
A Task Specifications

A.1 Physical parameters of Shadow Hand

The limits of each joint in Shadow Hand are as Table 5. The thumb has 5 degrees of freedom with
5 joints, the other fingers are all 3 degrees of freedom and 4 joints, and the joints at the ends of
each finger are uncontrollable. The distal joints of the fingers are coupled like that of human fingers,
making the angle of the middle joint always bigger or equal to the angle of the distal joint. This
allows the middle phalange is curved, while the distal phalange is straight. There is an extra joint
(LF5) at the end of the little finger to allow the little finger to rotate in the direction of the thumb.
There are two joints at the wrist, which guarantees that the entire hand can rotate 360 degrees.

Table 5: Finger range of motion.

Joints Corresponds to the number of 1 Min Max
Finger Distal (FF1,MF1,RF1,LF1) 15, 11, 7, 3 0° 90°

Finger Middle (FF2,MF2,RF2,LF2) 16, 12, 8, 4 0° 90°
Finger Base Abduction (FF3,MF3,RF3,LF3) 17, 13, 9, 5 -15° 90°

Finger Base Lateral (FF4,MF4,RF4,LF4) 18, 14, 10, 6 -20° 20°
Little Finger Rotation(LF5) 19 0° 45°

Thumb Distal (TH1) 20 -15° 90°
Thumb Middle (TH2) 21 -30° 30°

Thumb Base Abduction (TH3) 22 -12° 12°
Thumb Base Lateral (TH4) 23 0° 70°

Thumb Base Rotation (TH5) 24 -60° 60°
Hand Wrist Abduction (WR1) 1 -40° 28°

Hand Wrist Lateral (WR2) 2 -28° 8°

Stiffness, damping, friction, and armature are also important physical parameters in robotics. For
each Shadow Hand’s joint, we show our DoF properties in Table 6. This part can be adjusted in the
Isaac Gym simulator.

Table 6: DoF properties of Shadow Hand.

Joints Stifness Damping Friction Armature
WR1 100 4.78 0 0
WR2 100 2.17 0 0
FF2 100 3.4e+38 0 0
FF3 100 0.9 0 0
FF4 100 0.725 0 0
MF2 100 3.4e+38 0 0
MF3 100 0.9 0 0
MF4 100 0.725 0 0
RF2 100 3.4e+38 0 0
RF3 100 0.9 0 0
RF4 100 0.725 0 0
LF2 100 3.4e+38 0 0
LF3 100 0.9 0 0
LF4 100 0.725 0 0
TH2 100 3.4e+38 0 0
TH3 100 0.99 0 0
TH4 100 0.99 0 0
TH5 100 0.81 0 0

A.2 Detailed components of tasks

In this section, we detailed the components of tasks in Bi-DexHands. We refer to some designs of
existing dexterous hand environments, integrate their advantages, and expand some new environments

15



and unique features for single/multi-agent reinforcement learning. Our environments focus on the
application of RL algorithms to dexterous hand control, which is challenging in traditional control
algorithms. The difficulty of our environment is not only reflected in the challenging task content but
also reflected in the high-dimensional continuous space control. The state space dimension of each
environment is up to 400 dimensions in total, and the action space dimension is up to 40 dimensions.
A multi-agent feature of our environment is that we use five fingers and palms of each hand as a
minimum agent unit. It is mean that you can use each finger and palm as an agent, or combine any
number of them as an agent by yourself. All environments are goal-based, and each epoch will
randomly reset the object’s starting pose and target pose to improve generalization. All objects type
can be selected in the config, the basis is egg, block, and pen. We also provide objects type in the
YCB dataset as an extension, you can customize the object type they want to use.

The objects in the YCB dataset are used for our object-catching tasks. Because our object-catching
environment is only related to the pose of the object, we can arbitrarily replace objects of suitable
size in the YCB dataset. Other tasks use items from the Sapien dataset, and can also use other objects
from the same category in Sapien dataset. However, because it is related to the shape of the object,
some additional operations are required. We have added examples to Github to show how to use
objects from YCB and Sapien datasets, see here.

An overview of our tasks is shown in Fig.5. Next, we will introduce the basic description, action
space, observation space, and reward function of each task. We only use the Shadow Hand and
object state values as observation at present, but we also provide an interface for using point cloud as
observation in our Github repository for researchers to study in the future. The observation of all
tasks is composed of three parts: the state values of the left and right hands, and the information of
objects and target. The state values of the left and right hands were the same for each task, including
hand joint and finger positions, velocity, and force information. The state values of the object and
goal are different for each task, which we will describe in the following. Table.7 gives the specific
information of the left-hand and right-hand state values. Note that the observation is slightly different
in the HandOver task due to the fixed base.

Designing a reward function is very important for an RL task. I would like to introduce the method
of our reward design in detail. In general, our reward design is goal-based and follows the same set
of logic. For object-catching tasks, our reward is simply related to the difference between the pose of
the object and the target. The closer the object is to the target, the greater the reward. For other tasks
that require the hand to hold the object, our reward generally consists of three parts: the distance from
the left hand to the target point on the object that the left-hand needs to operate, the distance from
the right hand to the target point on the object that the right-hand needs to operate, and the distance
from the object to the target. The principle of our design is to conform to human intuition based on
completing the task and to make the reward function structure as unified as possible. This unified
reward function structure is also one of the requirements of Meta RL and Multi-task RL environment
design. However, because the scenarios of each task are different, the hyperparameters of the reward
function will inevitably be different. We have tried our best to avoid manual reward shaping for each
task provided that RL can be successfully trained.

Under the multi-agent setting, the partial observation of each agent depends on the observation of
the hand it belongs to. For example, if the left distal finger, left thumb, and right distal finger are
one agent respectively, the observation of the left distal finger and left thumb are the observation of
the entire left hand in the Table 7 plus the object and target information. The obs of the right distal
finger is the observation of the entire right hand in the Table 7 plus object and target information. The
action of each agent depends on the multi-agent setting (i.e., fingers, hands,...), and the output by each
agent is the joint degree of itself. Bi-DexHands is a fully-cooperative game where all agents have the
same reward. Therefore, the setting of multi-agent can be completely inferred from the setting of
single-agent.

A.2.1 Hand Over

This environment consists of two Shadow Hands with palms facing up, opposite each other, and
an object that needs to be passed. In the beginning, the object will fall randomly in the area of the
Shadow Hand on the right side. Then the hand holds the object and passes the object to the other
hand. Note that the base of the hand is fixed. More importantly, the hand which holds the object
initially can not directly touch the target, nor can it directly roll the object to the other hand, so the

16

https://github.com/PKU-MARL/DexterousHands/blob/main/docs/customize%20the%20environment.md


Table 7: Observation space of dual Shadow Hands.

