
Appendix
A More examples of optimality criteria and fixed points

To demonstrate the generality of our approach, we describe in this section more optimality mapping
F or fixed point iteration T .

Mirror descent fixed point. We again consider the case when x?(θ) is implicitly defined as the
solution of (8). We now generalize the projected gradient fixed point beyond Euclidean geometry.
Let the Bregman divergence Dϕ : dom(ϕ)× relint(dom(ϕ))→ R+ generated by ϕ be defined by

Dϕ(x, y) := ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉.
We define the Bregman projection of y onto C(θ) ⊆ dom(ϕ) by

projϕC (y, θ) := argmin
x∈C(θ)

Dϕ(x,∇ϕ∗(y)). (12)

Definition (12) includes the mirror map∇ϕ∗(y) for convenience. It can be seen as a mapping from
Rd to dom(ϕ), ensuring that (12) is well-defined. The mirror descent fixed point mapping is then

x̂ = ∇ϕ(x)

y = x̂− η∇1f(x, θ)

T (x, θ) = projϕC (y, θ). (13)

Because T involves the composition of several functions, manually deriving its JVP/VJP is error
prone. This shows that our approach leveraging autodiff allows to handle more advanced fixed point
mappings. A common example of ϕ is ϕ(x) = 〈x, log x− 1〉, where dom(ϕ) = Rd+. In this case,
Dϕ is the Kullback-Leibler divergence. An advantage of the Kullback-Leibler projection is that it
sometimes easier to compute than the Euclidean projection, as we detail in Appendix C.

Newton fixed point. Let x be a root of G(·, θ), i.e., G(x, θ) = 0. The fixed point iteration of
Newton’s method for root-finding is

T (x, θ) = x− η[∂1G(x, θ)]−1G(x, θ).

By the chain and product rules, we have

∂1T (x, θ) = I − η(...)G(x, θ)− η[∂1G(x, θ)]−1∂1G(x, θ) = (1− η)I.

Using (3), we get A = −∂1F (x, θ) = ηI . Similarly,

B = ∂2T (x, θ) = ∂2F (x, θ) = −η[∂1G(x, θ)]−1∂2G(x, θ).

Newton’s method for optimization is obtained by choosing G(x, θ) = ∇1f(x, θ), which gives

T (x, θ) = x− η[∇2
1f(x, θ)]−1∇1f(x, θ). (14)

It is easy to check that we recover the same linear system as for the gradient descent fixed point
(5). A practical implementation can pre-compute an LU decomposition of ∂1G(x, θ), or a Cholesky
decomposition if ∂1G(x, θ) is positive semi-definite.

Proximal block coordinate descent fixed point. We now consider the case when x?(θ) is implic-
itly defined as the solution

x?(θ) := argmin
x∈Rd

f(x, θ) +

m∑
i=1

gi(xi, θ),

where g1, . . . , gm are possibly non-smooth functions operating on subvectors (blocks) x1, . . . , xm of
x. In this case, we can use for i ∈ [m] the fixed point

xi = [T (x, θ)]i = proxηigi(xi − ηi[∇1f(x, θ)]i, θ), (15)

where η1, . . . , ηm are block-wise step sizes. Clearly, when the step sizes are shared, i.e., η1 =
· · · = ηm = η, this fixed point is equivalent to the proximal gradient fixed point (7) with g(x, θ) =∑n
i=1 gi(xi, θ).
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Quadratic programming. We now show how to use the KKT conditions discussed in §2.2 to
differentiate quadratic programs, recovering Optnet [6] as a special case. To give some intuition, let
us start with a simple equality-constrained quadratic program (QP)

argmin
z∈Rp

f(z, θ) =
1

2
z>Qz + c>z subject to H(z, θ) = Ez − d = 0,

where Q ∈ Rp×p, E ∈ Rq×p, d ∈ Rq. We gather the differentiable parameters as θ = (Q,E, c, d).
The stationarity and primal feasibility conditions give

∇1f(z, θ) + [∂1H(z, θ)]>ν = Qz + c+ E>ν = 0

H(z, θ) = Ez − d = 0.

In matrix notation, this can be rewritten as[
Q E>

E 0

] [
z
ν

]
=

[
−c
d

]
. (16)

We can write the solution of the linear system (16) as the root x = (z, ν) of a function F (x, θ). More
generally, the QP can also include inequality constraints

argmin
z∈Rp

f(z, θ) =
1

2
z>Qz+ c>z subject to H(z, θ) = Ez− d = 0, G(z, θ) = Mz− h ≤ 0.

where M ∈ Rr×p and h ∈ Rr. We gather the differentiable parameters as θ = (Q,E,M, c, d, h).
The stationarity, primal feasibility and complementary slackness conditions give

∇1f(z, θ) + [∂1H(z, θ)]>ν + [∂1G(z, θ)]>λ = Qz + c+ E>ν +M>λ = 0

H(z, θ) = Ez − d = 0

λ ◦G(z, θ) = diag(λ)(Mz − h) = 0

In matrix notation, this can be written as Q E> M>

E 0 0
diag(λ)M 0 0

[zν
λ

]
=

[ −c
d

λ ◦ h

]
While x = (z, ν, λ) is no longer the solution of a linear system, it is the root of a function F (x, θ)
and therefore fits our framework. With our framework, no derivation is needed. We simply define f ,
H and G directly in Python.

