial in m. If m is large enough, we can find a constant C(`),j

`,` > 0 such that

exp(�C(`),j
`,` log2 m) > 2m(`)

i m(`+1)
j exp(�CP

` log2 m),

thus the bound holds with probability 1� exp
⇣
�C(`),j

`,` log2 m
⌘

.

When `1 < `2 = `, By Eq. (5), we compute the derivative:

@f̃ (`)
i

@w(`1)
=

1q
m(`)

i

@fS(`)
i

@w(`1)
w

(`)
i . (52)

By Lemma B.1, with probability at least 1 � exp
⇣
�Cf

`,`1
log2 m

⌘
,
���@fS(`)

i
/@w(`1)

��� =

Õ

✓
max`1+1p`

q
m(`)

i /pm p

◆
and

���@fS(`)
i
/@w(`1)

���
F

= Õ

✓q
m(`)

i

◆
. We use Lemma K.7

and choose t = logm
���@fS(`)

i
/@w(`1)

���, then with probability at least 1 � 2 exp(�c0 log2 m) �

exp
⇣
�Cf

`,`1
log2 m

⌘
for some absolute constant c0 > 0,

�����
@f̃ (`)

i

@w(`1)

����� =
1q
m(`)

i

�����
@fS(`)

i

@w(`1)
w

(`)
i

����� (53)

 1q
m(`)

i

(logm+R)

�����
@fS(`)

i

@w(`1)

�����+

�����
@fS(`)

i

@w(`1)

�����
F

!
(54)

= O
�
(logm+R)`

�
= Õ(R`). (55)

33

Similar to the case when `1 = `2 = `,

X

i:f(`)
i 2F

S(`+1)
j

@f̃ (`)
i

@w(`)

@f̃ (`)

i

@w(`)

!T

is a block matrix.

Therefore,

µ(`),j
`,` 1

m(`+1)
j

�2
2

0

B@ max
i:f(`)

i 2F
S(`+1)
j

�����
@f̃ (`)

i

@w(`1)

�����

1

CA

20

B@ max
i:f(`)

i 2F
S(`+1)
j

�����
1

m(`)
i

fS(`)
i

⇣
fS(`)

i

⌘T
�����

1

CA

= O
⇣
(logm+R)4`�2/m(`+1)

j

⌘
= Õ

⇣
R4`�2/m(`+1)

j

⌘
,

with probability at least 1 � 2m(`+1)
j exp(�c0 log2 m) � m(`+1)

j exp
⇣
�Cf

`,`1
log2 m

⌘
�

2m(`)
i m(`+1)

j exp
�
�CP

` log2 m
�

where we apply the union bound over the indices i for the maxi-
mum.

Similarly, we can find a constant C(`),j
`1,`

> 0 such that the bound holds with probability 1 �
exp

⇣
�C(`),j

`,` log2 m
⌘

.

For scenario (b) that `1 `2 < `, we apply Lemma K.6 to bound µ(`),j
`1,`2

. Specifically, we view

Bi =
1q
m(`)

i

����00(f̃ (`)
i)

���

�����
@f̃ (`)

i

@w(`1)

�����
@fS(`)

i

@w(`2)
, (56)

ai = w
(`)
i . (57)

Choosing t = logm and supposing Bi is fixed, then with probability at least 1� 2 exp(� log2 m),
for some constant K`,j

`1,`2
> 0,

��������

X

i:f(`)
i 2f

S(`+1)
j

⇣
�00(f̃ (`)

i)
⌘2

�����
@f̃ (`)

i

@w(`1)

�����

2
@f̃ (`)

i

@w(`2)

@f̃ (`)

i

@w(`2)

!T

��������

 (K`,j
`1,`2

)2
✓
max

i
kBik

✓q
m(`+1)

j + logm+R

◆
+max

i
kBikF

◆2

 (K`,j
`1,`2

)2�2
2

0

@max
i

1q
m(`)

i

�����
@f̃ (`)

i

@w(`1)

�����

�����
@fS(`)

i

@w(`2)

�����

✓q
m(`+1)

j + logm+R

◆
+max

i

1q
m(`)

i

�����
@f̃ (`)

i

@w(`1)