Index Description
0 - 23 right Shadow Hand dof position

24 - 47 right Shadow Hand dof velocity
48 - 71 right Shadow Hand dof force

72 - 136 right Shadow Hand fingertip pose, linear velocity, angle velocity (5 x 13)
137 - 166 right Shadow Hand fingertip force, torque (5 x 6)
167 - 169 right Shadow Hand base position
170 - 172 right Shadow Hand base rotation
173 - 198 right Shadow Hand actions
199 - 222 left Shadow Hand dof position
223 - 246 left Shadow Hand dof velocity
247 - 270 left Shadow Hand dof force
271 - 335 left Shadow Hand fingertip pose, linear velocity, angle velocity (5 x 13)
336 - 365 left Shadow Hand fingertip force, torque (5 x 6)
366 - 368 left Shadow Hand base position
369 - 371 left Shadow Hand base rotation
372 - 397 left Shadow Hand actions

open pen cap switch grasp&place pour water open scissors

re-orientation stack block swing cup two catch underarm open bottle cap

lift cup catch abreast catch over2underarm catch underarm door close inward

door close outward hand over lift pot door open inward door open outward

Figure 5: An overview of all tasks.

object must be thrown up and stays in the air in the process. There are 398-dimensional observations
and 40-dimensional actions in the task. Additionally, the reward function is related to the pose error
between the object and the target. When the pose error gets smaller, the reward increases dramatically.
Specifically, the observation space of each agent is detailed in the following Table 8, and the action
space is shown in Table 9.

Observations The 398-dimensional observational space for Hand Over task is shown in Table 8. It
should be noted that since the base of the dual hands in this task is fixed, the observation of the dual
hands is compared to the Table 7 of reduced 24 dimensions.

Actions The 40-dimensional action space for one hand in Hand Over task is shown in Table 9.

Rewards Denote the object and goal position as xo and xg respectively. Then, the translational
position difference between the object and the goal dt is given by dt = ∥xo − xg∥2. Denote the
angular position difference between the object and the goal as da, then the rotational difference dr is
given by dr = 2arcsin clamp(∥da∥2,max = 1.0). Finally, the rewards are given by the following

17



Table 8: Observation space of Hand Over.

Index Description
0 - 373 dual hands observation shown in Table 7

374 - 380 object pose
381 - 383 object linear velocity
384 - 386 object angle velocity
387 - 393 goal pose
394 - 397 goal rot - object rot

Table 9: Action space of Hand Over.

Index Description
0 - 19 right Shadow Hand actuated joint

20 - 39 left Shadow Hand actuated joint

specific formula:
r = exp[−0.2(αdt + dr)] (1)

where α is a constant balancing translational and rotational rewards.

A.2.2 Catch Underarm

In this problem, two Shadow Hands with palms facing upwards are controlled to pass an object from
one palm to the other. What makes it more difficult than the Handover problem is that the hands’
translation and rotation degrees of freedom are no longer frozen but are added into the action space.

Observations The 422-dimensional observational space as shown in Table 10.

Table 10: Observation space of Catch Underarm.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot

Actions The 52-dimensional action space as shown in Table 11.

Rewards Denote the object and goal position as xo and xg respectively. Then, the translational
position difference between the object and the goal dt is given by dt = ∥xo − xg∥2. Denote the
angular position difference between the object and the goal as da, then the rotational difference dr is
given by dr = 2arcsin clamp(∥da∥2,max = 1.0). Finally, the rewards are given by the following
specific formula:

r = exp[−0.2(αdt + dr)] (2)
where α is a constant balancing translational and rotational rewards.

A.2.3 Catch Over2Underarm

This environment is like made up of half Hand Over and Catch Underarm, the object needs to be
thrown from the vertical hand to the palm-up hand.

Observations The 422-dimensional observational space as shown in Table 12.

Actions The 52-dimensional action space as shown in Table 13.

18



Table 11: Action space of Catch Underarm.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Table 12: Observation space of Catch Over2Underarm.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot

Rewards Denote the object and goal position as xo and xg respectively. Then, the translational
position difference between the object and the goal dt is given by dt = ∥xo − xg∥2. Denote the
angular position difference between the object and the goal as da, then the rotational difference dr is
given by dr = 2arcsin clamp(∥da∥2,max = 1.0). Finally, the rewards are given by the following
specific formula:

r = exp[−0.2(αdt + dr)] (3)

where α is a constant balancing translational and rotational rewards.

A.2.4 Two Catch Underarm

This environment is similar to Catch Underarm, but with an object in each hand and the corresponding
goal on the other hand. Therefore, the environment requires two objects to be thrown into the other
hand at the same time, which requires a higher manipulation technique than the environment of a
single object.

Observations The 446-dimensional observational space as shown in Table 14.

Actions The 52-dimensional action space as shown in Table 15.

Rewards For the reward part, we use subscripts 1,2 to distinguish the 2 objects.

Denote the object and goal position as xo1 ,xo2 and xg1 ,xg2 respectively. Then, the translational
position difference between the object and the goal dt1 ,dt2 is given by dti = ∥xoi − xgi∥2, where
i = 1, 2. Denote the angular position difference between the object and the goal as da1 ,da2 , then
the rotational difference dr1 ,dr2 is given by dri = 2arcsin clamp(∥dai∥2,max = 1.0). Finally, the

Table 13: Action space of Catch Over2Underarm.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

19



Table 14: Observation space of Two Catch Underarm.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object1 pose
405 - 407 object1 linear velocity
408 - 410 object1 angle velocity
411 - 417 goal1 pose
418 - 421 goal1 rot - object rot
422 - 428 object2 pose
429 - 431 object2 linear velocity
432 - 434 object2 angle velocity
435 - 441 goal2 pose
442 - 445 goal2 rot - object2 rot

Table 15: Action space of Two Catch Underarm.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

rewards are given by the following specific formula:

r = exp[−0.2(αdt1 + dr1)] + exp[−0.2(αdt2 + dr2)] (4)

where α is a constant balancing translational and rotational rewards.

A.2.5 Catch Abreast

This environment consists of two Shadow Hands placed side by side in the same direction and an
object that needs to be passed. Compared with the previous environment which is more like passing
objects between the hands of two people, this environment is designed to simulate the two hands of
the same person passing objects, so different catch techniques are also required and require more
hand translation and rotation techniques.

Observations The 422-dimensional observation space as shown in Table 16.

Table 16: Observation space of Catch Abreast.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot

Actions The 52-dimensional action space as shown in Table 17.

Rewards Denote the object and goal position as xo and xg respectively. Then, the translational
position difference between the object and the goal dt is given by dt = ∥xo − xg∥2. Denote the
angular position difference between the object and the goal as da, then the rotational difference dr is

20



Table 17: Action space of Catch Abreast.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

given by dr = 2arcsin clamp(∥da∥2,max = 1.0). Finally, the rewards are given by the following
specific formula:

r = exp[−0.2(αdt + dr)] (5)

where α is a constant balancing translational and rotational rewards.

A.2.6 Lift Underarm

This environment requires grasping the pot handle with two hands and lifting the pot to the designated
position. This environment is designed to simulate the scene of lift in daily life and is a practical skill.

Observations The 428-dimensional observation space as shown in Table 18.

Table 18: Observation space of Lift Underarm.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 object right handle position
425 - 427 object left handle position

Actions The 40-dimensional action space as shown in Table 19.

Table 19: Action space of Lift Underarm.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to the left handle,
the distance from the right hand to the right handle, and the distance from the object to the target
point. The position difference between the object to the target point dtarget is given by dtarget =
∥xobj − xgoal∥2. The position difference between the left hand to the left handle dleft is given by
dleft = ∥xlhand − xlhandle∥2.The position difference between the right hand to the right handle
dright is given by dright = ∥xrhand − xrhandle∥2. The reward is given by this specific formula:

r = 0.2− dleft − dright + 3 ∗ (0.985− dtarget) (6)

21



A.2.7 Door Open Outward/Door Close Inward

These two environments require a closed/opened door to be opened/closed and the door can only
be pushed outward or initially open inward. Both these two environments only need to do the push
behavior, so it is relatively simple.