Conic programming. We now show that the differentiation of conic linear programs [3, 5], at the
heart of differentiating through cvxpy layers [2], easily fits our framework. Consider the problem

z?(λ), s?(λ) = argmin
z∈Rp,s∈Rm

c>z subject to Ez + s = d, s ∈ K, (17)

where λ = (c, E, d), E ∈ Rm×p, d ∈ Rm, c ∈ Rp and K ⊆ Rm is a cone; z and s are the primal
and slack variables, respectively. Every convex optimization problem can be reduced to the form (17).
Let us form the skew-symmetric matrix

θ(λ) =

 0 E> c
−E 0 d
−c> −d> 0

 ∈ RN×N ,

where N = p+m+ 1. Following [3, 2, 5], we can use the homogeneous self-dual embedding to
reduce the process of solving (17) to finding a root of the residual map

F (x, θ) = θΠx+ Π∗x = ((θ − I)Π + I)x, (18)

where Π = projRp×K∗×R+
and K∗ ⊆ Rm is the dual cone. The splitting conic solver [68],

which is based on ADMM, outputs a solution F (x?(θ), θ) = 0 which is decomposed as x?(θ) =
(u?(θ), v?(θ), w?(θ)). We can then recover the optimal solution of (17) using

z?(λ) = u?(θ(λ)) and s?(λ) = projK∗(v
?(θ(λ)))− v?(θ(λ)).

The key oracle whose JVP/VJP we need is therefore Π, which is studied in [4]. The projection onto a
few cones is available in our library and can be used to express F .
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Frank-Wolfe. We now consider
x?(θ) = argmin

x∈C(θ)⊂Rd

f(x, θ), (19)

where C(θ) is a convex polytope, i.e., it is the convex hull of vertices v1(θ), . . . , vm(θ). The Frank-
Wolfe algorithm requires a linear minimization oracle (LMO)

s 7→ argmin
x∈C(θ)

〈s, x〉

and is a popular algorithm when this LMO is easier to compute than the projection onto C(θ).
However, since this LMO is piecewise constant, its Jacobian is null almost everywhere. Inspired by
SparseMAP [67], which corresponds to the case when f is a quadratic, we rewrite (19) as

p?(θ) = argmin
p∈4m

g(p, θ) := f(V (θ)p, θ),

where V (θ) is a d × m matrix gathering the vertices v1(θ), . . . , vm(θ). We then have x?(θ) =
V (θ)p?(θ). Since we have reduced (19) to minimization over the simplex, we can use the projected
gradient fixed point to obtain

T (p?(θ), θ) = proj4m(p?(θ)−∇1g(p∗(θ), θ)).

We can therefore compute the derivatives of p?(θ) by implicit differentiation and the derivatives of
x?(θ) by product rule. Frank-Wolfe implementations typically maintain the convex weights of the
vertices, which we use to get an approximation of p?(θ). Moreover, it is well-known that after t
iterations, at most t vertices are visited. We can leverage this sparsity to solve a smaller linear system.
Moreover, in practice, we only need to compute VJPs of x?(θ).

B Code examples

B.1 Code examples for optimality conditions

Our library provides several reusable optimality condition mappings F or fixed points T . We
nevertheless demonstrate the ease of writing some of them from scratch.

KKT conditions. As a more advanced example, we now describe how to implement the KKT
conditions (6). The stationarity, primal feasibility and complementary slackness conditions read

∇1f(z, θf ) + [∂1G(z, θG)]>λ+ [∂1H(z, θH)]>ν = 0

H(z, θH) = 0

λ ◦G(z, θG) = 0.

Using jax.vjp to compute vector-Jacobian products, this can be implemented as

grad = jax.grad(f)

def F(x, theta):

z, nu, lambd = x

theta_f, theta_H, theta_G = theta

_, H_vjp = jax.vjp(H, z, theta_H)

stationarity = (grad(z, theta_f) + H_vjp(nu)[0])

primal_feasability = H(z, theta_H)

_, G_vjp = jax.vjp(G, z, theta_G)

stationarity += G_vjp(lambd)[0]

comp_slackness = G(z, theta_G) * lambd

return stationarity, primal_feasability, comp_slackness

Figure 7: KKT conditions F (x, θ)
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Similar mappings F can be written if the optimization problem contains only equality constraints or
only inequality constraints.

Mirror descent fixed point. Letting η = 1 and denoting θ = (θf , θproj), the fixed point (13) is
x̂ = ∇ϕ(x)

y = x̂−∇1f(x, θf )

T (x, θ) = projϕC (y, θproj).

We can then implement it as follows.

grad = jax.grad(f)

def T(x, theta):

theta_f, theta_proj = params

x_hat = phi_mapping(x)

y = x_hat - grad(x, theta_f)

return bregman_projection(y, theta_proj)

Figure 8: Mirror descent fixed point T (x, θ)

Although not considered in this example, the mapping∇ϕ could also depend on θ if necessary.

B.2 Code examples for experiments

We now sketch how to implement our experiments using our framework. In the following, jnp is
short for jax.numpy. In all experiments, we only show how to compute gradients with the outer
objective. We can then use these gradients with gradient-based solvers to solve the outer objective.

Multiclass SVM experiment.

