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Abstract

In this paper, we study phase retrieval under model misspecification and generative
priors. In particular, we aim to estimate an n-dimensional signal x from m i.i.d. re-
alizations of the single index model y = f(aTx), where f is an unknown and
possibly random nonlinear link function and a ∈ Rn is a standard Gaussian vector.
We make the assumption Cov[y, (aTx)2] 6= 0, which corresponds to the misspec-
ified phase retrieval problem. In addition, the underlying signal x is assumed to
lie in the range of an L-Lipschitz continuous generative model with bounded k-
dimensional inputs. We propose a two-step approach, for which the first step plays
the role of spectral initialization and the second step refines the estimated vector
produced by the first step iteratively. We show that both steps enjoy a statistical
rate of order

√
(k logL) · (logm)/m under suitable conditions. Experiments on

image datasets are performed to demonstrate that our approach performs on par
with or even significantly outperforms several competing methods.

1 Introduction

Compressed sensing (CS) is perhaps the most popular instance of high-dimensional inverse problems,
for which one has the linear measurement model

y = aTx + η, (1)

where a ∈ Rn is the sensing vector, x ∈ Rn is the sparse signal to estimate, and η represents additive
noise. It has been well-known for CS that roughly m = O(s log(n/s)) i.i.d. Gaussian measurements
are sufficient to ensure the accurate recovery of a signal with s non-zero entries [88, 1, 23, 11, 77].

Phase retrieval (PR) arises in numerous scientific areas including X-ray crystallography, acoustics,
astronomy, microscopy, optics, wireless communications, and quantum information [13], where one
cannot measure aTx directly, and can only record its magnitude. For example, the following noisy
magnitude-only measurement model has been adopted in various prior works on sparse (real-valued)
PR [92, 39, 25, 36, 9, 7]:

y = |aTx|+ η, (2)
where the signal x is assumed to be sparse, and the sensing vector a is assumed to be a standard
Gaussian vector.

However, both the linear and magnitude-only measure models in (1) and (2) are idealized views
of the data generating process. To make the setup more general, one can utilize the following
semi-parametric single index model (SIM) for general nonlinear models:

y = f(aTx), (3)
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where f : R → R is an unknown (possibly random) nonlinear link function, and a is typically
assumed to be Gaussian. In addition, since the norm of x ∈ Rn is absorbed into the SIM, for brevity,
it is common to assume that x is a unit vector, i.e., ‖x‖2 = 1. SIMs have long been studied in the
conventional setting where the number of measurements m > n [30, 81, 45]. In recent years, they
have also been analyzed in the high-dimensional setting where m� n, mainly under the assumption
that the underlying signal is sparse. Relevant works include but are not limited to [72, 63, 26, 73, 68].
For all these works, it is crucial to impose the following assumption on the SIM:

Cov[y,aTx] 6= 0. (4)

The pivotal condition in (4) is fairly generic and encompasses notable special examples such as noisy
1-bit measurements and general (non-binary) quantization schemes. However, it is not satisfied by
PR models including (2) and the related models

y = |aTx + η|, y = (aTx)2 + η, (5)

where η refers to zero-mean random noise that is independent of a. In order to formalize a class of
SIMs that encompass the above-mentioned PR models (and more general models, see the discussion
in Section 2.2) as special cases, misspecified phase retrieval (MPR) has been studied in [64, 98], with
the condition (4) being replaced by the assumption

Cov[y, (aTx)2] 6= 0. (6)

It is worth mentioning that another motivation behind studying MPR is that the theoretical analysis
for PR typically relies on the correct model specification that the data points are indeed generated
by the correct model, and the MPR model enables theoretical analysis under statistical model
misspecification.

In both works [64, 98], the signal x is assumed to be sparse. Recently, motivated by tremendous
successful applications of deep generative models and following the seminal work [6] on generative
model based linear CS, it has been popular to study high-dimensional inverse problems under
generative priors [76, 31, 32, 34, 96, 41, 2, 67, 95, 60, 40, 65]. In particular, instead of being sparse,
the underlying signal is assumed to be contained in (or lie near) the range of a generative model. It
has been empirically demonstrated in [6] and its various follow-up works (e.g., see [19, 85, 48] and a
literature review in [78]) that compared to sparsity based methods, corresponding generative model
based algorithms require significantly fewer samples to recover the signal up to a given accuracy.