Observations The 428-dimensional observation space as shown in Table 20.

Table 20: observation space of Door Open Outward/Door Close Inward.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 door right handle position
425 - 427 door left handle position

Actions The 52-dimensional action space as shown in Table 21.

Table 21: Action space of Door Open Outward/Door Close Inward.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to the left handle,
the distance from the right hand to the right handle, and the distance between the two handles. The
distance between the two handles dtarget is given by dtarget = ∥xlhandle−xrhandle∥2. The position
difference between the left hand to the left handle dleft is given by dleft = ∥xlhand−xlhandle∥2.The
position difference between the right hand to the right handle dright is given by dright = ∥xrhand −
xrhandle∥2. For DoorOpenOutward, the reward is given by this specific formula:

r = 0.2− dleft − dright + 2 ∗ dtarget (7)

For DoorCloseInward, the reward is given by this specific formula:

r = 0.2− dleft − dright + 2 ∗ (1− dtarget) (8)

A.2.8 Door Open Inward/Door Close Outward

These two environments also require a closed/opened door to be opened/closed and the door can
only be pushed inward or initially open outward, but because they can’t complete the task by simply
pushing, which need to catch the handle by hand and then open or close it, so it is relatively difficult.

Observations The 428-dimensional observation space as shown in Table 22.

Actions The 52-dimensional action space as shown in Table 23.

Rewards The reward consists of three parts: the distance from the left hand to the left handle,
the distance from the right hand to the right handle, and the distance between the two handles. The
distance between the two handles dtarget is given by dtarget = ∥xlhandle−xrhandle∥2. The position

22



Table 22: Observation space of Door Open Inward/Door Close Outward.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 door right handle position
425 - 427 door left handle position

Table 23: Action space of Door Open Inward/Door Close Outward.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

difference between the left hand to the left handle dleft is given by dleft = ∥xlhand−xlhandle∥2.The
position difference between the right hand to the right handle dright is given by dright = ∥xrhand −
xrhandle∥2. For DoorOpenInward, the reward is given by this specific formula:

r = 0.2− dleft − dright + 2 ∗ dtarget (9)

For DoorCloseOutward, the reward is given by this specific formula:

r = 0.2− dleft − dright + 2 ∗ (1− dtarget) (10)

A.2.9 Bottle Cap

This environment involves two hands and a bottle, we need to hold the bottle with one hand and open
the bottle cap with the other hand. This skill requires the cooperation of two hands to ensure that the
cap does not fall.

Observations The 414-dimensional observation space as shown in Table 24.

Table 24: Observation space of Bottle Cap.

0 - 397 dual hands observation shown in Table 7
398 - 404 bottle pose
405 - 407 bottle linear velocity
408 - 410 bottle angle velocity
411 - 413 bottle cap position

Actions The 52-dimensional action space as shown in Table 25.

Rewards The reward also consists of three parts: the distance from the left hand to the bottle cap,
the distance from the right hand to the bottle, and the distance between the bottle and bottle cap.
The distance between the bottle and bottle cap dtarget is given by dtarget = ∥xbottle − xbottlecap∥2.
the distance from the left hand to the bottle cap dleft is given by dleft = ∥xlhand − xbottlecap∥2.
the distance from the right hand to the bottle dright is given by dright = ∥xrhand − xbottle∥2. The
reward is given by this specific formula:

r = 0.2− dleft − dright + 30 ∗ dtarget (11)

23



Table 25: Action space of Bottle Cap.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

A.2.10 Push Block

This environment involves two hands and two blocks, we need to use both hands to reach and push
the block to the desired goal separately. This is a relatively simple task.

Observations The 417-dimensional observation space as shown in Table 26.

Table 26: Observation space of Push Block.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 block1 pose
405 - 407 block1 linear velocity
408 - 410 block1 angle velocity
411 - 413 block1 position
414 - 416 block2 position

Actions The 52-dimensional action space as shown in Table 27.

Table 27: Action space of Push Block.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to block1, the distance
from the right hand to block2, and the distance between the block and desired goal. The distance
between the block and desired goal dtarget is given by dtarget = ∥xblock1−xblock1goal∥2+∥xblock2−
xblock2goal∥2. the distance from the left hand to the block1 dleft is given by dleft = ∥xlhand −
xblock1∥2. the distance from the right hand to the block2 dright is given by dright = ∥xrhand −
xblock2∥2. The reward is given by this specific formula:

r = 2− dleft − dright + 5 ∗ (0.8− dtarget) (12)

A.2.11 Swing Cup

This environment involves two hands and a dual handle cup, we need to use two hands to hold and
swing the cup together.

Observations The 428-dimensional observation space as shown in Table 28.

Actions The 52-dimensional action space as shown in Table 29.

24



Table 28: Observation space of Swing Cup.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 cup pose
405 - 407 cup linear velocity
408 - 410 cup angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 cup right handle position
425 - 427 cup left handle position

Table 29: Action space of Swing Cup.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to the cup’s left handle,
the distance from the right hand to the cup’s right handle, and the rotating distance between the
cup and desired goal. The rotate distance between the cup and desired goal dtarget is given by
dtarget = 2 ∗ arcsin qcup ∗ qtarget. the distance from the left hand to the cup left handle dleft is
given by dleft = ∥xlhand − xlhandle∥2. the distance from the right hand to the cup right handle
dright is given by dright = ∥xrhand − xrhandle∥2. The reward is given by this specific formula:

r = −dleft − dright + 1/(abs(dtarget) + 0.1) ∗ 5− 1 (13)

A.2.12 Open Scissors

This environment involves two hands and scissors, we need to use two hands to open the scissors.

Observations The 428-dimensional observation space as shown in Table 30.

Table 30: Observation space of Open Scissors.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 scissors pose
405 - 407 scissors linear velocity
408 - 410 scissors angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 scissors right handle position
425 - 427 scissors left handle position

Actions The 52-dimensional action space as shown in Table 31.

Rewards The reward consists of three parts: the distance from the left hand to the scissors’ left
handle, the distance from the right hand to the scissors’ right handle, and the target angle at which the
scissors need to be opened. The distance between the scissors dof angle and target dof angle dtarget
is given by dtarget = ∥xscissorsdof − xtargetdof∥. the distance from the left hand to the scissors
left handle dleft is given by dleft = ∥xlhand − xlhandle∥2. the distance from the right hand to the

25



Table 31: Action space of Open Scissors.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

scissors left handle dright is given by dright = ∥xrhand − xrhandle∥2. The reward is given by this
specific formula:

r = 2− dleft − dright + (0.59− dtarget) ∗ 5 (14)

A.2.13 Re Orientation

This environment involves two hands and two objects. Each hand holds an object and we need to
reorient the object to the target orientation.

Observations The 446-dimensional observation space as shown in Table 32.

Table 32: Observation space of Re Orientation.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 object1 pose
405 - 407 object1 linear velocity
408 - 410 object1 angle velocity
411 - 417 goal1 pose
418 - 421 goal1 rot - object rot
422 - 428 object2 pose
429 - 431 object2 linear velocity
432 - 434 object2 angle velocity
435 - 441 goal2 pose
442 - 445 goal2 rot - object2 rot

Actions The 52-dimensional action space as shown in Table 33.