X_tr, Y_tr, X_val, Y_val = load_data()

def W(x, theta): # dual-primal map

return jnp.dot(X_tr.T, Y_tr - x) / theta

def f(x, theta): # inner objective

return (0.5 * theta * jnp.sum(W(x, theta) ** 2) +

jnp.vdot(x, Y_tr))

grad = jax.grad(f)

proj = jax.vmap(projection_simplex) # row-wise projections

def T(x, theta):

return proj(x - grad(x, theta))

@custom_fixed_point(T)

def msvm_dual_solver(init_x, theta):

# [...]

return x_star # solution of the dual objective

def outer_loss(lambd):

theta = jnp.exp(lambd)

x_star = msvm_dual_solver(init_x, theta) # inner solution

Y_pred = jnp.dot(W(x_star, theta), X_val)

return 0.5 * jnp.sum((Y_pred - Y_val) ** 2)

print(jax.grad(outer_loss)(lambd))

Figure 9: Code example for the multiclass SVM experiment.
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Task-driven dictionary learning experiment.

X_tr, y_tr = load_data()

def f(x, theta): # dictionary loss

residual = X_tr - jnp.dot(x, theta)

return huber_loss(residual)

grad = jax.grad(f)

def T(x, theta): # proximal gradient fixed point

return prox_lasso(x - grad(x, theta))

@custom_fixed_point(T)

def sparse_coding(init_x, theta): # inner objective

# [...]

return x_star # lasso solution

def outer_loss(theta, w): # task-driven loss

x_star = sparse_coding(init_x, theta) # sparse codes

y_pred = jnp.dot(x_star, w)

return logloss(y_tr, y_pred)

print(jax.grad(outer_loss, argnums=(0,1)))

Figure 10: Code example for the task-driven dictionary learning experiment.

Dataset distillation experiment.

X_tr, y_tr = load_data()

logloss = jax.vmap(loss.multiclass_logistic_loss)

def f(x, theta, l2reg=1e-3): # inner objective

scores = jnp.dot(theta, x)

distilled_labels = jnp.arange(10)

penalty = l2reg * jnp.sum(x * x)

return jnp.mean(logloss(distilled_labels, scores)) + penalty

F = jax.grad(f)

@custom_root(F)

def logreg_solver(init_x, theta):

# [...]

return x_star

def outer_loss(theta):

x_star = logreg_solver(init_x, theta) # inner solution

scores = jnp.dot(X_tr, x_star)

return jnp.mean(logloss(y_tr, scores))

print(jax.grad(outer_loss)(theta))

Figure 11: Code example for the dataset distillation experiment.
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Molecular dynamics experiment.

energy_fn = soft_sphere_energy_fn(diameter)

init_fn, apply_fn = jax_md.minimize.fire_descent(

energy_fn, shift_fn)

x0 = random.uniform(key, (N, 2))

R0 = L * x0 # transform to physical coordinates

R = lax.fori_loop(

0, num_optimization_steps,

body_fun=lambda t, state: apply_fn(state, t=t),

init_val=init_fn(R0)).position

x_star = R / L

def F(x, diameter): # normalized forces

energy_fn = soft_sphere_energy_fn(diameter)

normalized_energy_fn = lambda x: energy_fn(L * x)

return -jax.grad(normalized_energy_fn)(x)

dx = root_jvp(F, x_star, diameter, 1.0,

solve=linear_solve.solve_bicgstab)

print(dx)

Figure 12: Code for the molecular dynamics experiment.

C Jacobian products

Our library provides numerous reusable building blocks. We describe in this section how to compute
their Jacobian products. As a general guideline, whenever a projection enjoys a closed form, we leave
the Jacobian product to the autodiff system.

C.1 Jacobian products of projections

We describe in this section how to compute the Jacobian products of the projections (in the Euclidean
and KL senses) onto various convex sets. When the convex set does not depend on any variable, we
simply denote it C instead of C(θ).

Non-negative orthant. When C is the non-negative orthant, C = Rd+, we obtain projC(y) =
max(y, 0), where the maximum is evaluated element-wise. This is also known as the ReLu function.
The projection in the KL sense reduces to the exponential function, projϕC (y) = exp(y).

Box constraints. When C(θ) is the box constraints C(θ) = [θ1, θ2]d with θ ∈ R2, we obtain

projC(y, θ) = clip(y, θ1, θ2) := max(min(y, θ2), θ1).

This is trivially extended to support different boxes for each coordinate, in which case θ ∈ Rd×2.

Probability simplex. When C is the standard probability simplex, C = 4d, there is no analytical
solution for projC(y). Nevertheless, the projection can be computed exactly in O(d) expected time or
O(d log d) worst-case time [22, 63, 33, 26]. The Jacobian is given by diag(s) − ss>/‖s‖1, where
s ∈ {0, 1}d is a vector indicating the support of projC(y) [62]. The projection in the KL sense, on the
other hand, enjoys a closed form: it reduces to the usual softmax projϕC (y) = exp(y)/

∑d
j=1 exp(yj).
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Box sections. Consider now the Euclidean projection z?(θ) = projC(y, θ) onto the set C(θ) =
{z ∈ Rd : αi ≤ zi ≤ βi, i ∈ [d];w>z = c}, where θ = (α, β, w, c). This projection is a singly-
constrained bounded quadratic program. It is easy to check (see, e.g., [66]) that an optimal solution
satisfies for all i ∈ [d]

z?i (θ) = [L(x?(θ), θ)]i := clip(wix
?(θ) + yi, αi, βi)

where L : R× Rn → Rd is the dual-primal mapping and x?(θ) ∈ R is the optimal dual variable of
the linear constraint, which should be the root of

F (x?(θ), θ) = L(x?(θ), θ)>w − c.