In this paper, we study the MPR problem under generative modeling assumptions.

1.1 Related Work

In this subsection, we summarize some relevant works on PR and SIM, for both cases with or without
generative priors.

PR and SIM without generative priors: There is a large amount of literature providing practical
algorithms for PR, including convex methods [66, 14, 12, 90, 4, 29] and empirically more competitive
non-convex methods [27, 21, 62, 70]. In particular, in the seminal work [62] and a variety of its
follow-up works [13, 10, 15, 92, 91, 99, 39, 82, 8], whether it is for general PR (with no priors on the
signal) or sparse PR, two-step approaches have been proposed with provable guarantees. The first
step consists of a spectral initialization method, and the second step is typically an iterative (such
as alternating minimization and gradient descent) algorithm that further refines the initial guess of
the first step. For general PR, the spectral initialization step turns out to be unnecessary, and optimal
sample complexity guarantees can be established even when using random initialization [83, 16].
However, to the best of our knowledge, it is not the case for sparse PR. More specifically, all
theoretically-guaranteed non-convex algorithms for sparse PR require spectral initialization, and this
typically results in a sub-optimal sample complexity of O

(
s2 log n

)
(instead of O(s log n)), where s

refers to the number of non-zero entries of the signal to estimate.

MPR is also closely related to SIMs, which have been extensively studied in the conventional setting
where m > n, see, e.g., [30, 35, 59]. High-dimensional SIMs have received a lot of attention in
recent years, with theoretical guarantees for signal estimation and support recovery [22, 24, 74, 84,
55, 72, 73, 17, 97, 28, 93, 69, 20]. In particular, motivated by the idea that under the assumption (4), a
SIM can be converted into a scaled linear measurement model with unconventional noise, the authors
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of [72] consider minimizing the linear least-squares objective function over a convex set. They show
that a reliable estimation of the signal can be obtained by such a simple method despite the unknown
nonlinear link function.

As mentioned earlier, MPR with sparse priors has been studied in [64, 98]. The work [64] implements
a two-step procedure based on convex optimization, with the first step being a spectral initialization
method. More specifically, a semidefinite program is solved to produce an initial vector, and then an
`1 regularized least square is solved to obtain a refined estimator. Such a procedure suffers from high
computational costs. A more efficient two-step approach, which is a simple variant of the thresholded
Wirtinger flow method [10], is proposed in [98]. In the first step, identical to that in [10], the initial
vector is calculated by a thresholded spectral method that first estimates the support of the sparse
signal by thresholding and then performs the classic power method over the submatrix corresponding
to the estimated support. In the second step, a thresholded gradient descent algorithm is employed.
Both approaches in [64, 98] can attain the optimal statistical rate of order

√
(s log n)/m, provided

that the sensing vector is standard Gaussian and the number of samplesm = Ω
(
s2 log n

)
. In addition,

the second step of the approach proposed in [98] is shown to achieve a linear convergence rate.

PR and SIM with generative priors: PR with generative priors has been studied in [31, 37, 38, 80,
3, 47]. More specifically, an approximate message passing algorithm is proposed in [3]. The authors
of [31, 80] minimize the objective over the latent space in Rk using gradient descent, where k is
the latent dimension of the generative prior. Corresponding algorithms may easily get stuck in local
minima since the explorable solution space is limited. Recovery guarantees for projected gradient
descent algorithms over the ambient space in Rn for noiseless PR with pre-trained or untrained neural
network priors have been proposed in [37, 38]. No initialization methods have been proposed in these
works, making the assumption on the initial vector therein a bit stringent. On the other hand, the
authors of [47] propose a spectral initialization method for PR with generative priors and provide
recovery guarantees with respect to globally optimal solutions of a corresponding optimization
problem. The optimization problem is non-convex, and a projected power method is proposed in [50]
to approximately find an optimal solution.

