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Abstract

Video-language models (VLMs), large models pre-trained on numerous but noisy
video-text pairs from the internet, have revolutionized activity recognition through
their remarkable generalization and open-vocabulary capabilities. While complex
human activities are often hierarchical and compositional, most existing tasks
for evaluating VLMs focus only on high-level video understanding, making it
difficult to accurately assess and interpret the ability of VLMs to understand
complex and fine-grained human activities. Inspired by the recently proposed
MOMA framework, we define activity graphs as a single universal representation
of human activities that encompasses video understanding at the activity, sub-
activity, and atomic action level. We redefine activity parsing as the overarching
task of activity graph generation, requiring understanding human activities across
all three levels. To facilitate the evaluation of models on activity parsing, we
introduce MOMA-LRG (Multi-Object Multi-Actor Language-Refined Graphs),
a large dataset of complex human activities with activity graph annotations that
can be readily transformed into natural language sentences. Lastly, we present a
model-agnostic and lightweight approach to adapting and evaluating VLMs by
incorporating structured knowledge from activity graphs into VLMs, addressing
the individual limitations of language and graphical models. We demonstrate
strong performance on activity parsing and few-shot video classification, and our
framework is intended to foster future research in the joint modeling of videos,
graphs, and language.

1 Introduction

Computer vision is currently undergoing a paradigm shift from models trained on crowd-labeled
data [1} 2] to large-scale base models [3} 4} 1516 [7]] trained on noisy but readily accessible image-text
pairs. Video understanding is no exception, with the rise of Video-Language Models (VLMs) [8}(9, 10,
114112413, [14]] that have shown remarkable generalization capabilities on videos from new domains.
When compared to fixed-set video classification [2} 15, [16], VLMs are able to learn and represent a
wider variety of concepts and demonstrate superior low-shot abilities on many downstream tasks due
to the flexibility and open-vocabulary nature of language. Besides, while annotating videos remains
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one of the most laborious processes in computer vision, VLMs utilize widely and freely available
video-text pairs [9} 18} [13}[17] facilitating larger and more diverse pre-training at a lower cost.

Despite improved generalization and scalability, the application of VLMs to human activity recogni-
tion faces a number of challenges. The first challenge is adapting existing VLMs for fine-grained,
actor-centric activity recognition. Essential computer vision applications in healthcare, surveil-
lance, and robotics are often characterized by complex human activities involving many concurrent
events between actors and objects. On the other hand, existing VLMs are typically trained on noisy,
coarse-grained internet data and evaluated on downstream tasks that are focused on high-level video
understanding [[18} [10} [12]. It is unclear how VLMs can be effectively adapted to and accurately
evaluated for recognizing fine-grained activities. The second challenge is the lack of a single over-
arching task for evaluating VLMs on activity recognition. Human activities are often hierarchical
and compositional [19} 20, 21]], requiring explicit modeling and evaluation at multiple levels of
granularity. Existing downstream tasks used for VLM evaluation, such as activity classification [[18]],
activity segmentation [[10, [12]], video-text retrieval [13}[12} 8] and VideoQA [10} [13], only provide an
incomplete assessment of VLM performance on activity recognition. Lastly, the black-box nature of
VLMs makes their predictions difficult to interpret. This hinders the application of VLMs to many
risk-averse domains [22}, 23| [24]], where it is necessary to interpret VLM predictions in a structured
and symbolic manner.

To address the aforementioned challenges, this paper first aims to standardize an overarching repre-
sentation of human activities across varying levels of granularity and provide a unified task for VLMs
by generating this representation. Inspired by the recently proposed MOMA [20] framework, we
introduce activity graphs as dynamic graphs that encompass activities, sub-activities, and atomic
actions in a video. Specifically, an activity graph is a representation that simultaneously (1) pro-
vides a class label on the activity level, (2) provides a dynamic sub-activity label that contains all
temporal boundaries and categories of sub-activities, and (3) captures fine-grained atomic actions in
multi-object multi-actor settings with spatial localization and tracking of all entities and temporal
localization of all predicates. Further, we introduce activity parsing as the overarching task of
predicting the activity graph from a video, thereby achieving multi-level activity recognition via
activity graph generation.