�����

�����
@fS(`)

i

@w(`2)

�����
F

1

A
2

By Eq. (55), with probability at least 1�2 exp(�c0 log2 m)�exp
⇣
�Cf

`,`1
log2 m

⌘
for some absolute

constant c0 > 0, �����
@f̃ (`)

i

@w(`1)

����� = Õ(R`). (58)

By Lemma B.1, with probability at least 1 � exp(�Cf
`,`2

log2 m),
���@fS(`)

i
/@w(`2)

��� =

Õ

✓
max`2+1p`

q
m(`)

i /pm p

◆
and

���@fS(`)
i
/@w(`2)

���
F
= Õ

✓q
m(`)

i

◆
.

Combined them together, with probability at least 1 � m(`)
i m(`+1)

j exp
�
�CP

` log2 m
�
�

2m(`+1)
j exp(�c0 log2 m)�m(`+1)

j exp
⇣
�Cf

`,`1
log2 m

⌘
�m(`+1)

j exp
⇣
�Cf

`,`2
log2 m

⌘
,

34

µ(`),j
`1,`2

= O

✓
max

✓
1/m(`+1)

j , max
`1+1p`

1/m p

◆
(logm+R)4`�2

◆

= Õ

✓
max

✓
1/m(`+1)

j , max
`1+1p`

1/m p

◆
R4`�2

◆
.

Similarly we can find a constant C(`),j
`1,`2

> 0 such that with probability at least 1 �
exp

⇣
�C(`),j

`1,`2
log2 m

⌘
the above bound holds.

For `1 � `2, we similarly have

µ(`),j
`2,`1

= Õ

✓
max

✓
1/m(`+1)

j , max
`2+1p`

1/m p

◆
R4`�2

◆
,

with probability at least 1� exp(�C(`),j
`2,`1

log2 m).

Lemma K.10. For any 0 < `0 ` L � 1, given fixed matrices U1, ..., Ud`0 2 Ru1⇥u2 , with

probability at least 1�
P`�`0+1

k=1 k(u1 + u2) exp(� log2 m/2)

d`0X

i=1

Ui

@f̃ (`+1)
j

@f̃ (`0)
i

= O

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUik(logm+R)`�`
0+1

1

CA

= Õ

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUik

1

CA .

Proof. We prove the result by induction.

For the base case that ` = `0,
d`0X

i=1

Ui

@f̃ (`0+1)
j

@f̃ (`0)
i

=

d`0X

i=1

Ui�
0
⇣
f̃ (`0)
i

⌘ @fS(`0+1)
j

@f (`0)
i

@f̃ (`0+1)
j

@fS(`0+1)
j

=
1q

m(`0+1)
j

X

i:f(`0)
i 2F

S(`0+1)
j

Ui�
0
⇣
f̃ (`0)
i

⌘⇣
w

(`0+1)
j

⌘

id`
0+1,j

`0,i

.

We view the above equation as a matrix Gaussian series with respect to w
(`0+1)
j . Its matrix variance

⌫(`
0) can be bounded by

⌫(`
0) :=

1

m(`0+1)
j

���������

X

i:f(`0)
i 2F

S(`0+1)
j

Ui�
0
⇣
f̃ (`0)
i

⌘

���������

2

 max
i:f(`0)

i 2F
S(`0+1)
j

�2
1kUik2.

Using Lemma K.8 and choosing t = logm
p
⌫(`0), we have with probability at least 1 � (u1 +

u2) exp(� log2 m/2),

d`0X

i=1

Ui

@f̃ (`0+1)
j

@f̃ (`0)
i

 (logm+R)
p
⌫(`0) max

i
(logm+R)�1kUik = O((logm+R)max

i
kUik).

35

Suppose with probability at least 1�
P`�`0+1

k=1 k(u1 + u2) exp(� log2 m/2), for all `0 k `,

d`0X

i=1

Ui

@f̃ (k)
j

@f̃ (`0)
i

= O

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUik(logm+R)k�`
0

1

CA .