Generative model based SIMs have been studied in [51, 49, 46, 94]. The authors of [51, 49, 46]
provide optimal sample complexity upper bounds under the assumption of Gaussian sensing vectors.
But their results rely on the assumption (4), which is not satisfied by widely adopted PR models. The
SIM studied in [94] encompasses certain PR models as special cases, and the sensing vector can
be non-Gaussian. However, the nonlinear link function f is assumed to be differentiable, making
it not directly applicable to the PR model in (2). Moreover, it is worth mentioning that in both
works [94, 51], the recovery guarantees are with respect to globally optimal solutions of typically
highly non-convex optimization problems. Attaining these optimal solutions is practically difficult.

1.2 Contributions

Throughout this paper, we assume that the signal x lies in the range of an L-Lipschitz continuous
generative model with bounded k-dimensional inputs. Our main contributions are as follows:

• We propose a two-step approach for MPR with generative priors. In particular, in the first
step, we make use of the projected power method proposed in [50] to obtain a good initial
vector for the iterative algorithm used in the second step.

• We show that under appropriate initialization, both steps attain a statistical rate of order√
(k logL) · (logm)/m, and the second step achieves a linear convergence rate. The

initialization condition for the first step is mild in the sense that it allows the inner product
between the starting point and the signal x to be a sufficiently small positive constant. In
contrary, the initialization condition for the second step is more restrictive, making the
first step necessary. Notably, unlike for the works on MPR with sparse priors [64, 98] that
require the sub-optimal O

(
s2 log n

)
sample complexity, the sample complexity requirement

for our recovery guarantees is O((k logL) · (logm)), which is naturally conjectured to be
near-optimal [52, 42].

• We perform numerical experiments on image datasets to corroborate our theoretical results.
In particular, for the noisy magnitude-only measurement model (2), we observe that our
approach gives reconstructions that are competitive with those of the alternating phase
projected gradient descent (APPGD) algorithm proposed in [37], which is the corresponding
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state-of-the-art method, though we do not utilize the knowledge of the link function and
allow for model misspecification. Moreover, for several closely related measurement models
that satisfy the condition (6), our approach leads to superior reconstruction performance
compared to all other competing methods, including APPGD.

2 Problem Formulation

In this section, we overview some important assumptions that we adopt. Before proceeding, we
present the notation used in this paper.

2.1 Notation

We use upper and lower case boldface letters to denote matrices and vectors respectively. For any
positive integer N , we use the shorthand notation [N ] = {1, 2, · · · , N}, and IN represents the
identity matrix in RN×N . The support (set) of a vector is the index set of its non-zero entries.
We use ‖X‖2→2 to represent the spectral norm of X. We use Bk(r) to denote the radius-r in
Rk, i.e., Bk(r) := {z ∈ Rk : ‖z‖2 ≤ r}, and Sn−1 represents the unit sphere in Rn, i.e.,
Sn−1 := {s ∈ Rn : ‖s‖2 = 1}. We use G to denote a pre-trained L-Lipschitz continuous generative
model from Bk(r) to Rn. We focus on the setting where k � n. For any set S ⊆ Bk(r), we write
G(S) = {G(z) : z ∈ S}. Our goal is to estimate the signal x ∈ Range(G) = G(Bk(r)) from
realizations of the sensing vector a and the observation y (generated according to the SIM in (3)).
For any two sequences of real values {aj} and {bj}, we write aj = O(bj) if there exist an absolute
constant C1 and a positive integer j1 such that for any j > j1, |aj | ≤ C1bj , aj = Ω(bj) if there exist
an absolute constant C2 and a positive integer j2 such that for any j > j2, |aj | ≥ C2bj . We use the
generic notations C and C ′ to denote large positive constants, and we use c to denote a small positive
constant; their values may differ from line to line.