Next, we introduce the MOMA-LRG dataset, a novel activity recognition dataset that leverages both
the descriptive capacity of activity graphs and the expressiveness of natural language. MOMA-LRG
involves videos with Multiple Objects and Multiple Actors (MOMA) and is designed to enable
models to understand a broad set of human activities. To enable few-shot activity recognition with
language, MOMA-LRG provides Language-Refined Graph annotations in a format that enables easy
conversion from the structured graph representation into natural language sentences.

Lastly, we introduce GraphVLM as our framework for evaluating VLMs on activity parsing,
consisting of an activity parsing model and a transfer learning paradigm. We first propose an
architecture for activity parsing that can be readily adapted for VLMs, featuring a video stream, a
text stream, and video tokenizers shared across all three levels of activity. Although fine-tuning is a
widely used transfer learning technique, it requires a fixed architecture and clip sampling approach. In
GraphVLM, we propose a transfer learning approach based on knowledge distillation, which enables
the adaptation of VLMs in a flexible and lightweight manner.

2 Related work

Activity recognition. Activity recognition tasks a model to identify events performed by human
agents. The dominant task has been activity classification on benchmarks such as [2,15,116]], but other
datasets add richer information to their annotations such as spatio-temporal scene graphs [[19, 21]].
3D CNNs that jointly model space and time [32} 133} 134] have been popular for activity recognition
historically, but recently transformers-based methods have achieved comparable or superior results
[35, 136, 137, 138 139]. Action localization datasets like ActivityNet [[15], THUMOS’ 14 [40], and
FineGym [27]] 1abel the temporal boundaries and the action class of each action that happens within
the video. The methods utilized here tend to propose temporal boundaries and then classify them
[41}142, 143|144, 145]], while others attempt to jointly model both [46}47]. Other datasets [25} 28] add
a spatial dimension, attempting to localize actions in both space and time, where methods include
long-term feature banks [48], relation-modeling [49, 50] and pretrained video modules and object



Table 1: A comparison of MOMA-LRG’s vocabulary with related video datasets. MOMA-LRG’s
hierarchy unifies several definitions together (src: source, trg: target, atr: actor, obj: object, c:
classified, g: grounded, t: tracked).

Unary predicate Binary predicate
Dataset Name src_atr  src_obj Name src_atr  src_obj trg_atr  trg_obj
AVA [25]/AVA-Kinetics [26] Pose gt - Person-person/object interaction gt - -
Action Genome [19 - - - Relationship g - - c.g
FineGym [27] Sub-action - - - - -
Home Action Genome [21 - - - Relationship g - - cg
MultiSports [28 Action gt - Action - -
Something V2 [16 - - - Human-object interaction - - - c
DALY [29 Action gt c.g - - - - -
MEVA [30] Activity gt gt Activity gt - gt gt
Individual Atomic Actions Communicative

TITAN (3 Vehicle State/Action et cet Contextual/Transportive cet cet cet
MOMA-LRG Attribute c,gt cgt Relationship cgt c,gt cgt c,gt

detection architectures [28]. MOMA-LRG encompasses and extends these existing video datasets by
annotating actions, sub-activities that compose them, and rich scene graphs to describe the interactions
between entities in a crowded scene.

Video and language models. Several works pre-train large-scale models jointly on video and
language data for a variety of downstream video-language tasks, such as video captioning, VQA,
and video-text retrieval [51} 18 [12} |10, (14} [13]]. Pre-training these models often either relies on a
combination of masked-language-modeling (MLM) and masked-frame-modeling (MFM) [18, 110} (14]]
or contrastive learning [51} (9, [12} [13]]. These VLMs have shown promising zero-shot results for
activity recognition tasks such as activity classification [[18]], action segmentation [[12], and action
step localization [12,[10]. These methods show powerful zero-shot capabilities for high-level video
understanding, however, they lack explicit knowledge about fine-grained interactions between actors
and objects.