The root can be found, e.g., by bisection. The gradient∇x?(θ) is given by∇x?(θ) = B>/A and the
Jacobian ∂z?(θ) is obtained by application of the chain rule on L.

Norm balls. When C(θ) = {x ∈ Rd : ‖x‖ ≤ θ}, where ‖ · ‖ is a norm and θ ∈ R+, projC(y, θ)
becomes the projection onto a norm ball. The projection onto the `1-ball reduces to a projection onto
the simplex, see, e.g., [33]. The projections onto the `2 and `∞ balls enjoy a closed-form, see, e.g.,
[69, §6.5]. Since they rely on simple composition of functions, all three projections can therefore be
automatically differentiated.

Affine sets. When C(θ) = {x ∈ Rd : Ax = b}, where A ∈ Rp×d, b ∈ Rp and θ = (A, b), we get

projC(y, θ) = y −A†(Ay − b) = y −A>(AA>)−1(Ay − b)

where A† is the Moore-Penrose pseudoinverse of A. The second equality holds if p < d and A is
full rank. A practical implementation can pre-compute a factorization of the Gram matrix AA>.
Alternatively, we can also use the KKT conditions.

Hyperplanes and half spaces. When C(θ) = {x ∈ Rd : a>x = b}, where a ∈ Rd and b ∈ R and
θ = (a, b), we get

projC(y, θ) = y − a>y − b
‖a‖22

a.

When C(θ) = {x ∈ Rd : a>x ≤ b}, we simply replace a>y−b in the numerator by max(a>y−b, 0).

Transportation and Birkhoff polytopes. When C(θ) = {X ∈ Rp×d : X1d = θ1, X
>1p =

θ2, X ≥ 0}, the so-called transportation polytope, where θ1 ∈ 4p and θ2 ∈ 4d are marginals, we
can compute approximately the projections, both in the Euclidean and KL senses, by switching to the
dual or semi-dual [17]. Since both are unconstrained optimization problems, we can compute their
Jacobian product by implicit differentiation using the gradient descent fixed point. An advantage of
the KL geometry here is that we can use Sinkhorn [28], which is a GPU-friendly algorithm. The
Birkhoff polytope, the set of doubly stochastic matrices, is obtained by fixing θ1 = θ2 = 1d/d.

Order simplex. When C(θ) = {x ∈ Rd : θ1 ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ θ2}, a so-called order
simplex [49, 16], the projection operations, both in the Euclidean and KL sense, reduce to isotonic
optimization [58] and can be solved exactly in O(d log d) time using the Pool Adjacent Violators
algorithm [14]. The Jacobian of the projections and efficient product with it are derived in [31, 18].

Polyhedra. More generally, we can consider polyhedra, i.e., sets of the form C(θ) = {x ∈
Rd : Ax = b, Cx ≤ d}, where A ∈ Rp×d, b ∈ Rp, C ∈ Rm×d, and d ∈ Rm. There are several
ways to differentiate this projection. The first is to use the KKT conditions as detailed in §2.2. A
second way is consider the dual of the projection instead, which is the maximization of a quadratic
function subject to non-negative constraints [69, §6.2]. That is, we can reduce the projection on
a polyhedron to a problem of the form (8) with non-negative constraints, which we can in turn
implicitly differentiate easily using the projected gradient fixed point, combined with the projection
on the non-negative orthant. Finally, we apply the dual-primal mapping , which enjoys a closed form
and is therefore amenable to autodiff, to obtain the primal projection.
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C.2 Jacobian products of proximity operators

We provide several proximity operators, including for the lasso (soft thresholding), elastic net and
group lasso (block soft thresholding). All satisfy closed form expressions and can be differentiated
automatically via autodiff. For more advanced proximity operators, which do not enjoy a closed form,
recent works have derived their Jacobians. The Jacobians of fused lasso and OSCAR were derived in
[65]. For general total variation, the Jacobians were derived in [80, 24].

D Jacobian precision proofs

Proof of Theorem 1. To simplify notations, we note A? := A(x?, θ) and Â := A(x̂, θ), and similarly
for B and J . We have by definition of the Jacobian estimate function A?J? = B? and ÂĴ = B̂.
Therefore we have

J(x̂, θ)− ∂x?(θ) = Â−1B̂ −A−1? B?

= Â−1B̂ − Â−1B? + Â−1B? −A−1? B?

= Â−1(B̂ −B?) + (Â−1 −A−1? )B? .

For any invertible matrices M1,M2, it holds that M−11 −M−12 = M−11 (M2 −M1)M−12 , so

‖M−12 −M−12 ‖op ≤ ‖M−11 ‖op‖M2 −M1‖op‖M−12 ‖op .

Therefore,

‖Â−1 −A−1? ‖op ≤
1

α2
‖Â−A?‖op ≤

γ

α2
‖x̂− x?(θ)‖ .

As a consequence, the second term in J(x̂, θ)− ∂x?(θ) can be upper bounded and we obtain

‖J(x̂, θ)− ∂x?(θ)‖ ≤ ‖Â−1(B̂ −B?)‖+ ‖(Â−1 −A−1? )B?‖

≤ ‖Â−1‖op‖B̂ −B?‖+
γ

α2
‖x̂− x?(θ)‖ ‖B?‖ ,

which yields the desired result.