2.2 Setup

First, the following are the standard definitions of a sub-exponential random variable and the associ-
ated sub-exponential norm.
Definition 1. A random variable X is said to be sub-exponential if there exists a positive constant
C such that (E [|X|p])1/p ≤ Cp for all p ≥ 1, or equivalently, if there exists a positive constant C ′
such that P(|X| > u) ≤ exp(1− u/C ′) for all u ≥ 0. The sub-exponential norm of X is defined as
‖X‖ψ1

:= supp≥1 p
−1 (E [|X|p])1/p.

We will focus on the following settings except where stated otherwise:

• The observations are independently generated according to the SIM (3), where f is the link
function that is unknown and possibly random.

• We have an L-Lipschitz continuous generative model G : Bk(r) → Rn. For conve-
nience, similarly to [48, 50], we assume that the generative model is normalized such that
Range(G) ⊆ Sn−1. For a general (unnormalized) generative model, we may essentially
consider its normalized version. See, e.g., [50, Remark 1].

• The signal x is contained in the range of G, i.e., x ∈ Range(G) ⊆ Sn−1.
• The sensing vector a ∈ Rn is standard Gaussian, i.e., a ∼ N (0, In).
• The random variable y = f(aTx) is sub-exponential with the sub-exponential norm being

denoted by Ky, i.e., Ky := ‖y‖ψ1 . In addition, we use My to denote the expectation of y,
i.e., My := E[y].
Remark 1. y will be sub-exponential when f(x) comprises of xc plus lower order terms
with c ≤ 2 (since the product of two sub-Gaussian random variables is sub-exponential),
and therefore we will see that the y corresponding to all the measurement models presented
in our paper is sub-exponential. We remark that the assumption of sub-exponential y is
not essential and it can be easily relaxed. For example, when y = xc with c being an even
integer that is larger than 2, there will be only a minor change in the order of the logm
term in the sample complexity and statistical rate. However, for brevity, we follow [64, 98]
and make the assumption of sub-exponential y to avoid non-essential complications.
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• We consider MPR and assume that1

ν := Cov
[
y, (aTx)2

]
> 0, (7)

or equivalently,
ν := Cov

[
f(g), g2

]
> 0, (8)

where g ∼ N (0, 1) is a standard normal random variable. Note that the assumption (8) is
only with respect to the nonlinear link function f . The condition in (7) is satisfied by PR
models described in (2) and (5). It is also satisfied by relevant models such as [98]

y = |aTx|+ 2 tanh(|aTx|) + η, y = 2(aTx)2 + 3 sin(|aTx|) + η. (9)

See [64, Proposition 3 and Remark 4] for more general examples.

3 Algorithm

In this section, we describe our two-step algorithm devised for MPR with generative priors. Suppose
that we have m i.i.d. realizations of a and y, namely a1, . . . ,am and y1, . . . , ym. To estimate the
signal x, we consider the following two-step approach:

1. We perform T1 iterations in the first step. In particular, let

V =
1

m

m∑
i=1

yi
(
aia

T
i − In

)
. (10)

We perform the projected power method proposed in [50]: For t = 0, 1, . . . , T1 − 1, let

w(t+1) = PG
(
Vw(t)

)
, (11)

where PG(·) denotes the projection function onto Range(G),2 and we obtain x(0) := w(T1).
Similarly to [43, 47], we set the starting point w(0) as the column of 1

m

∑m
i=1 yiaia

T
i (i.e.,

a shifted version of V) that corresponds to the largest diagonal entry. Note that it is easy to
calculate that E[V] = νxxT (see, e.g., [47, Lemma 8]), for which each column is a scalar
product of x. This motivates the use of a shifted version of V to get the initialization vector.