Table 33: Action space of Re Orientation.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left object to the left object
goal, the distance from the right object to the right object goal, and the distance between the
object and desired goal. The distance between the object and desired goal dtarget is given by
dtarget = 2 ∗ arcsin qobject1 ∗ qtarget + 2 ∗ arcsin qobject2 ∗ qtarget. the distance from the left hand
to the scissors left handle dleft is given by dleft = ∥xlhand − xlhandle∥2. the distance from the right
hand to the scissors left handle dright is given by dright = ∥xrhand − xrhandle∥2. The reward is
given by this specific formula:

r = dleft ∗ −10 + dright ∗ −10 + dtarget ∗ 1.5 (15)

26



A.2.14 Open Pen Cap

This environment involves two hands and a pen, we need to use two hand to open the pen cap.

Observations The 428-dimensional observation space as shown in Table 34.

Table 34: Observation space of Open Pen Cap.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 pen pose
405 - 407 pen linear velocity
408 - 410 pen angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 pen body position
425 - 427 pen cap position

Actions The 52-dimensional action space as shown in Table 35.

Table 35: Action space of Open Pen Cap.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to the pen body, the
distance from the right hand to the pen cap, and the distance between the pen body and pen cap. The
distance between the pen body and pen cap dtarget is given by dtarget = ∥xpenbody − xpencap∥. the
distance from the left hand to the scissors left handle dleft is given by dleft = ∥xlhand − xpenbody∥2.
the distance from the right hand to the scissors left handle dright is given by dright = ∥xrhand −
xpencap∥2. The reward is given by this specific formula:

r = exp(−10 ∗ dleft) + exp(−10 ∗ dright) + dtarget ∗ 5− 0.8 (16)

A.2.15 Switch

This environment involves dual hands and a bottle, we need to use dual hand fingers to press the
desired button.

Observations The 428-dimensional observation space as shown in Table 36.

Table 36: Observation space of Switch.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 switch1 pose
405 - 407 switch1 linear velocity
408 - 410 switch1 angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 switch1 position
425 - 427 switch2 position

27



Actions The 52-dimensional action space as shown in Table 37.

Table 37: Action space of Switch.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to the left switch, the
distance from the right hand to the right switch, and the distance between the button and button’s
desired goal. The distance between the button and the button’s desired goal dtarget is given by
dtarget = ∥xbutton1 − xtarget1∥2 + ∥xbutton2 − xtarget2∥2. the distance from the left hand to the
scissors left handle dleft is given by dleft = ∥xlhand − xswitch1∥2. the distance from the right hand
to the scissors left handle dright is given by dright = ∥xrhand − xswitch2∥2. The reward is given by
this specific formula:

r = 2− dleft − dright + (1.4− dtarget) ∗ 50 (17)

A.2.16 Stack Block

This environment involves dual hands and two blocks, and we need to stack the block as a tower.

Observations The 428-dimensional observation space as shown in Table 38.

Table 38: Observation space of Stack Block.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 block1 pose
405 - 407 block1 linear velocity
408 - 410 block1 angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 block1 position
425 - 427 block2 position

Actions The 52-dimensional action space as shown in Table 39.

Table 39: Action space of Stack Block.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to block1, the distance
from the right hand to block2, and the distance between the block and desired goal. The distance
between the block and desired goal dtarget is given by dtarget = ∥xblock1− xtarget1∥2 + ∥xblock2−
xtarget2∥2. the distance from the left hand to the block1 dleft is given by dleft = ∥xlhand−xblock1∥2.

28



the distance from the right hand to the block2 dright is given by dright = ∥xrhand − xblock2∥2. The
reward is given by this specific formula:

r = 1.5− dleft − dright + (0.24− dtarget) ∗ 2 (18)

A.2.17 Pour Water

This environment involves two hands and a bottle, we need to Hold the kettle with one hand and the
bucket with the other hand, and pour the water from the kettle into the bucket. In the practice task in
Isaac Gym, we use many small balls to simulate the water.

Observations The 428-dimensional observation space as shown in Table 40.

Table 40: Observation space of Pour Water.

Index Description
0 - 397 dual hands observation shown in Table 7

398 - 404 kettle pose
405 - 407 kettle linear velocity
408 - 410 kettle angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot
422 - 424 kettle handle position
425 - 427 bucket position

Actions The 52-dimensional action space as shown in Table 41.

Table 41: Action space of Pour Water.

Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards The reward consists of three parts: the distance from the left hand to the bucket, the
distance from the right hand to the kettle, and the distance between the kettle spout and desired goal.
The distance between the kettle spout and desired goal dtarget is given by dtarget = ∥xspout−xgoal∥2.
the distance from the left hand to the bucket dleft is given by dleft = ∥xlhand − xbucket∥2. the
distance from the right hand to the kettle dright is given by dright = ∥xrhand−xkettle∥2. The reward
is given by this specific formula:

r = 1− dleft − dright + (0.5− dtarget) ∗ 2 (19)

A.3 Offline Data Collection

We follow the data collection of D4RL[68] mujoco tasks. The medium dataset is generated by
first training a policy online using PPO, early-stopping the training, and collecting 106 samples
(st, at, st+1, rt) using this medium policy. The random dataset is collected by a randomly initialized
policy and contains 106 samples. The replay dataset consists of 106 experienced samples during
training of the medium policy. The medium-expert dataset contains 2× 106 samples by mixing equal
amounts of samples collected by expert policy and medium policy. To facilitate comparison across
tasks, following the setting of D4RL[68], we normalize scores for each task to the range between 0
and 100 , by computing normalized score = 100 ∗ return-random return

expert return-random return . A normalized score of 0
corresponds to the average return of an agent taking actions uniformly at random across the action
space. A score of 100 corresponds to the average return of an expert policy.

29



B Training details

Isaac Gym is different from other simulators in that it can simulate completely on the GPU, so there
is no need to exchange data between the GPU and the CPU during the training process. Therefore
we reproduced the existing RL algorithm in our Github repository to accommodate this feature. We
implemented many different algorithms in the comprehensive RL domain, but only evaluated some
of them. We will give a brief introduction to these algorithms below and give the hyperparameters of
the algorithms we used in our evaluation.

B.1 Single-agent algorithms

B.1.1 Trust Region Policy Optimization

TRPO is a basic policy optimization algorithm, with theoretically justified monotonic improvement.
Based on the theorem1 in the original paper by John Schulman et. al. η(πnew) ≥ Lold(πnew) −

4ϵγ
(1−γ)2α

2,whereϵ = max
s,a
|Aπ(s, a)|,η is the objective function and Lold is a surrogate objective:

Lπ(π̂) = η(π) + Es∼ρπ,a∼π(Aπ(s, a)), providing feasible approximation of η according to the
theorem. To empirically allow for larger update steps, the optimization problem is adjusted to
πθnew

= max
θ
Lθold(θ) subject to Dmax

KL (θold, θ) ≤ δ. To yield a practical algorithm, TRPO makes a

bit of approximation like optimizing with conjugate gradient method followed by a line search.

B.1.2 Proximal Policy Optimization

PPO is a policy optimization algorithm enjoying simpler implementation, more general appli-
cation and better sample complexity over TRPO. Based on the surrogate objective in TRPO:
LCPI(θ) = Êt[rt(θ)Ât], PPO proposed a new approximate surrogate function LCLIP (θ) =

Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)], which restricts policy optimization step by remov-
ing the incentive for rt to move outside of the interval [1 − ϵ, 1 + ϵ]. Another alternative sur-
rogate objective is given by incorporating a penalty on KL divergence, and adapting the penalty
coefficient. During traning, PPO uses a combined objective, consisting of surrogate objective
for the policy, value function loss for the critic and a bonus entropy term: LCLIP+V F+S(θ) =

Êt[L
CLIP
t (θ)− c1LV Ft (θ) + c2S[πθ](st)].