Corollary 1 (Jacobian precision for gradient descent fixed point). Let f be such that f(·, θ) is
twice differentiable and α-strongly convex and ∇2

1f(·, θ) is γ-Lipschitz (in the operator norm) and
∂2∇1f(x, θ) is β-Lipschitz and bounded in norm by R. The estimated Jacobian evaluated at x̂ is
then given by

J(x̂, θ) = −(∇2
1f(x̂, θ))−1∂2∇1f(x̂, θ) .

For all θ ∈ Rn, and any x̂ estimating x?(θ), we have the following bound for the approximation
error of the estimated Jacobian

‖J(x̂, θ)− ∂x?(θ)‖ ≤
(
β

α
+
γR

α2

)
‖x̂− x?(θ)‖ .

Proof of Corollary 1. This follows from Theorem 1, applied to this specificA(x, θ) andB(x, θ).

For proximal gradient descent, where T (x, θ) = proxηg(x− η∇1f(x, θ), θ), this yields

A(x, θ) = I − ∂1T (x, θ) = I − ∂1proxηg(x− η∇1f(x, θ), θ)(I − η∇2
1f(x, θ))

B(x, θ) = ∂2proxηg(x− η∇1f(x, θ), θ)− η∂1proxηg(x− η∇1f(x, θ), θ)∂2∇1f(x, θ) .

We now focus in the case of proximal gradient descent on an objective f(x, θ) + g(x), where g is
smooth and does not depend on θ. This is the case in our experiments in §4.3. Recent work also
exploits local smoothness of solutions to derive similar bounds [13, Theorem 13]
Corollary 2 (Jacobian precision for proximal gradient descent fixed point). Let f be such that
f(·, θ) is twice differentiable and α-strongly convex and ∇2

1f(·, θ) is γ-Lipschitz (in the operator
norm) and ∂2∇1f(x, θ) is β-Lipschitz and bounded in norm by R. Let g : Rd → R be a twice-
differentiable µ-strongly convex (with special case µ = 0 being only convex), for which the function
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Γη(x, θ) = ∇2g(proxηg(x−η∇1f(x, θ)) is κη-Lipschitz in it first argument. The estimated Jacobian
evaluated at x̂ is then given by

J(x̂, θ) = −(∇2
1f(x̂, θ) + Γη(x̂, θ))−1∂2∇1f(x̂, θ) .

For all θ ∈ Rn, and any x̂ estimating x?(θ), we have the following bound for the approximation
error of the estimated Jacobian

‖J(x̂, θ)− ∂x?(θ)‖ ≤
(
β + κη
α+ µ

+
γR

(α+ µ)2

)
‖x̂− x?(θ)‖ .

Proof of Corollary 2. First, let us note that proxηg(y, θ) does not depend on θ, since g itself does not
depend on θ, and is therefore equal to classical proximity operator of ηg which, with a slight overload
of notations, we denote as proxηg(y) (with a single argument). In other words,

proxηg(y, θ) = proxηg(y) ,

∂1proxηg(y, θ) = ∂proxηg(y) ,

∂2proxηg(y, θ) = 0 .

Regarding the first claim (expression of the estimated Jacobian evaluated at x̂), we first have that
proxηg(y) is the solution to (x′ − y) + η∇g(x′) = 0 in x′ - by first-order condition for a smooth
convex function. We therefore have that

proxηg(y) = (I + η∇g)−1(y)

∂proxηg(y) = (Id + η∇2g(proxηg(y)))−1 ,

the first I and inverse being functional identity and inverse, and the second Id and inverse being in
the matrix sense, by inverse rule for Jacobians ∂h(z) = [∂h−1(h(z))]−1 (applied to the prox).

As a consequence, we have, for Γη(x, θ) = ∇2g(proxηg(x− η∇1f(x, θ)) that

A(x, θ) = Id − (Id + ηΓη(x, θ))−1(Id − η∇2
1f(x, θ))

= (Id + ηΓη(x, θ))−1[Id + ηΓη(x, θ)− (Id − η∇2
1f(x, θ))]

= η(Id + ηΓη(x, θ))−1(∇2
1f(x, θ) + Γη(x, θ))

B(x, θ) = −η(Id + ηΓη(x, θ))−1∂2∇1f(x, θ) .

As a consequence, for all x ∈ Rd, we have that

J(x, θ) = −(∇2
1f(x, θ) + Γη(x, θ))−1∂2∇1f(x, θ) .

In the following, we modify slightly the notation of both A and B, writing

Ã(x, θ) = ∇2
1f(x, θ) + Γη(x, θ)

B̃(x, θ) = −∂2∇1f(x, θ) .

With the current hypotheses, following along the proof of Theorem 1, we have that Ã is (α + µ)

well-conditioned, and (γ + κη)-Lipschitz in its first argument, and B̃ is β-Lipschitz in its first
argument and bounded in norm by R. The same reasoning yields

‖J(x̂, θ)− ∂x?(θ)‖ ≤
(
β + κη
α+ µ

+
γR

(α+ µ)2

)
‖x̂− x?(θ)‖ .