2. We perform T2 iterations in the second step. In particular, let

ȳ =
1

m

m∑
i=1

yi (12)

be the empirical mean of the observations. We perform the following iterative procedure:
For t = 0, 1, 2, . . . , T2 − 1, let

ν̂(t) =
1

m

m∑
i=1

(yi − ȳ) ·
(
aTi x

(t)
)2

(13)

ỹ
(t)
i = (yi − ȳ) ·

(
aTi x

(t)
)
, i = 1, 2, . . . ,m. (14)

x̃(t+1) = x(t) − ζ

m
·
m∑
i=1

(
ν̂(t) ·

(
aTi x

(t)
)
− ỹ(t)

i

)
ai, (15)

x(t+1) = PG
(
x̃(t+1)

)
, (16)

where ζ > 0 is a tuning parameter, and ν̂(t) can be thought of as an approximation of ν
defined in (7). The idea behind calculating ỹ(t)

i is that by comparing (4) and (6), we observe
that to transform the MPR model into a conventional SIM, we may use (y − E[y])(aTx) to

1The case that ν < 0 can be similarly handled by considering −y.
2That is, for any s ∈ Rn, PG(s) := G

(
arg minz∈Bk(r) ‖G(z) − s‖2

)
. Similarly to [79, 37, 38, 71, 50],

we implicitly assume the exact projection in our analysis. In practice, approximate methods such as gradient-
and GAN-based projections [79, 75] have been shown to work well.
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Algorithm 1 A two-step approach for misspecified phase retrieval with generative priors
Input: {(ai, yi)}mi=1, step size ζ > 0, number of iterations T1 for the first step, number of iterations
T2 for the second step, pre-trained generative model G, initial vector w(0)

First step:
1: for t = 0, 1, . . . , T1 − 1 do
2: w(t+1) = PG

(
Vw(t)

)
3: end for

Second step:
Let x(0) := w(T1)

1: for t = 0, 1, . . . , T2 − 1 do
2: Calculate ν̂(t), ỹ(t)

i , x̃(t+1) and x(t+1) according to (13), (14), (15), and (16), respectively
3: end for

Output: x̂ := x(T2)

replace y, see also [64]. Moreover, (15) can be considered as a gradient descent step with
respect to a linear measurement model with the scale factor ν̂(t) and observations ỹ(t)

i . Then,
in (16), we project the calculated vector x̃(t+1) onto Range(G). Finally, we use x̂ := x(T2)

to represent the estimated vector obtained after T2 iterations.

For convenience, we summarize the details in Algorithm 1.

4 Theoretical Results

The following theorem establishes recovery guarantees for the first step of Algorithm 1. The proof is
given in the supplementary material. Note that Ky := ‖y‖ψ1

(cf. Section 2.2) is considered a fixed
constant and is omitted in the O(·) notation.

Theorem 1. Assume that there exists a positive integer t0 such that xTw(t0) ≥ c0, where c0 is a
sufficiently small positive constant. Suppose thatm = Ω((k log(nLr)) ·(logm)) with a large enough
implied constant. Then, we have that with probability 1−O(1/m), it holds for all t > t0 that∥∥∥w(t) − x

∥∥∥
2
≤ CKy

c0

√
(k log(nLr)) · (logm)

m
= O

(√
(k log(nLr)) · (logm)

m

)
. (17)

Since a d-layer feedforward neural network generative model from Bk(r) to Rn is typically L-
Lipschitz continuous with L = nΘ(d) [6] and we may set r = nΘ(d), the upper bound in (17) is
of order

√
(k logL) · (logm)/m. Such a statistical rate is naturally conjectured to be near-optimal