Table 42: Hyperparameters of PPO.

Hyperparameters Other Tasks Lift Underarm Stack Block
Num mini-batches 4 4 8
Num opt-epochs 5 10 2

Num episode-length 8 20 8
Hidden size [1024, 1024, 512] [1024, 1024, 512] [1024, 1024, 512]
Clip range 0.2 0.2 0.2

Max grad norm 1 1 1
Learning rate 3.e-4 3.e-4 3.e-4
Discount (γ) 0.96 0.96 0.9

GAE lambda (λ) 0.95 0.95 0.95
Init noise std 0.8 0.8 0.8

Desired kl 0.016 0.016 0.016
Ent-coef 0 0 0

B.1.3 Deep Deterministic Policy Gradient

DDPG, based on the DPG algorithm, is a model-free, off-policy actor-critic algorithm using deep
function approximators that can learn policies in high-dimensional, continuous action spaces. It uses a
copy of the actor and critic networks Q′(s, a|θQ′

) and µ′(s|θµ′
) to calculate the target values, and use

"soft" target updates to update the target networks more stably by having them slowly track the learned
networks: θ′ ← τθ + (1 − τ)θ′ with τ ≪ 1. It follows an exploration policy µ′ by adding noise
sampled from a noise process N: µ′(St) = µ(st|θµt ) +Nt. The critic is updated by minimizing the

30



loss: L(ϕ) = 1
N

∑
i(yi−Q(si, ai|θQ))2 where yi = ri+γQ

′(si+1, µ
′(si+1|θµ

′
)|θQ′

), and the actor
is updated using sampled policy gradient: ∇θJ ≈ 1

N

∑
i∇αQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si .

B.1.4 Twin Delayed Deep Deterministic policy gradient

TD3 is an actor-critic algorithm which applies its modifications to the state of the art actor-critic
method for continuous control, DDPG. It focused on two outcomes that occur as the result of
estimation error, overestimation bias and a high variance build-up. It uses Clipped Double Q-learning
method to reduce overestimation bias: y ← r + γmini=1,2Qθ′i(s

′, ã), where ã← πϕ′(s) + ϵ, ϵ ∼
clip(N(0, σ̃),−c, c), which uses target policy smoothing regularization to avoid overfitting and
enforce the value similarity between similar actions, It uses delayed policy and target network updates
to ensure small value error.

B.1.5 Soft Actor-Critic

SAC is an off-policy maximum entropy actor-critic algorithm. It considers a more general maxi-
mum entropy objective: J(π) =

∑T
t=0 E(st,at)∼Dπ

[r(st, at) + αH(π(·|st))], in which the tem-
perature parameter α determines the relative importance of the entropy term. The soft value
function Vψ(st) is trained to minimize the squared residual error: Lv(ψ) = Est∼ρ[

1
2 (Vψ(st) −

Eat∼πϕ
[Qθ(st, at) − log πϕ(at|st)])2]. The soft Q-function parameters can be trained to min-

imize the soft Bellman residual: LQ(θ) = E(st,at)∼D[ 12 (Qθ(st, at) − Q̂(st, at))
2], in which

Q̂(st, at) = r(st, at) + γEst+1∼p[Vϕ̄(st+1)] and Vϕ̄ is the target value network. The policy
parameters can be learned by directly minimizing the expected KL-divergence: KLπ(ϕ) =

Est∼ρ[DKL(πϕ(·|st)|| exp(Qθ(st,·))
Zθ(st)

)], in which Zθ(st) normalizes the distribution.

Table 43: Hyperparameters of SAC.

Hyperparameters Other Tasks Lift Underarm Stack Block
Num opt-epochs 1 1 1

Num mini-batches 4 4 4
Hidden size [1024, 1024, 1024] [1024, 1024, 1024] [1024, 1024, 1024]

Learning rate 3.e-4 3.e-4 3.e-4
ReplayBuffer size 5000 5000 5000

Discount (γ) 0.96 0.96 0.96
Polyak (1− τ ) 0.99 0.99 0.99
Entropy coef 0.2 0.2 0.2
Reward scale 1 1 1

Max grad norm 1 1 1
Batch size 32 32 32

B.2 Multi-agent algorithms

B.2.1 Independent Proximal Policy Optimization

IPPO (Independent PPO) is a multi-agent variant of proximal policy optimization(PPO). It uses
PPO to learn decentralized policies πi for agents with indicidual policy clippng based on the ob-
jective: Li(θ) = Esit,ait [min(

πθ(a
i
t|s

i
t)

πθold
(ait|sit)

Ait, clip(
πθ(a

i
t|s

i
t)

πθold
(ait|sit)

, 1 − ϵ, 1 + ϵ)Ait)], and the advantage
function is based on independent learning, where each agent a learns a local observation based critic
Vϕ(z

i
t) parameterised by ϕ using GAE. Additionally, it uses value clipping to restrict the update

of critic function for each agent i: Li(ϕ) = Ezit [min{(Vϕ(z
i
t)− V̂ it )2, (Vϕold

(zit) + clip(Vϕ(z
i
t)−

Vϕold
(zit),−ϵ,+ϵ)− V̂ it )2}]. The overall learning loss additionally adds an entropy regularization

term of policy πi.

31



B.2.2 Heterogenous-Agent Trust Region Policy Optimization

HATRPO is a multi-agent algorithm developed from TRPO. With the advantage decomposition
lemma, the algorithm is proposed to implement a multi-agent policy iteration procedure with mono-
tonic improvement guarantee. It requires no homogeneity of agents, nor any restrictive assumptions
on the decomposibility of joint Q-functions. At each iteration k+1, given a random permutation of
agents i1:n, agent im sequentially optimizes its own policy parameter θimk+1 by maximizing the ob-
jective: θimk+1 = argmaxθimE

s∼ρθk ,a
i1:m−1∼π

i1:m−1

θ
i1:m−1
k+1

,aim∼πim
θim

[Aimπθk
(s, ai1:m−1 , aim)], subject to

Es∼ρθk [DKL(π
im
θimk

(·|s), πimθim (·|s))] ≤ δ. Apply a linear approximation to the objective function and

a quadratic approximation to the KL constraint: θimk+1 = θimk + αj
√

2δ

gimk (Him
k )−1gimk

(Him
k )−1gimk ,

in which Him
k is the Hessian of the expected KL-divergence, gimk is the gradient of the objective func-

tion, and αj < 1 is a positive coefficient. Estimate the advantage function E[Aimπθk
(s, ai1:m−1 , aim)]

with (
πim
θ (aim |s)
πim
θk

(aim |s)
− 1)M i1:m(s, a), where M i1:m = π̄i1:m−1

πi1:m−1
Â(s, a) and π̄i1:m−1 =

∏m−1
j=1 π̄ij is the

policies of agents i1:m−1 just updated in the same iteration k+1.