Then when k = `+ 1, we have

d`0X

i=1

Ui

@f̃ (`+1)
j

@f̃ (`0)
i

=
X̀

r=`0

d`0X

i=1

Ui
@f (r)

@f̃ (`0)
i

@fS(`+1)
j

@f (r)

@f̃ (`+1)
j

@fS(`+1)
j

=
X̀

r=`0

drX

s=1

d`0X

i=1

Ui
@f (r)

s

@f̃ (`0)
i

@fS(`+1)
j

@f (r)
s

@f̃ (`+1)
j

@fS(`+1)
j

=
X̀

r=`0

drX

s=1

d`0X

i=1

Ui
@f̃ (r)

s

@f̃ (`0)
i

�0
⇣
f̃ (r)
s

⌘ @fS(`+1)
j

@f̃ (r)
s

@f̃ (`+1)
j

@fS(`+1)
j

=
X̀

r=`0

X

s:f(r)
s 2F

S(`+1)
j

0

@
d`0X

i=1

Ui
@f̃ (r)

s

@f̃ (`0)
i

1

A�0
⇣
f̃ (r)
s

⌘ 1q
m(`+1)

j

⇣
w

(`+1)
j

⌘

id`+1,j
r,s

For each r 2 {`0, ..., `}, we view
P

s:f(r)
s 2F

S(`+1)
j

✓Pd`0
i=1 Ui

@f̃(r)
s

@f̃(`0)
i

◆
�0
⇣
f̃ (r)
s

⌘
1q

m(`+1)
j

⇣
w

(`+1)
j

⌘

id`+1,j
r,s

as a matrix Gaussian series with respect to w
(`+1)
j .

By the inductive hypothesis, for all r, its matrix variance can be bounded by

⌫(r) :=
1

m(`+1)
j

��������

X

s:f(r)
s 2F

S(`+1)
j

0

@
d`0X

i=1

Ui
@f̃ (r)

s

@f̃ (`0)
i

1

A�0
⇣
f̃ (r)
s

⌘
��������

2

= O

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUik2(logm+R)2r�2`0

1

CA .

Then we use Lemma K.8 and choose t = logm
p
⌫(r). With probability at least 1 � (u1 +

u2) exp(� log2 m/2),
��������

X

s:f(r)
s 2F

S(`+1)
j

0

@
d`0X

i=1

Ui
@f̃ (r)

s

@f̃ (`0)
i

1

A�0
⇣
f̃ (r)
s

⌘ 1q
m(`+1)

j

⇣
w

(`+1)
j

⌘

id`+1,j
r,s

��������

 (logm+R)
p
⌫(r)

 max
i:f(`0)

i 2F
S(`0+1)
j

(logm+R)�1kUik

= O

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUik(logm+R)r�`
0+1

1

CA .

36

We apply union bound over indices r = `0, ..., ` and add the probability from the induction hypothesis.
With probability at least 1�

P`�`0+1
k=1 k(u1 + u2) exp(� log2 m/2),

������

d`0X

i=1

Ui

@f̃ (`+1)
j

@f̃ (`0)
i

������

X̀

r=`0+1

��������

X

s:f(r)
s 2F

S(`+1)
j

0

@
d`0X

i=1

Ui
@f̃ (r)

s

@f̃ (`0)
i

1

A�0
⇣
f̃ (r)
s

⌘ 1q
m(`+1)

j

⇣
w

(`+1)
j

⌘

id`+1,j
r,s

��������

= O

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUik(logm+R)`�`
0+1

1

CA

= Õ

0

B@ max
i:f(`0)

i 2F
S(`0+1)
j

kUikR`�`
0+1

1

CA .

Then we finish the induction step which completes the proof.

37

	Introduction
	Notations

	Neural networks with acyclic graph architecture
	Defining feedforward neural networks
	Organizing feedforward networks into layers

	Transition to linearity of feedforward neural networks
	Proof sketch of Theorem 3.6

	Relation to optimization
	Discussion and future directions
	Examples of feedforward neural networks
	Proof of Theorem 3.6
	Feedforward neural networks with multiple output
	Feedforward neural networks with skip connections
	Feedforward neural networks with shared weights, e.g., convolutional neural networks
	Feedforward neural networks with bottleneck neurons
	Proof of Proposition 4.4
	Proof of Lemma B.1
	Proof of Lemma B.2
	Proof of Proposition I.1
	Useful Lemmas and their proofs