according to information-theoretic lower bounds established for MPR with sparse priors [64] and
generative model based principal component analysis [50]. Therefore, Theorem 1 reveals that the
first step of Algorithm 1 attains the near-optimal statistical rate under appropriate initialization and
exact projections. The accurate projection assumption is perhaps the major caveat to Theorem 1.
However, it is a standard assumption in relevant works including [79, 37, 38, 71, 50]. In practice,
both gradient- and GAN-based projection methods [79, 75] have been shown to be highly effective in
approximating the projection step.
Remark 2. Spectral initialization steps in relevant works on sparsity based PR [92, 39, 25, 36, 9, 7]
or MPR [64, 98] require the sub-optimal sample complexityO(s2 log n), where s refers to the number
of non-zero entries. In contrary, according to Theorem 1, our spectral initialization step only requires
the near-optimal O((k logL) · (logm)) sample complexity (with a linear rather than a quadratic
dependence on k). However, we note that such an advantage of our spectral initialization step comes
at a price. In particular, we require the initialization condition xTw(t0) ≥ c0, which is not required
by spectral initialization steps in the above-mentioned works on sparse PR/MPR.
Remark 3. For some applications, we may assume that the dataset contains only vectors whose
elements are all non-negative. For example, this is a natural assumption for image datasets. During
pre-training, we can easily set the activation function of the last layer of the neural network generative
model to be a certain non-negative function such as ReLU or sigmoid, and the range of such a
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generative model is contained in the non-negative orthant. Therefore, the assumption that xTw(t0) ≥
c0 for a sufficiently small positive constant c0 is also mild. Similar assumptions have been made in
relevant works including [18, 50] where it is not appropriate to assume that −x is also contained in
the structured set (such as a closed convex cone or the range of a deep generative model). As a result,
we provide an upper bound on ‖w(t) − x‖2, instead of min{‖w(t) − x‖2, ‖w(t) + x‖2}, which is a
commonly adopted distance measure in relevant literature on real-valued PR.

Moreover, although the projected power iterations in the first step of Algorithm 1 can attain the
near-optimal statistical rate under appropriate conditions, it is evident in a large body of literature on
PR (see, e.g., [62, 13, 10, 99, 98, 64]) that such a spectral method better serves as the initialization
step of a subsequent iterative approach. This motivates us to propose the second step of Algorithm 1,
and in our numerical experiments, we clearly observe the benefit of the second step. More specifically,
compared to simply performing the projected power method, performing both steps of Algorithm 1
leads to significantly better reconstructed images when the total number of iterations is fixed to be
the same, namely T1 + T2.

Next, we present the following theorem, which is proved in the supplementary material. This theorem
shows that under appropriate initialization and the assumption of exact projections, the iterative
algorithm in the second step of Algorithm 1 converges linearly to a point achieving the near-optimal
statistical rate of order

√
(k logL) · (logm)/m.

Theorem 2. Assume that the step size ζ and x(0), which is the initial vector for the second step of
Algorithm 1, satisfy

2 · |1− ζν|+ 5ζν ·
∥∥x(0) − x

∥∥
2

+ β1 = 1− β2, (18)

where both β1 and β2 are positive constants.3 Suppose that m = Ω((k log(nLr)) · (logm)) with a
large enough implied constant. Then, we have with probability 1 − O(1/m), the following event
occurs: There exists a positive integer T0 = O

(
log
(

m
(k log(nLr))·(logm)

))
, such that the sequence{

‖x(t)−x‖2
}
t∈[0,T0]

is monotonically decreasing, with the following inequality holds for all t ≤ T0:∥∥∥x(t) − x
∥∥∥

2
< (1− β2)t · ‖x(0) − x

∥∥
2

+
CKy

β2

√
(k log(nLr)) · (logm)

m
. (19)

In addition, we have for all t ≥ T0 that∥∥∥x(t) − x
∥∥∥

2
≤ CKy

β2

√
(k log(nLr)) · (logm)

m
= O

(√
(k log(nLr)) · (logm)

m

)
. (20)

Remark 4. In our analysis, we need to impose the assumption (18) on the step size ζ and initial
vector x(0). This makes the first step of Algorithm 1 necessary since when ‖x(0) − x‖2 is not small,
say ‖x(0)−x‖2 = 1, the condition (18) cannot be satisfied. In comparison, to attain the near-optimal
statistical rateO(

√
(k logL) · (logm)/m), the initialization condition of the first step of Algorithm 1

is milder, and xTw(t0) (see Theorem 1) only needs to be lower bounded by a sufficiently small positive
constant (thus ‖w(t0) − x‖2 can be close to

√
2). However, although the second step of Algorithm 1

requires a more restrictive initialization condition, we observe from our experimental results that it
clearly refines the estimate of the first step. Such a phenomenon is also observed in various works
related to PR, including [62, 13, 10, 99, 98, 64].