E The Lasso case

Our approach to differentiate the solution of a root equation F (x, θ) = 0 is valid as long as the
smooth implicit function theorem holds, namely, as long as F is continuously differentiable near a
solution (x0, θ0) and ∇1F (x0, θ0) is invertible. While the first assumption is easy to check when
F is continuously differentiable everywhere, it does not always hold when this is not the case, e.g.,
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when F involves the proximity operator of a non-smooth function. In such cases, one may therefore
have to study theoretically the properties of the function F near the solutions (x(θ), θ) to justify
differentiation using the smooth implicit function theorem. Here, we develop such an analysis to
justify the use of our approach to differentiate the solution of a Lasso regression problem with respect
to the regularization parameter. We note that the smooth implicit function theorem has already been
used for this problem [12, 13]; here we justify why it is a valid approach, even though F itself is not
continuously differentiable everywhere. More precisely, we consider the Lasso problem:

∀θ ∈ R , x?(θ) = argmin
x∈Rd

1

2
‖Φx− b‖22 + eθ‖x‖1 , (20)

where Φ ∈ Rm×d and b ∈ Rm. Note that we parameterize the regularization parameter as eθ
to ensure that it remains strictly positive for θ ∈ R, but the analysis below does not depend on
this particular choice. This is a typical non-smooth optimization problem where we may want
to use a proximal gradient fixed point equation (9) to differentiate the solution. In this case we
have f(x, θ) = (1/2)‖Φx − b‖22, hence ∇1f(x, θ) = Φ>(Φx − b), and g(x, θ) = eθ‖x‖1, hence
proxηg(y, θ) = ST(y, ηeθ) where ST : Rd × R→ Rd is the soft-thresholding operator: ST(a, b)i =

sign(ai)×max(|ai| − b, 0). The root equation that characterizes the solution is therefore, for any
η > 0:

Fη(x, θ) = x− ST
(
x− ηΦ>(Φx− b), ηeθ

)
= 0 . (21)

It is well-known that, under mild assumptions, (20) has a unique solution for any θ ∈ R, and that
the solution path {x?(θ) : θ ∈ R} is continuous and piecewise linear, with a finite number of non-
differentiable points (often called “kinks”) [79, 61]. Since the function θ 7→ x?(θ) is not differentiable
at the kinks, the smooth implicit function theorem using (21) is not applicable at those points (as
any other methods to compute the Jacobian of x?(θ), such as unrolling). Interestingly, though, the
following result shows that, under mild assumptions, the smooth implicit function theorem using (21)
is valid on all other points of the solution path, thus justifying the use of our approach to compute the
Jacobian of x?(θ) whenever it exists. Note that we state this theorem under some assumption on the
matrix Φ that is sufficient to ensure that the solution to the lasso is unique [79, Lemma 4], but that
weaker assumptions could be possible (see proof).

Theorem 2. If the entries of Φ are drawn from a continuous probability distribution on Rm×d, then
the smooth implicit function theorem using the root equation (21) holds at any point (x?(θ), θ) that
is not a kink of the solution path, with probability one.

Proof. We first show that Fη is continuously differentiable in a neighborhood of (x?(θ), θ), for any
θ that is not a kink. Since the ST operator is continuously differentiable everywhere except on the
closed set:

S =
{

(a, b) ∈ Rd × R : ∃i ∈ [1, d], |ai| = b
}
,

it suffices to show from (21) that (x?(θ) − ηΦ>(Φx?(θ) − b), ηeθ) /∈ S. For that purpose, we
characterize x?(θ) using the subgradient of (20) as follows: there exists γ ∈ Rd such that

Φ> (b− Φx?(θ)) = eθγ ,

where {
γi = sign(x?(θ)i) if x?(θ)i 6= 0 ,

γi ∈ [−1, 1] otherwise.

We thus need to show that (x?(θ) + ηeθγ, ηeθ) /∈ S. We first see that, for any i ∈ [1, d] such that
x?(θ)i 6= 0,

|x?(θ)i + ηeθγi| = |x?(θ)i + ηeθsign(x?(θ)i)| > ηeθ .

The case x?(θ)i 6= 0 requires more care, since the property γi ∈ [−1, 1] is not sufficient to show
that |x?(θ)i + ηeθγi| = ηeθ|γi| is not equal to ηeθ: we need to show that, in fact, |γi| < 1. For that
purpose, let E(θ) = {i ∈ [1, d] : |γi| = 1}. Denoting ΦE(θ) the matrix made of the columns of Φ in
E(θ), we know that, under the assumptions of Theorem 2, with probability one the matrix Φ>E(θ)ΦE(θ)
is invertible and the lasso problem has a unique solution given by x?(θ)E(θ)C = 0 and

x?(θ)E(θ) = (Φ>E(θ)ΦE(θ))
−1
(

Φ>E(θ)b− e
θs(θ)E(θ)

)
, (22)
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where s(θ) = sign(Φ> (b− Φx?(θ)))) ∈ {−1, 0, 1}d [79]. Furthermore, we know that E(θ) is
constant between two successive kinks [61], so if x?(θ) is not a kink then there is a neighborhood
[θ1, θ2] of θ such as E(θ′) = E(θ) and s(θ′)E(θ′) = s(θ)E(θ), for any θ′ ∈ [θ1, θ2]. Let us now assume
that Φ is such that for any E ⊂ [1, d] and s ∈ {−1, 1}|E|, Φ>E ΦE is invertible and (Φ>E ΦE)

−1s has
no coordinate equal to zero. This happens with probability one under the assumptions of Theorem 2
since the set of singular matrices is measure zero. Then we see from (22) that, for θ′ ∈ [θ1, θ2]

and i ∈ E(θ), x?(θ′)i is an affine and non-constant function of eθ
′
. Since in addition x?(θ1)i and

x?(θ2)i are either both nonnegative or nonpositive, then necessarily x?(θ)i is positive or negative,
respectively. In other words, we have shown that |γi| = 1 =⇒ x?(θ)i 6= 0, or equivalently that
x?(θ)i = 0 =⇒ |γi| < 1. From this we deduce that for any i ∈ [1, d] such that x?(θ)i = 0,

|x?(θ)i + ηeθγi| = ηeθ|γi| < ηeθ .