B.2.3 Heterogeneous-Agent Proximal Policy Optimisation

HAPPO is a multi-agent policy optimization algorithm that follows the centralized training decen-
tralized execution (CTDE) paradigm. HAPPO doesn’t assume homogeneous agents and doesn’t
require decomposibility of the joint value function. The theoretical core of extending PPO to multi-
agent settings is the advantage decomposition lemma(Lemma 1 in the original paper). As a result
of it, similar to single agent PPO, we have a theoretical monotonic improvement guarantee for
the multi-agent setting: J(π) ≥ J(π) + σnm=1[L

i1:m
π (πi1:m−1 , πim)− CDmax

KL (πim , πim)](Lemma
2 in the original paper). This lemma yields a similar policy optimization iteration: πimk+1 =

argmax
πim

[Li1:mπ (πi1:m−1 , πim) − CDmax
KL (πim , πim)]. To avoid maintaining value functions for

each single agent, the following proposition is used: E[Aimπ (s, ai1:m−1 , aim)] = E[(
π̂im(aim |s)
πim(aim |s)

−

1)
πi1:m−1(ai1:m−1 |s)
πi1:m−1(ai1:m−1 |s)

Aπ(s, a)]), so that it only need to keep one value function Aπ(s, a) for all

agents.Finally, it uses the clipping trick similar to single agent PPO, obtaining the final practical
algorithm, for details, please refer to (11) in the original paper.

B.2.4 Multi-Agent Proximal Policy Optimization

MAPPO (Multi-Agent PPO) is an application of the actor-critic single-agent PPO algorithm
to multi-agent tasks. It follows the CTDE structure. Each agent i follows a shared policy
πθ(ai|oi) based on local observation oi = O(s; i) at global state s, takes its action ai and
optimizes its reward J(θ) = Eat,st [

∑
t γ

tR(st, at)]. The actor network maximizes: L(θ) =

[ 1
Bn

∑B
i=1

∑n
k=1min(r

(k)
θ,iA

(k)
i , clip(r

(k)
θ,i , 1 − ϵ, 1 + ϵ)A

(k)
i )] + σ 1

Bn

∑B
i=1

∑n
k=1 S[πθ(o

(k)
i )],

where n refers to the agent number, A(k)
I is computed using GAE method, S is policy en-

tropy and σ is entropy coefficient hyper-parameter. The critic network minimizes: L(ϕ) =
1
Bn

∑B
i=1

∑n
k=1(max[(Vϕ(s

(k)
i )− R̂i)2, (clip(Vϕ(s(k)i ), Vϕold

(s
(k)
i )− ϵ, Vϕold

(s
(k)
i ) + ϵ)− R̂i)2]),

where R̂i is reward-to-go.

B.2.5 Multi-Agent Deep Deterministic Policy Gradient

MADDPG (Multi-Agent DDPG) is an actor-critic deep policy gradient algorithm solving multi-agent
tasks. Based on DDPG, it uses CTDE structure, in which the critic uses global information to optimize
Q-function while training and the actor uses local observation to take actions while testing. For each
agent i, update the critic by minimizing the loss function: Li(ϕ) = 1

S

∑
j(y

j−Qµi (xj , a
j
1, . . . , a

j
N ))2,

where yj = rji + γQµ
′

i (x′j , a′1, . . . , a
′
N )|a′k=µ′

k(σ
j
k)

, and update actor using the sampled policy

32



Table 44: Hyperparameters of HAPPO.

Hyperparameters Other Tasks Lift Underarm Stack Block
Num mini-batches 1 1 1
Num opt-epochs 5 10 5

Num episode-length 8 20 8
Hidden size [1024, 1024, 512] [1024, 1024, 512] [1024, 1024, 512]
Use popart True True True

Use value norm True True True
Use proper time limits False False False

Use huber loss True True True
Huber delta 10 10 10
Replay Size 10000 10000 10000

Polyak 0.995 0.995 0.995
Reward scale 1 1 1

Clip range 0.2 0.2 0.2
Max grad norm 1 1 1
Learning rate 1.e-4 1.e-4 1.e-4
Discount (γ) 0.96 0.96 0.96

GAE lambda (λ) 0.95 0.95 0.95
Init noise std 1 1 1

Ent-coef 0 0 0

Table 45: Hyperparameters of MAPPO.

Hyperparameters HandCatch HandLift Stack Block
Num mini-batches 1 1 1
Num opt-epochs 5 10 5

Num episode-length 8 20 8
Hidden size [1024, 1024, 512] [1024, 1024, 512] [1024, 1024, 512]
Use popart True True True

Use value norm True True True
Use proper time limits False False False

Use huber loss True True True
Huber delta 10 10 10
Clip range 0.2 0.2 0.2

Max grad norm 10 10 10
Learning rate 5.e-4 5.e-4 5.e-4

Opt-eps 5.e-4 5.e-4 5.e-4
Discount (γ) 0.96 0.96 0.96

GAE lambda (λ) 0.95 0.95 0.95
Std x coef 1 1 1
Std y coef 0.5 0.5 0.5
Ent-coef 0 0 0

33



Table 46: Hyperparameters of offline algorithms.

Hyperparameters BCQ TD3+BC IQL
Hidden size [400,300] [256,256] [256,256]

Learning rate 1.e-3 3.e-4 3.e-4
Discount (γ) 0.99 0.99 0.99

Polyak (1− τ ) 0.995 0.995 0.995
Batch size 100 256 256

Φ 0.05 - -
generated actions 10 - -

α - 0.2 -
β - - 3.0

τ (IQL) - - 0.7

gradient: ∇θiJ ≈ 1
S

∑
j ∇θiµi(σ

j
i )∇aiQ

µ
i (x

j , aji , . . . , ai, . . . , a
j
N )|ai=µi(σ

j
i )

, where S is the size
of the mini-batch.

B.3 Offline algorithms

B.3.1 BCQ

BCQ constrains the selected actions to be in the action distribution of the dataset. It trains a Q-network
Q, a perturbation network ξ, and a conditional VAE G = {E (µ, σ|s, a) , D (a|s, z ∼ (µ, σ))}. The
agent generates n actions by G, adds small perturbations ∈ [−Φ,Φ] on the actions using ξ, and then
selects the action with the highest value in Q. The policy can be written as

π(s) = argmax
aj+ξ(s,aj)

Q
(
s, aj + ξ

(
s, aj

))
, where

{
aj ∼ G(s)

}n
j=1

.

Q is updated by minimizing E(s,a,s′)∼D|Q(s, a)−y|2, where y = r+γQ̂(s′, π̂(s′)). y is calculated
by the target networks Q̂ and ξ̂, where π̂ is correspondingly the policy induced by Q̂ and ξ̂. ξi is
updated by maximizing E(s,a)∼DQ (s, a+ ξ (s, a)).

B.3.2 TD3+BC

TD3+BC simply adds the behavior clone term into the objective of policy optimization in TD3 to
constrain the learned policy to be close to the behavior policy. Specifically,

π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
.

B.3.3 IQL

IQL avoids to query the values of any out-of-distribution actions without explicit constraints. It
approximates an upper expectile of the value distribution by simply modifying the loss function in a
SARSA-style TD backup, without ever using out-of-distribution actions in the target value. The V
values are updated by minimizing

E(s,a)∼D [Lτ2 (Q(s, a)− V (s))] ,

where Lτ2(u) = |τ − ⊮(u < 0)|u2. And Q values are updated by minimizing

E(s,a,s′)∼D

[
(r(s, a) + γV (s′)−Q(s, a))

2
]
.

After the Q values have converged, the policy are updated by advantage-weighted behavioral cloning:

E(s,a)∼D [exp (β (Q(s, a)− V (s))) log π(a | s)] .

Most of parameters of offline algorithms follow the official settings. We find that a small α for
TD3+BC would achieve better performance and we choose 0.2 rather than 2.5 (official setting). BC
is TD3+BC with α = 0.