Fine-tuning large pre-trained models. Finetuning pre-trained large language models for downstream
tasks has recently become the most popular learning method in NLP [52}53]]. Methods for efficiently
fine-tuning these large language models, such as using adapter modules [54] and prompting [55} 53],
use only a small number of learnable parameters while keeping most of the pre-trained model frozen.
As a result, these methods are less computationally expensive than full fine-tuning of the entire
model, which is the traditional fine-tuning method used in computer vision [56,57]. There has been
recent work adopting these efficient fine-tuning techniques for vision-language models. [58]] and [S9]
both propose adapter module methods and demonstrate comparable performance to full fine-tuning.
On the prompt-tuning side, Zhou et al. [[60]] develops prompt-tuning techniques for vision-language
models for zero-shot image classification, Yao et al. [61] uses prompt-tuning for grounding referring
expressions in images, and Ju et al. [62] uses image-level tokens and textual prompt tuning for
few-shot action recognition.

Low-shot activity recognition. Low-shot activity recognition, which recognizes activities that were
either scarce or missing from the training set, reduces the reliance on obtaining expensive labels
for crowded scenes. Zero-shot action recognition tries to predict unseen classes, where approaches
either project visual features into a semantic embedding space [63} 64, 165,166} 67], an intermediate
embedding space learned from textual and visual data [68], |69} [70]], or a visual embedding space
that is synthesized by incorporating semantic information [71} [72]. Few-shot learning tends to
be based on metric learning, which learns similarities to the scarce in-domain training examples
[[73L (74 [75) [76L [77) [78]. Other recent methods utilized self-supervised and contrastive or meta-
learning approaches [[79,180] with a high degree of success. More recently, visual-language models
have shown strong results on zero-shot recognition [18] 4} |12]].

Visual grounding and scene graphs. Visual grounding merges visual and language understanding
by attempting to localize an object in an image space given a text query. Some datasets associate
nouns with bounding boxes in the video [81} I82], while others introduce scene graph annotations
that describe the relationships between entities in the image [83]]. Yu et al. [84] and Chen et al. [85]
demonstrate that using hierarchical text-generated scene graphs allows for better representation of
fine-grained semantics than using raw text alone. Other work has proposed the use of an action graph
to generate novel videos [86, 87], defining an object-centric graph with objects as nodes and edges as



Table 2: A comparison of MOMA-LRG with related video datasets. A dash signifies that the
annotation does not exist in the dataset, and n/a indicates that the paper did not report a specific
number.

Atomic action

Activity Sub-activity Actor Object Unary predicate Binary predicate
Dataset Hours Levels Classes Instances Classes Instances Classes T Classes Instances Classes Instances Classes Instances
AVA 25 107.5 2 - - - - 1 424K - - 14 424K 66 651K
AVA-Kinetics [26 638.9 2 - - - 1 310K - - 13 633K 47 ~ 800K
Action Genome |19 82 2 157 10K - - - - 35 0.4M - - 25 1.7M
FineGym [27 708 3 10 49K 530 327K - - - - - - - -
Home Action Genome [21 254 3 75 1.75K 453 24.6K 1 24.6K 86 n/a - - 29 583K
MultiSports [28' 18.6 2 66 37.7K - - 1 902K - - - - - -
Something V2 [16 121 1 - - - - - - a few thousand 30K - - 174 318K
DALY [29 31 1 10 3.6K - - n/a n/a n/a n/a - -
MEVA (30 9.3K 1 37 n/a - - n/a n/a n/a n/a - - -
TITAN [31 3 1 - - - - 3 395K 2 249K 16 935K 28 426K
MOMA |20 66 3 17 373 67 2364 20 80K 120 80K 52 12K 23 119K
MOMA-LRG 148 3 20 1.4K 91 15.8K 26 740K 126 396K 13 704K 52 1.4M

actions with temporal annotations. Wang et al. [88] models videos as space-time region graphs that
capture long-range dependencies and spatial-temporal relations between objects.

3 Activity Graphs and the MOMA-LRG Dataset

MOMA-LRG improves and extends MOMA [20] by providing the new abstraction of the activity
graph as the single universal representation of human activities that encompasses video understanding
at the activity, sub-activity, and atomic action levels. Thus, our new formulation for the task of
activity parsing as activity graph generation allows for a single overarching task for hierarchical
video understanding. The MOMA-LRG dataset also enables the training of few-shot video-language
models by encapsulating high-level and fine-grained semantics within activity videos.