This concludes the proof that (x?(θ) + ηeθγ, ηeθ) /∈ S, and therefore that Fη is continuously
differentiable in a neighborhood of (x?(θ), θ). The second condition for the smooth implicit theorem
to hold, namely, the invertibility of ∇1Fη(x?(θ), θ), is easily obtained by explicit computation
[12, 13, Proposition 1]

F Experimental setup and additional results

Our experiments use JAX [21], which is Apache2-licensed and scikit-learn [71], which is BSD-
licensed.

F.1 Hyperparameter optimization of multiclass SVMs

Experimental setup. Synthetic datasets were generated using scikit-learn’s
sklearn.datasets.make_classification [71], following a model adapted from [50].
All datasets consist of m = 700 training samples belonging to k = 5 distinct
classes. To simulate problems of different sizes, the number of features is varied as
p ∈ {100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 7500, 10000}, with 10% of features
being informative and the rest random noise. In all cases, an additional mval = 200 validation
samples were generated from the same model to define the outer problem.

For the inner problem, we employed three different solvers: (i) mirror descent, (ii) (accelerated)
proximal gradient descent and (iii) block coordinate descent. Hyperparameters for all solvers were
individually tuned manually to ensure convergence across the range of problem sizes. For mirror
descent, a stepsize of 1.0 was used for the first 100 steps, following a inverse square root decay
afterwards up to a total of 2500 steps. For proximal gradient descent, a stepsize of 5 · 10−4 was used
for 2500 steps. The block coordinate descent solver was run for 500 iterations. All solvers used the
same initialization, namely, xinit = 1

k1m×k, which satisfies the dual constraints.

For the outer problem, gradient descent was used with a stepsize of 5 · 10−3 for the first 100 steps,
following a inverse square root decay afterwards up to a total of 150 steps.

Conjugate gradient was used to solve the linear systems in implicit differentiation for at most 2500
iterations.

All results reported pertaining CPU runtimes were obtained using an internal compute cluster. GPU
results were obtained using a single NVIDIA P100 GPU with 16GB of memory per dataset. For each
dataset size, we report the average runtime of an individual iteration in the outer problem, alongside a
90% confidence interval estimated from the corresponding 150 runtime values.

Additional results Figure 13 compares the runtime of implicit differentiation and unrolling on
GPU. These results highlight a fundamental limitation of the unrolling approach in memory-limited
systems such as accelerators, as the inner solver suffered from out-of-memory errors for most problem
sizes (p ≥ 2000 for mirror descent, p ≥ 750 for proximal gradient and block coordinate descent).
While it might be possible to ameliorate this limitation by reducing the maximum number of iterations
in the inner solver, doing so might lead to additional challenges [84] and require careful tuning.

Figure 14 depicts the validation loss (value of the outer problem objective function) at convergence. It
shows that all approaches were able to solve the outer problem, with solutions produced by different

24



0 2000 4000 6000 8000 10000
Number of features

0.6

0.8

1.0

1.2

1.4

1.6
Ru

nt
im

e 
pe

r s
te

p 
(s

ec
on

ds
) Mirror descent (MD)

Unrolling
Implicit diff (ID)

(a)

0 2000 4000 6000 8000 10000
Number of features

0.75

1.00

1.25

1.50

1.75

2.00
Proximal gradient (PG)

Unrolling
Implicit diff (ID)

(b)

0 2000 4000 6000 8000 10000
Number of features

40

60

80

Block coordinate descent (BCD)
Unrolling
ID w/ MD fixed point
ID w/ PG fixed point

(c)

Figure 13: GPU runtime comparison of implicit differentiation and unrolling for hyperparameter
optimization of multiclass SVMs for multiple problem sizes (same setting as Figure 4). Error bars
represent 90% confidence intervals. Absent data points were due to out-of-memory errors (16 GB
maximum).
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Figure 14: Value of the outer problem objective function (validation loss) for hyperparameter
optimization of multiclass SVMs for multiple problem sizes (same setting as Figure 4). As can
be seen, all methods performed similarly in terms of validation loss. This confirms that the faster
runtimes for implicit differentiation compared to unrolling shown in Figure 4 (CPU) and Figure 13
(GPU) are not at the cost of worse validation loss.
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Figure 15: Jacobian error ‖∂x?(θ)− J(x̂, θ)‖2 (see also Definition 1) evaluated with a regularization
parameter of θ = 1, as a function of solution error ‖x?(θ)− x̂‖2 when varying the number of features,
on the multiclass SVM task (see Appendix F.1 for a detailed description of the experimental setup).
The ground-truth solution x?(θ) is computed using the liblinear solver [37] available in scikit-learn
[71] with a very low tolerance of 10−9. Unlike in Figure 3, which was on ridge regression, the
ground-truth Jacobian ∂x?(θ) cannot be computed in closed form, in the more difficult setting of
multiclass SVMs. We therefore use a finite difference to approximately compute ∂x?(θ). Our results
nevertheless confirm similar trends as in Figure 3.
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approaches being qualitatively indistinguishable from each other across the range of problem sizes
considered.