34



B.4 Multi-task RL algorithms

B.4.1 Multi-task PPO/SAC/TRPO

Multi-task PPO, Multi-task SAC, and Multi-task TRPO are basically the same as the original PPO,
SAC, and TRPO, except for a small change called "disentangled alphas" in the Multi-task SAC
algorithm. Alpha is the entropy coefficient used to control policy exploration. Disentangled alpha
means that the learning of each task has a separate alpha coefficient for better exploration between
different tasks.

Table 47: Hyperparameters of Multi-task PPO.

Hyperparameters MT1, MT4, and MT20
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [2048, 1024, 512]
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (γ) 0.96

GAE lambda (λ) 0.95
Init noise std 0.8

Desired kl 0.016
Ent-coef 0

B.5 Meta RL algorithms

B.5.1 MAML

MAML is a model-agnostic algorithm for meta learning, it can be used for both supervised learning
and reinforcement learning. In reinforcement learning, the goal of meta-learning is to allow the agent
to quickly acquire policy for new tasks through only a small amount of experience samples in the
testing phase. A task is an MDP, and any aspect of the MDP may change across tasks in the task
distribution p(T ). At this time, the fθ represents the agent’s policy (a mapping from state xt to action
at), and the loss function of each task Ti is:

LTi
(fϕ) = −Ext,at∼fϕ,p(Ti

)[

H∑
t=1

Ri(xt,at)]

where H is the horizon of MDP. In a K shot reinforcement learning, K rollouts (x1,a1, ...,xH)
generated from fθ, task Ti, and their corresponding rewards R(xt,at) will be used to adapt to the
new task Ti.

B.5.2 ProMP

ProMP (Proximal Meta-Policy search) proposes a novel meta-learning algorithm based on the MAML.
It combines the PPO algorithm with the idea of MAML and improves the efficiency and stability of
the meta-learning training process by controlling the statistical distance of both pre-adaptation and
adapted policies. In general, ProMP optimizes

LProMP
T (θ) = LCLIPT (θ′)− ηDKL(πθ≀ , πθ) s.t. θ

′ = θ + α∇θLLRT (θ), T ∼ p(T )

where LCLIPT (θ′) is the same as PPO which allows it to safely use a single trajectory for multiple
gradient update steps, and LLRT (θ) results in the following objective:

LLRT (θ) = Eτ∼PT (τ,θo)[

H−1∑
t=1

πθ(at|st)
πθo(at|st)

Aπθo
(at, st)]

35



Table 48: Hyperparameters of ProMP.

Hyperparameters ML1, ML4, and ML20
Num mini-batches 1

Inner loop opt-epochs 1
Outer loop opt-epochs 3
Num episode-length 8

Hidden size [2048, 1024, 512]
Clip range 0.2

Max grad norm 1
Outer loop learning rate 3.e-4
Inner loop learning rate 3.e-4

Discount (γ) 0.9
GAE lambda (λ) 0.95

Init noise std 1
Desired kl 0.016
Ent-coef 0

C Performance discussion of PPO and SAC

In our RL/MARL experiments, we found that SAC does not work on almost all tasks, which is an
anomalous phenomenon. Firstly, bimanual dexterous manipulation is a challenging task, and previous
studies have shown that simple model-free RL is basically unable to complete the task. So why do
we get such good performance with PPO, and SAC almost all fail? We speculate that it is because
the success of PPO relies on the huge improvement in sampling efficiency brought by 2048 parallel
environments. Empirically, the gain of on-policy RL due to the improvement of sampling efficiency
is larger than that of off-policy RL, so SAC can not be improved to the extent that it can complete the
task of bimanual dexterous manipulation. In other words, it is normal that SAC can not complete
our task, and PPO can complete it because of the high sampling efficiency brought by Isaac Gym.
To verify our conjecture, we tested the SAC and PPO algorithm in different environments number
(8, 16, 32, 64, 128, 256, 512, 1024, 2048) in the humanoid environment officially implemented by
NVIDIA [19]. The results are shown in the Figure.6. It can be seen that the performance of the SAC
algorithm is better than that of the PPO below 128 environments, indicating that the implementation
of our SAC algorithm is good and meets our expectations. After more than 128 environments, the
performance improvement of PPO by the increase of the number of environments is apparent, while
the training of the SAC algorithm is unstable, and the performance is obviously inferior to the PPO.
This proves our previous conjecture and explains why SAC performs so poorly on Bi-DexHands. In
addition, because the action dimension of the Bi-DexHands has 50+ dimensions, the policy entropy
method used by the SAC algorithm is easy causes instability during training. This instability appears
to be exacerbated in the case of high sampling efficiency, and may also be a reason for the poor
performance of SAC. In general, RL algorithms with high sampling efficiency will show some
different characteristics. We also hope that Bi-DexHands can help researchers to study how to design
RL algorithms with high sampling efficiency.

36



(a) SAC (b) PPO

Figure 6: Performance of SAC and PPO algorithms on humanoid with different numbers of environ-
ments

Table 49: Hyperparameters of SAC.
Hyperparameters Humanoid
Num opt-epochs 2

Num mini-batches 1
Num episode-length 32

Hidden size [1024, 1024, 1024]
ReplayBuffer size 40000

Learning rate 3.e-4
Discount (γ) 0.99

Polyak (1− τ ) 0.995
Ent-coef 0.2

Reward scale 1
Max grad norm 1

Batch size 64

Table 50: Hyperparameters of PPO.
Hyperparameters Humanoid
Num opt-epochs 5

Num mini-batches 4
Num episode-length 32

Hidden size [1024, 1024, 1024]
Clip range 0.1

Learning rate 3.e-4
Discount (γ) 0.99

GAE lambda (λ) 0.95
Init noise std 1.0

Desired kl 0.01
Max grad norm 1

Ent-coef 0

D Details of multi-task/Meta RL training

In order to better take advantage of Isaac Gym’s large-scale parallel simulation, the design of our
multi-task/Meta RL pipeline is different from all existing benchmarks. The largest difference is that
we do not need to only sample part of all tasks for training, all tasks are trained at the same time. I
will introduce our pipeline and the detail of the multi-task/Meta RL categories respectively below.

D.1 High performance multi-task/meta RL pipeline using Isaac Gym

Isaac Gym is a recent promising simulator for reinforcement learning. Different from previous
simulators that can only use CPU to simulate, it can put all simulation calculations in GPU. Benefiting
from the powerful parallel computing capability of GPU and avoiding switching data between CPU
and GPU, Isaac Gym is able to create a large number of simulation environments in parallel without
consuming many resources. This improvement in sampling efficiency is helpful for reinforcement
learning, especially in on-policy RL and multi-task/meta RL. It also has a problem that Isaac Gym
only allows one single environment instance to be created on a single GPU, so we can not create
multiple gym-like environments at the same time as other simulators. So we designed a pipeline
that runs through the entire training pipeline of one single environment instance, to make the multi-
task/meta RL algorithm better leverage Isaac Gym’s advantages. We directly load all tasks into an
environment instance when initializing the environment, and use all tasks for data sampling and policy
update at the same time, which is equivalent to that we sample all the environments every time in
other simulators. In this way, each task can be trained synchronously, and the FPS is not significantly
lower than one single task in parallel environments. To the best of our knowledge, our benchmark is
the first to use Isaac Gym as a simulator for multi-task/meta RL. The sampling efficiency is greatly