3.1 Activity Graphs

The key abstraction of MOMA-LRG is the activity graph, an all-encompassing and human-
interpretable representation of human activities that captures temporal changes and compositionality.
An activity graph is a dynamic graph G = [G1, Ga, ..., G;] represented as an ordered list of timed
events, such as the addition or deletion of nodes and edges over time. Each G, € G can be rep-
resented as the pair (V;, E;), where V; is a set of entities and their attributes and the set of edges
E; = {(v14,7i,v9;), ...} encapsulates the relationships between the source and target entities. An
activity graph has two levels of labels: (1) an activity label, which stays constant for the entire graph;
(2) a dynamic subactivity label, which changes when subactivities begin and end. Each unique
activity instance is associated with a unique activity graph. Unlike the dynamic scene graphs from
[L9], activity graphs in MOMA-LRG are activity-centric and contain information relevant only to the
activity. The activity graph includes three levels of hierarchy:

Activity. An activity is an event where several human (actors) and non-human (objects) entities
interact to complete a multi-step task. Parsing the activity returns an activity class label associated
with the activity graph.

Sub-activity. A sub-activity is a step that makes up part of a larger activity and is (1) temporally
localized within an activity and (2) mutually exclusive between activities. For example, the sub-
activity the adult is comforting the child is unique to the activity of babysitting. Sub-
activities are represented with two labels: 1) a temporal boundary, which indicates the start and end
time relative to the activity video; 2) a semantic label, which represents the class of the sub-activity.
Parsing the activity produces the dynamic sub-activity label that contains the temporal boundaries
and class of all sub-activities.

Atomic action. An atomic action describes how entities interact within a sub-activity video, which
involves understanding entities and their predicates. Atomic actions are entity-centric, i.e. entities
involved in an atomic action are spatially and temporally localized. Entity labels are entity-centric
to disambiguate which entities are involved in a given atomic action. Atomic actions are activity
and sub-activity agnostic—that is, a given atomic action class can be involved in many different
sub-activity and activity instances. The predicates are atomic, such that they are generic across
all activities. Predicates like running, walking, or bending are general and can be involved in



barber

barber

o141

5930 0000 0030 0100 0130 0200 0230 0300 0330 0400 0430 0500 0530 0600 0630 0700 0730 0800 0830 0900 0930 1000 1030

S

Figure 1: An example of the results for the activity parsing task. For the activity level, the model
predicts the activity class haircut for the video input. For the subactivity level, the temporally
localized sub-activity predictions are displayed on the bottom, with the corresponding sub-activity
classes on the legend placed on the left. For the atomic action level, the model has localized and
tracked all entities (actors and objects) and predicted their interactions as displayed in the graph
visualization on the right. Note: this graphic is a live animation that can be viewed in an Adobe
Acrobat PDF viewer.

multiple sub-activity and activity instances. At this level, activity parsing evaluates the ability of the
model to predict: (1) all predicates present in the global context, similar to scene graph generation and
relationship retrieval, and (2) all the predicate-specified entities across time, similar to spatio-temporal
atomic action detection in [23]].

Atomic actions consist of two components: entities and predicates. An entity is defined to be either a
human actor or an object that is present in the scene and relevant to the action being performed. In a
video frame, we annotate each entity with a bounding box, class label, and instance ID. Throughout
the video instance, an entity is therefore represented as a spatio-temporal tube with a corresponding
semantic label. A predicate to describe an interaction that occurs with at least one entity. There are
two different types of predicates: a unary predicate defined on a specific entity is called an attribute,
whereas a predicate defined on two or more entities is called a higher-order relationship. Unlike
other scene graph datasets [83}[19], relationships in MOMA-LRG can involve two or more actors.
To do this, we provide hyperedge annotations where higher-order interactions involving multiple
entities are grouped into a single edge (e.g. multiple actors beneath an object). Note that multi-node
edges can easily be converted to a set of binary edges if needed.

Intuition and advantages. The activity graph is a single universal representation of human activities,
consisting of three levels of hierarchy ranging from coarse to fine-grained: activity, sub-activity,
and atomic action. This is inspired by the fact that complex human activities in real-world settings
are usually hierarchical and compositional across space and time. In particular, complex human
activities typically involve a number of achievable steps (activity — sub-activity). It is also essential
to understand the roles of actors, the affordances of objects, and the relationships between these
components in order to recognize fine-grained activities (sub-activity — atomic action). In contrast,
many existing activity recognition benchmarks and tasks [2} only focus on a specific level of
granularity.