Remark 5. In Remark 4, we have briefly discussed the comparison of the initialization condition
xTw(t0) ≥ c0 in Theorem 1 and the typical initialization condition ‖x−w(t0)‖2 < δ‖x‖2. In the
following, we provide a more detailed discussion: When both x and w(t0) are unit vectors (this is
the setting of our Theorem 1), the typical initialization requirement ‖x−w(t0)‖2 < δ‖x‖2 can be
reduced to 2

(
1− xTw(t0)

)
< δ2, or equivalently, xTw(t0)1− δ2

2 . Note that δ is typically a small
positive constant (e.g., δ = 1

6 in [10] and δ = 1
8 in [13]), and thus the typical initialization condition

requires xTw(t0) to be larger than some positive constant that is close to 1. This is stronger than the
assumption xTw(t0) ≥ c0,4 where c0 is a sufficiently small positive constant.

3β1 is sufficiently small, and it is used to absorb a certain o(1) term.
4It basically assumes the weak recovery of the signal, see, e.g., [61].
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Remark 6. The condition in (18) requires |1− ζν| < 1
2 . This reveals that we should choose ζ such

that ζ ∈
(

1
2ν ,

3
2ν

)
, and a good choice of ζ is ζ = 1

ν (for this case, the condition (18) reduces to
‖x(0) − x‖2 < 1

5 ). Since the knowledge of the link function f (and thus the knowledge of ν, which
is dependent on f ; See (8)) cannot be assumed, in our experiments, we use ν̂(t) to approximate ν.
That is, ζ is set to be 1

ν̂(t) in the t-th iteration of the second step of Algorithm 1 (though it is slightly
varying instead of being fixed).

5 Numerical Results

In this section, we demonstrate the empirical performance of our Algorithm 1 (denoted by MPRG).
We remark that these numerical experiments are proof-of-concept rather than seeking to be com-
prehensive since our contributions are primarily theoretical. We present some numerical results for
the MNIST [44] dataset in the main document. Additional results for the MNIST dataset and some
experimental results for the CelebA [53] dataset are presented in the supplementary material.

The MNIST dataset contains 60, 000 images of handwritten digits. The size of each image is 28× 28,
and thus the dimension of the image vector is n = 784. For the MNIST dataset, the generative model
G is set to be (the normalized version of) a pre-trained variational autoencoder (VAE) model with the
latent dimension being k = 20. We make use of the VAE model pre-trained by the authors of [6]
directly. For this VAE model, both the encoder and decoder are set to be fully connected neural
networks with two hidden layers, and the architecture is 20− 500− 500− 784. The VAE model is
trained by the Adam optimizer with a mini-batch size 100 and a learning rate of 0.001, and is trained
from the images in the training set. The projection step PG(·) (cf. (11)) is approximated by the Adam
optimizer with a learning rate of 0.1 and 120 steps.

We report the results on 10 testing images that are selected from the test set. Note that these images
are unseen by the pre-trained generative model. We perform 10 random restarts. For reconstructed
images, we choose the best among these 10 random restarts to reduce the impact of local minima.
We also provide quantitative comparisons with respect to the reconstruction error ‖x̂− x‖2, where x
is the underlying signal and x̂ refers to the estimated (normalized) vector produced by each of the
methods described below. The reconstruction error is averaged over both the 10 testing images and
10 random restarts. All experiments are run using Python 3.6 and TensorFlow 1.5.0, with a NVIDIA
GeForce GTX 1080 Ti 11GB GPU.