37



open pen cap switch grasp&place pour water open scissors

re-orientation stack block swing cup two catch underarm open bottle cap

lift cup catch abreast catch over2underarm catch underarm door close inward

door close outward hand over lift pot door open inward door open outward

two catch underarmcatch abreast catch over2underarm catch underarm

open pen cap switch grasp&place pour water open scissors

re-orientation stack block swing cup two catch underarm open bottle cap

lift cup catch abreast catch over2underarm catch underarm door close inward

door close outward hand over lift pot door open inward door open outward

open pen cap switch grasp&place pour water open scissors

re-orientation stack block swing cup two catch underarm open bottle cap

lift cup catch abreast catch over2underarm catch underarm door close inward

door close outward hand over lift pot door open inward door open outward

two catch underarmcatch abreast catch over2underarm catch underarm

catch underarm catch underarm catch underarm catch underarm

catch abreast catch over2underarm catch underarm two catch underarm

ML1&MT1

ML4

MT4

ML20

MT20

Train Tasks Test Tasks

desired goal 𝑔𝑤1 desired goal 𝑔𝑤2 desired goal 𝑔𝑤𝑛 desired goal 𝑔 ∉ 𝑔1⋯𝑛

⋯

Figure 7: Detail implementations of multi-task/meta settings.

improved compared to previous simulators that rely on python parallel programs, which is helpful for
multi-task/meta RL training. We hope that this will facilitate the research of multi-task/meta RL.

D.2 Detail implementation of MT1, ML1, MT4, ML4, MT20, and ML20

Our multi-task/meta RL categories are formed by our carefully designed combinations of individual
tasks detailed above. According to what we said above, the ML category is that all tasks are trained
and tested at the same time. Therefore, MT1 and ML1, MT4 and ML4, MT20 and ML20 are all the
same in terms of category settings. The difference is 1) ML categories only use a part of tasks as
meta-train sets, and the other part is used for meta-test sets, while the MT categories are all trained
together. 2) From the perspective of observation, multi-task adds a one-hot vector to represent task
ID, while meta masks the observation related to the goal, which requires the Meta RL algorithm to
learn by itself. Figure.2 visualizes the detailed design of our multi-task and meta categories. Let’s
introduce their settings in detail separately:

MT1&ML1: These two categories are only trained and tested in one type of task, only the pose
of the goal is different between different tasks. We use Catch Underarm as the basic category, and
translate the goal pose to the left, right, and back by 0.03cm, plus the goal of the original pose to
form the task of MT1&ML1. ML1 train on left, right translation, and in-position tasks, and have to
quickly adapt to backward translation tasks.

MT4&ML4: These two categories consist of 4 tasks, namely Catch Underarm, Hand Over, Catch
Abreast, and Two Catch Underarm. The main reason for choosing these four tasks is that they are all
object throwing and catching tasks, and the skills required are relatively similar, which is conducive
to multi-task and Meta RL. It should be noted that to maintain the consistency of the environment, we
no longer fix the base of the handover task. ML4 train on Catch Underarm, handover, catch abreast
tasks and have to adapt to two Catch Underarm tasks.

38



Environment Episodes

Figure 8: Simple point cloud RL experiment. Left image is an RGB image taken with the RGBD
camera that comes with isaacgym and is used to convert it into a point cloud. Middle image is a
point cloud image converted from an RGB image. Right image is the experimental result of using
PPO to run 6000 episodes in 256 parallel ShadowHandOver environments. The purple line is the
result of RL training using point cloud input, and the blue line is the result of RL training using state
input. Other parameters and settings are the same as baseline.

MT20&ML20: These two categories are composed of all of the 20 designed tasks. Due to the
large span between different tasks, they are undoubtedly the most challenging tasks in Bi-DexHands.
But it is also the most meaningful task because it covers the development of human dexterity and
provides a good environment for us to master human-level dexterity. Note that there are some orders
of magnitude differences in rewards between tasks. To make their rewards as close as possible,
we scale the rewards in Grasp&Place, Door Open Outward, Door Open Inward, Bottle Cap, Block
Stack, Door Close Inward, Door close Outward, Lift Underarm, Re Orientation, Scissors, and Swing
Cup tasks by 0.1 factor to ensure the order of magnitude consistency between their rewards. ML20
needs to adapt quickly in Door Close Outward, Hand Over, Lift Pot, Open Scissors, and Two Catch
Underarm tasks. All the remaining environments are given for training.

E Visual observation about the Bi-DexHands

Currently, the observations of Bi-DexHands are state-based. This is good for a beginning research,
but not a realistic setting. In the real world, the agent always needs to estimate the states of other
objects by visual observations, so using visual input RL is very important for sim2real transfer. Isaac
Gym can use RGBD cameras to provide us with visual information, which can be directly used as
image input or processed into a point cloud. We have tried point cloud RL in Bi-DexHands, but it
still has some problems. Below I will detail why we are not using visual input in Bi-DexHands.

The problem is that the parallelism of Isaac Gym’s cameras is not very good. It can only obtain
images one by one env serially, which will greatly slow down the running speed. At the same time,
the training of the dexterous hand is very difficult and greatly depends on the high sampling efficiency.
we do a simple experiment and result in Figure.8. We replace the object information with point clouds
in the case of a small number of environments, and use PointNet to extract point cloud features. It
can be seen that under the same episode and same number of environments, the performance of point
cloud input is not as good as full state input, but it can also achieve some performance. But also using
an RTX 3090 GPU, the point cloud RL has only 200+ fps, and the full state can reach 30000+. In
fact, we can only open up to 256 environments when using point clouds. This was a problem with
Isaac Gym’s poor parallel support for cameras, so we didn’t use point clouds or other visual inputs as
our baselines, but they certainly could.

39


	Introduction
	Related Work
	Formulations & Algorithms
	Bimanual dexterous manipulation benchmark
	System design
	Construction of datasets
	Design of tasks
	Design of Multi-task/Meta RL

	Benchmarking reinforcement learning algorithms
	Environmental speed
	RL/MARL results
	Offline RL results
	Generalization ability 

	Conclusion and Future Work
	Task Specifications
	Physical parameters of Shadow Hand
	Detailed components of tasks 
	Hand Over
	Catch Underarm
	Catch Over2Underarm
	Two Catch Underarm
	Catch Abreast
	Lift Underarm
	Door Open Outward/Door Close Inward
	Door Open Inward/Door Close Outward
	Bottle Cap
	Push Block
	Swing Cup
	Open Scissors
	Re Orientation
	Open Pen Cap
	Switch
	Stack Block
	Pour Water

	Offline Data Collection

	Training details
	Single-agent algorithms
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Deep Deterministic Policy Gradient
	Twin Delayed Deep Deterministic policy gradient
	Soft Actor-Critic

	Multi-agent algorithms 
	Independent Proximal Policy Optimization
	Heterogenous-Agent Trust Region Policy Optimization
	Heterogeneous-Agent Proximal Policy Optimisation
	Multi-Agent Proximal Policy Optimization
	Multi-Agent Deep Deterministic Policy Gradient

	Offline algorithms
	BCQ
	TD3+BC
	IQL

	Multi-task RL algorithms
	Multi-task PPO/SAC/TRPO

	Meta RL algorithms
	MAML
	ProMP


	Performance discussion of PPO and SAC
	Details of multi-task/Meta RL training
	High performance multi-task/meta RL pipeline using Isaac Gym
	Detail implementation of MT1, ML1, MT4, ML4, MT20, and ML20

	Visual observation about the Bi-DexHands