3.2 The MOMA-LRG Dataset

Dataset statistics. MOMA-LRG contains 148 hours of videos and provides annotations on 1,412
activity instances from 20 activity classes, ranging from 31s to 600s and with an average duration of
241s. Besides, it contains 15,842 sub-activity instances from 91 sub-activity classes, ranging from 3s
to 31s and with an average duration of 9s. On the atomic action level, we provide 161,265 atomic
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Figure 2: Partonomic and taxonomic hierarchies of MOMA-LRG. MOMA-LRG breaks down
activities into sub-activities, which are in turn described by atomic actions. Atomic actions are broken
down into entities (actors and objects), whose interactions with each other are described by predicates
that either attributes (unary, involving one entity) or relationship (binary, involving two entities).

action interaction instances, which can be further broken down into actors, objects, relationships, and
attributes. Specifically, MOMA-LRG contains

* 104,564 actor instances (636,194 bounding boxes) from 26 classes;

* 47,494 object instances (349,034 bounding boxes) from 225 unique classes;
* 1,037,319 relationships from 52 classes;

* 704,230 relationships from 13 classes.

Language-Refined Graphs. One of MOMA-LRG’s distinguishing features is that it enables few-shot
capabilities. To do this, we provide graphical annotations that are easily compatible with natural
language through two conventions. First, predicate classes are of the form [src] [predicate]
[trgl, where src is the source entity and trg the target entity. This enables easy conversion
to natural language given graphical annotations. For example, given an outgoing predicate edge
with class [src] talking to [trg] from the entity cashier onto the entity customer, we can
produce the sentence the cashier is talking to a customer. Second, all of our annotations
are in the present continuous tense, e.g. the player is throwing a frisbee, which resembles
a live narration in a fashion similar to existing video-language datasets (e.g. YouCook2 [90],
HowTo100M [9], etc.) created from instructional YouTube videos.

Comparison with existing datasets. Compared to existing datasets, there are several key advantages
that the MOMA-LRG dataset provides. First, MOMA-LRG grounds all associated entities. In
contexts with more than one entity, it is necessary to disambiguate which entities are involved in a
particular interaction. Existing ego-centric datasets [16}[27]] dodge this issue since at most interaction
is involved in a scene. Second, we classify each actor’s role. Typical datasets [27, 28] involve one
type of actor and hence do not label the person’s role [25, 19} 21]]. In a diverse set of scenes, the role
of the actor becomes more important in understanding actions since it can provide an important signal
in parsing a human activity [91]. Third, the MOMA-LRG dataset differentiates between static and
dynamic predicates. For example, the dynamic predicate sitting down is a dynamic movement
where an actor transitions from the standing static predicate to the sitting static predicate. We
argue that observing state transitions is important for the model to learn, encouraging it to learn
perceptual causality [92]. For a more detailed comparison, refer to Table 2]

Comparison with MOMA [20]]. First of all, MOMA-LRG introduces a new dataset and a new
abstraction of human activity. MOMA-LRG contains an order of magnitude more annotations, along
with longer videos from a greater variety of scenes. In addition, MOMA-LRG introduces activity
graphs as the overarching graphical representation across all three levels of hierarchy, as opposed
to only the atomic level. Secondly, MOMA-LRG is directly motivated by the rise and limitations
of VLMs. While VLMs have demonstrated remarkable generalization on videos from new domains
and improved scalability through training on free video-language pairs, there is a lack of a single
overarching task for evaluating VLMs on complex activity recognition. MOMA-LRG introduces a
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new annotation schema that can be easily converted from natural language to graphical annotations to
enable few-shot learning, and a new framework (GraphVLM) to evaluate VLMs on activity parsing.

Ethics. Prior research [93]] shows that Youtube videos exhibit geographic bias. To mitigate potential
ethical issues associated with the dataset, we have adopted the following protocols: (1) Taxonomy
selection: We carefully selected each activity class in taxonomy to ensure they are gender-neutral,
culturally inclusive, and friendly toward people from different socioeconomic backgrounds. (2) Video
selection: A team of diverse researchers from different ethnicities and genders selects, examines,
and discusses each video to ensure it is diverse and does not contain offensive content. We used
keywords from multiple different languages (including but not limited to English, Chinese, French,
and Japanese) and word choices to search for videos. Diversification of the videos not only enhances
the robustness and generalization of our models, but also significantly reduces the potential bias in
the dataset.