Figure 15 shows the Jacobian error achieved as a function of the solution error, when varying the
number of features.

F.2 Task-driven dictionary learning

We downloaded from http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
a set of breast cancer gene expression data together with survival information generated by the TCGA
Research Network (https://www.cancer.gov/tcga) and processed as explained by [74]. The
gene expression matrix contains the expression value for p=20,531 genes in m=1,212 samples, from
which we keep only the primary tumors (m=1,093). From the survival information, we select the
patients who survived at least five years after diagnosis (m1 = 200), and the patients who died before
five years (m0 = 99), resulting in a cohort of m = 299 patients with gene expression and binary
label. Note that non-selected patients are those who are marked as alive but were not followed for 5
years.

To evaluate different binary classification methods on this cohort, we repeated 10 times a random split
of the full cohort into a training (60%), validation (20%) and test (20%) sets. For each split and each
method, 1) the method is trained with different parameters on the training set, 2) the parameter that
maximizes the classification AUC on the validation set is selected, 3) the method is then re-trained on
the union of the training and validation sets with the selected parameter, and 4) we measure the AUC
of that model on the test set. We then report, for each method, the mean test AUC over the 10 repeats,
together with a 95% confidence interval defined a mean ± 1.96 × standard error of the mean.

We used Scikit Learn’s implementation of logistic regression regularized by `1 (lasso) and `2 (ridge)
penalty from sklearn.linear_model.LogisticRegression, and varied the C regularization
parameter over a grid of 10 values: {10−5, 10−3, . . . , 104}. For the unsupervised dictionary learn-
ing experiment method, we estimated a dictionary from the gene expression data in the training
and validation sets, using sklearn.decomposition.DictionaryLearning(n_components=10,
alpha=2.0), which produces sparse codes in k = 10 dimensions with roughly 50% nonzero coeffi-
cients by minimizing the squared Frobenius reconstruction distance with lasso regularization on the
code. We then use sklearn.linear_model.LogisticRegression to train a logistic regression on
the codes, varying the ridge regularization parameter C over a grid of 10 values {10−1, 100, . . . , 108}.
Finally, we implemented the task-driven dictionary learning model (11) with our toolbox, following
the pseudo-code in Figure 10. Like for the unsupervised dictionary learning experiment, we set the
dimension of the codes to k = 10, and a fixed elastic net regularization on the inner optimization
problem to ensure that the codes have roughly 50% sparsity. For the outer optimization problem, we
solve an `2 regularized ridge regression problem, varying again the ridge regularization parameter
C over a grid of 10 values {10−1, 100, . . . , 108}. Because the outer problem is non-convex, we
minimize it using the Adam optimizer [56] with default parameters.

F.3 Dataset Distillation

Experimental setup. For the inner problem, we used gradient descent with backtracking line-
search, while for the outer problem we used gradient descent with momentum and a fixed step-size.
The momentum parameter was set to 0.9 while the step-size was set to 1.

Figure 5 was produced after 4000 iterations of the outer loop on CPU (Intel(R) Xeon(R) Platinum
P-8136 CPU @ 2.00GHz), which took 1h55. Unrolled differentiation took instead 8h:05 (4 times
more) to run the same number of iterations. As can be seen in Figure 16, the output is the same in
both approaches.
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Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

Figure 16: Distilled MNIST dataset θ ∈ Rk×p obtained by solving (10) through unrolled differen-
tiation. Although there is no qualitative difference, the implicit differentiation approach is 4 times
faster.

F.4 Molecular dynamics

Our experimental setup is adapted from the JAX-MD example notebook available at https://
github.com/google/jax-md/blob/master/notebooks/meta_optimization.ipynb.

We emphasize that calculating the gradient of the total energy objective, f(x, θ) =
∑
ij U(xi,j , θ),

with respect to the diameter θ of the smaller particles,∇1f(x, θ), does not require implicit differenti-
ation or unrolling. This is because∇1f(x, θ) = 0 at x = x?(θ):

∇θf(x?(θ), θ) = ∂x?(θ)>∇1f(x?(θ), θ) +∇2f(x?(θ), θ) = ∇2f(x?(θ), θ).

This is known as Danskin’s theorem or envelope theorem. Thus instead, we consider sensitivities of
position ∂x?(θ) directly, which does require implicit differentiation or unrolling.

Our results comparing implicit and unrolled differentiation for calculating the sensitivity of position
are shown in Figure 17. We use BiCGSTAB [81] to perform the tangent linear solve. Like in the
original JAX-MD experiment, we use k = 128 particles in m = 2 dimensions.

0 500 1000 1500 2000
Number of optimization steps

10 1

100

101

102

103

104

Gr
ad

ie
nt

 n
or

m

Unrolled FIRE optimizer

0 500 1000 1500 2000
Number of optimization steps

Implicit differentiation

Figure 17: L1 norm of position sensitivities in the molecular dynamics simulations, for 40 different
random initial conditions (different colored lines). Gradients through the unrolled FIRE optimizer [15]
for many initial conditions do not converge, in contrast to implicit differentiation.
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