4 Activity Parsing and the GraphVLM Model

In this section, we introduce a method for performing activity parsing and provide a transfer learning
framework to adapt Video-Language Models (VLMs) to activity parsing.

4.1 Activity Parsing

We define activity parsing as the task of generating an activity graph as defined in Section [3.1}
Specifically, given a video as input, an activity parsing model (1) returns an activity class label, (2)
temporally localizes and classifies all sub-activities, as well as (3) localizes each entity in the scene.
Following this, it will need to detect all predicates: i.e. all unary predicates (i.e., attributes) involving
a single entity and all binary predicates (i.e. relationships) which are between pairs of distinct entities.
Refer to Figure[T|for an example of the end results of activity parsing.

4.2 GraphVLM: Video Stream

Our video stream module consists of two tokenizers and an encoder for each level of the activity
hierarchy.

Tokenization. The first tokenizer is the context tokenizer, which consists of a clip sampler and a
clip feature extractor. The clip sampler takes a video as input and samples non-overlapping short
video clips. It has two parameters: the number of sampled frames 7" and temporal stride 7., meaning
that each sampled clip consists of 7' x 7, total frames. For our clip feature extractor, we evaluate on
a Swin-B [36], MViT-B [94], and SlowFast-R50 [32] pre-trained on Kinetics-400 [2]. The second
tokenizer is the entity tokenizer, which consists of a frame sampler and an entity detector. The role of
the frame sampler is to uniformly sample frames across the whole video, parameterized by 7., where
T 1s the temporal stride (i.e. we sample one frame every 7. frames). After frame sampling, we detect
entities at the frame level and generate bounding boxes as well as ROI features associated with each



entity, which we call the entity token. These two tokens are used to generate an entity-context token
by applying the bounding boxes extracted from entity tokenization to the context tokens through
ROIAlign.

Entity detection. To detect entities and extract entity tokens for activity parsing, we use a Faster-
RCNN [89] object detector with a ResNet-101 [95] FPN [96]] backbone pre-trained on ImageNet
[L]. We use maskrcnn—benchmarlﬂ for our implementation. For our activity parsing experiment,
we treat all human role classes as a single class to facilitate downstream predicate classification.
Separately, we also experiment with object detection using the role classes in our dataset. We use
DetectronZE] for actor role detection, and use pre-trained weights from COCO keypoints[97], with the
same architecture described above.

Activity encoding. The video encoder for activity videos sparsely samples N, context tokens
produced by the context tokenizer and performs a mean pool to get the activity feature. This encoding
works both with and without a text stream: using the features, we can train an action classifier
using a cross-entropy loss exclusively on the features or train jointly with the text stream utilizing a
contrastive loss.

Sub-activity encoding. The video encoder for sub-activity videos densely samples N context tokens
which are used to run either temporal action detection or segmentation. For temporal action detection,
we input the context tokens into a G-tad [41] model and train a model to predict temporal boundaries
using a cross-entropy loss. For temporal action segmentation, the encoding is flexible to work with
and without the text stream: we can train a classifier with cross-entropy loss using only the features
and classify each token as belonging to a sub-activity class or a background class and also train jointly
with a text stream using a contrastive loss.

Atomic action encoding. Atomic action encoding consists of two parts: per-frame scene graph
generation and spatio-temporal atomic action segmentation. For scene graph generation, relationships
are grounded over all entities in the scene, whereas spatio-temporal atomic action segmentation is
actor-centric and only considers a single actor at a time. We use entity tokens (i.e. object labels,
bounding boxes, and ROI features) as input for scene graph detection. We train a ReIDN [98]] model
for scene graph detection using Microsoft’s Scene Graph Benchmarkﬂ for our implementation. We
evaluate our model on the tasks of predicate classification, scene graph classification, and scene
graph detection without graphical constraints as in Xu et al. [99], since the MOMA-LRG dataset
often contains multiple relationships for a given source and target entity. For spatio-temporal atomic
action segmentation, the sequence of entity-context tokens of an actor is taken as input, and the
model outputs frame-level predicate labels for the actor in a multi-label classification setting. In our
implementation, we train a single-layer classifier with a sigmoid activation function, though we note
that our framework is compatible with using the generated natural language predicate sentences as
supervision via contrastive learning.

4.3 GraphVLM: Text Stream

In order to effectively leverage the natural language capabilities of VLMs, we convert all levels of the
MOMA-LRG activity graph hierarchy to natural language via our graph-to-language module.

Graph-to-language module. At the activity level, each class name is a noun, thus it can be
represented by its class name or via prompting (e.g. by prepending "A video of [CLS_NAME]").
At the sub-activity level, class names are descriptions of the sub-activities in the present continuous
tense (narration-style). At the atomic action level, we tag all predicates with [src], and [trg]
templates to allow for easy conversion into a full grammatically correct sentence in its present
continuous form. For example, the predicate touching is represented as [src] touching [trg].
So, given the entities [src]=person and [trg]=table, the sentence is A person is touching
the table.

Text encoding. After converting the associated activity graph level to language, we use a pre-trained
language model to encode the text. When evaluating existing VLMs (e.g. VideoCLIP [12], FiT [8]])

2github.com/facebookresearch/maskrcnn-benchmark
3 github.com/facebookresearch/detectron?
*github.com/microsoft/scene_graph_benchmark



Table 4: Activity and sub-activity video classification.
Results are reported for activity and sub-activity classi-

Table 3: Detection of sub-activities in . . . .
fication with different video backbones.

activity videos with temporal action de-

. . Activity Sub-activity
tection. AP is rep.()rted at thresholds 01’ Model T x 71  Pre-train acc@1  acc@5 acc@1 acc@5
0.3, and 0.5 for different backbones. MVIT-B 16x4 Kinetics-400 07731 09468  0.6032 09473

Temporal Detection 16 x4 None 0.5140 0.8010 0.4375  0.7500

Backbones Pre-train AP@0.1 AP@0.3 AP@0.5 SlowFast-R50 8 x8 Kinetics-400 0.7569  0.9375 0.5625 0.9226
MVITE <200 17906 ) S107 » 8x8 None 04375 07500 03739 07731
SlowFastRS0 K400 21797 e Yoo4  Swin-B 4x3  Kinetics-400 0.8576  0.9688 06450 0.9781
Swin-B K-400 22.102 10.853 4.860 4x3 None 0.5282  0.8415 0.3817  0.7868
GCN 30 x1 None 0.7837 0.9539 0.3829 0.8276

GCN (oracle bbox) 30 x 1 None 0.9502  0.9964 0.563  0.9706

using our framework, we use their respective text encoders. For our model agnostic use-case, we use
bert-base-uncased [7]].

4.4 GraphVLM: Few-shot and Transfer Learning

MOMA-LRG includes a few-shot split, which splits the MOMA dataset into non-overlapping activity
and sub-activity classes. The few-shot training set contains 10 activity classes and 45 sub-activity
classes, the validation set contains 5 activity classes and 24 sub-activity classes, and the test set
contains 5 activity classes and 22 sub-activity classes. For our baseline methods, we report results
using two meta-learning classifiers, OTAM [100] and CMN [[101]]. To evaluate the performance of
video-language models in the few shot setting, we perform out-of-the-box classification for a pre-
trained VideoCLIP [[12] and Frozen-In-Time [8] video-language model on activity and sub-activity
classification on the meta-test set. We use class names as text (either activity or sub-activity) and raw
videos as input. To compute the class label for a video input, we find the text embedding that is closest
in dot product similarity to the video embedding as in Xu et al. [[12]. We visualize the performance
of this method on the regular MOMA-LRG test set in Figure 4} For k-shot video classification, we
sample k videos per class and average the representation to obtain a prototype video. We compute a
weighted average between the text embedding and the video prototype and classify using the same
method as in the zero-shot setting. Details for our explanation and an ablation study of our method
can be found in the Appendix.

In addition to our framework for evaluating VLMs without training, we also propose a method for
using VLMs for activity parsing in a more flexible manner than full fine-tuning. We use knowledge
distillation to incorporate visual and linguistic knowledge from VLMs into the activity parsing
framework. This is considerably more flexible than full fine-tuning since it is model-agnostic. In
this method, we can use a different backbone network than that used by the VLMs, and can sample
clips differently so long as the clips from the student and the teacher model are centered at the same
frame. We report results using our framework and investigate the effect of incorporating linguistic
information for spatio-temporal atomic action segmentation in Table[5] Details for our approach are
explained in the Appendix.

5 Activity Parsing Evaluation

In this section, we evaluate our dataset on methods across two different tasks. First, we evaluate
model performance on the activity parsing task which leverages the hierarchy of our dataset. Next,
we examine our method on activity parsing in the few-shot setting.

We evaluate each level of activity parsing using the following metrics.

Activity: The performance of activity recognition is measured by the top 1 accuracy (acc@1) and
top 5 accuracy (acc@5) for video-level activity classification. Results are shown in Table [] for the
standard setting and Table [§] for the few-shot setting.

Sub-activity: The performance of sub-activity recognition is measured on two tasks. First, we report
the sub-activity acc@1 and acc@5, where the pre-segmented sub-activity video is used as input.
Results are shown in Table ] for the standard setting and Table |6 for the few-shot setting. Second, we
evaluate temporal detection using mAP at thresholds 0.1, 0.3, and 0.5 and report the average mAP
following [40]]. Results are shown in Table



Table 5: Scene graph detection, entity detection, and spatio-temporal atomic action segmentation
results from the methods described in Section[4.2] The entity detection results pose challenges for
scene graph detection, as is evidenced by the relatively higher scores for SGCls and PredCls, where
ground truth bounding boxes and class labels are known.

Scene Graph Detection

Entity Detection Spatial-Temporal Segmentation

Recall@20 Recall @50 Recall@100 AP APSO  AP75  APs  APm APl Video only  Video + text stream
PredCls 582243 624389 64.0983 i lijle 383567 58.1256 412369 78053 194897 400392  MVIT-B 02130 02353
SGCls 443065 48.3825 502992 gy 152806 293032 14.0742 43134 101288 171472  SlowFastR50  0.1975 02023

SGDet 37.6275 43.8594 47.9960

: Figure 4: A confusion matrix for zero-shot classification of Video-

: " CLIP [12] on the standard MOMA-LRG sub-activity test set. The

: sub-activities are ordered to be adjacent to other sub-activities within

the same activity. As is indicated by the green squares and the results

: © inTable [6] there is a significant degree of within-activity confusion
for zero-shot video language models.

Table 6: Low-shot video classfication. We evaluate both VideoCLIP [[12] and Frozen-in-Time [8]]
within our few-shot framework for activity and sub-activity classification. We note that although the
video-language models we tested performed well for high-level activity classification, they performed
significantly worse for the more granular task of sub-activity classification.

Activity Sub-activity
Model 0-shot  1-shot 5-shot 0-shot 1-shot 5-shot
OTAM [100] - 80.71  92.07 - 57.14 72.59
CMN [101] - 73.57 86.30 - 52.30  66.60
VideoCLIP [12] 7590 84.40 84.80 30.80 3270 32.70
Frozen [8] 90.80 92.30 92.50 19.10 26.50 26.30

Atomic action: The performance of atomic action recognition is measured on two tasks. First, we
evaluate entity detection using standard average prevision (AP) metrics. To evaluate scene graph
generation, we follow work in 83,119} 199]] and perform the following tasks: predicate classification
(PredCls), which takes ground truth bounding boxes and object categories as input and returns
predicate labels, scene graph classification (SGCls) which only takes in ground truth bounding boxes
as input and predicts object categories and predicate labels, and scene graph detection (SGDet) which
simply takes in an input image and predicts bounding box locations, object categories, and predicate
labels. Results are shown in Table

6 Conclusion

We introduce the MOMA-LRG dataset, a large activity recognition dataset of complex human
activities that enables the evaluation and fine-tuning of large, generalizable video-language models.
We define activity parsing as the overarching task of activity graph generation, requiring video
understanding at multiple levels of granularity. We demonstrate the capacity of MOMA-LRG to train
video-language models by introducing a model-agnostic and lightweight approach for adaptation,
and we evaluate VLMs by demonstrating strong few-shot classification performance. We hope that
MOMA-LRG will enable further research into generalizable activity recognition models that are
trained with multiple input modalities or generate language descriptions for videos.
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