For Algorithm 1, we set T1 = 20 and T2 = 30. As mentioned in Section 3, the starting point w(0) is
set to be the column of 1

m

∑m
i=1 yiaia

T
i (i.e., a shifted version of V defined in (10)) that corresponds

to the largest diagonal entry. In addition, as mentioned in Remark 6, we set the step size ζ as ζ = 1
ν̂(t)

(cf. (13)) in the t-th iteration of the second step of Algorithm 1. We compare our Algorithm 1 (denoted
by MPRG) with the following methods: 1) The method proposed in [98], which is for misspecified
phase retrieval with sparse priors and is denoted by MPRS. All the involved parameters are set to
be the same as those in [98]. 2) Simply performing the first step of Algorithm 1 for T1 + T2 = 50
iterations. The corresponding method is denoted by PPower. The purpose of comparing to PPower
is to verify the benefit of the second step of Algorithm 1. 3) Simply performing the second step
of Algorithm 1 for T1 + T2 = 50 iterations. The corresponding method is denoted by Step2. The
purpose of comparing to Step2 is to check whether the first step of Algorithm 1 is practically useful.
4) The Alternating Phase Projected Gradient Descent (denoted by APPGD) algorithm proposed in [37].
This algorithm is specifically designed for phase retrieval with magnitude-only measurements (cf. (2))
and generative priors, and the corresponding iterative procedure is

x(t+1) = PG

(
x(t) − τ

m

m∑
i=1

((
aTi x

(t)
)
− yi · sign

(
aTi x

(t)
))

ai

)
, (21)

where τ > 0 is the step size. We follow [37] to set τ = 0.9. For a fair comparison, we use the vector
produced after T1 = 20 iterations of the first step of Algorithm 1 as the initialization vector of APPGD,
and then we run APPGD for T2 = 30 iterations.

We first consider the noisy magnitude-only measurement models for i ∈ [m],

yi = |aTi x|+ ηi, (22)

yi = |aTi x + ηi|, (23)

8



where ηi are i.i.d. realizations of an N (0, σ2) random variable. For such a measurement model,
the corresponding random nonlinear link function f is f(x) = |x| + η or f(x) = |x + η|, where
η ∼ N (0, σ2). The numerical results for (22) and (23) are demonstrated in Figures 1 and 2. From
these figures, we observe that the sparsity based method MPRS attains poor reconstructions, and
the results of PPower are not desirable. The three methods Step2, APPGD, MPRG lead to similar
reconstruction error, but the reconstructed images of APPGD and MPRG are better than those of Step2.
In particular, our method MPRG leads to mostly accurate reconstructions that are competitive compared
to those of APPGD, even if we do not make use of the knowledge of the link function f and MPRG is
not specifically designed for the magnitude-only measurement models.
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(a) (22) with m = 200 and σ = 0 (b) (23) with m = 400 and σ = 0.01

Figure 1: Examples of reconstructed MNIST images for the measurement models (22) and (23).
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Figure 2: Quantitative comparisons of the performance for the measurement model (22) and (23).

Next, we consider the following two measurement models:

yi = |aTi x|+ 2 tanh(|aTi x|) + ηi, (24)

yi = 2(aTi x)2 + 3 sin(|aTi x|) + ηi, (25)

where again ηi are i.i.d. realizations of anN (0, σ2) random variable. For both models in (24) and (25),
the corresponding link functions satisfy the condition (8) for MPR [98]. The numerical results are
presented in Figures 3 and 4. We observe from these figures that for the measurement models (24)
and (25), our method MPRG achieves the best reconstructions. In particular, it outperforms APPGD in
terms of recovery quality and/or reconstruction error.

6 Conclusion and Future Work

We have proposed a two-step approach for phase retrieval under model misspecification and generative
priors. We show that under suitable conditions, both steps of our approach obtain estimated vectors
that achieve the near-optimal statistical rate of order

√
(k logL) · (logm)/m, where k is the latent

dimension and L is the Lipschitz constant of the generative model respectively, and m refers to the
number of samples.
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Figure 3: Examples of reconstructed MNIST images for the models in (24) and (25).
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Figure 4: Quantitative comparisons of the performance for the measurement models in (24) and (25).

We assume accurate projections in our analysis and use a gradient-based method to approximate the
projection step PG(·) in our experiments. Although the exact projection assumption is commonly
made in relevant works [79, 37, 38, 71, 50], it is a very interesting future research direction to design
provably-guaranteed efficient methods for the projection step.

In addition, we focus on real Gaussian measurements. While we believe that based on the technical
results in [62, 13] (which study complex Gaussian measurements), it is straightforward to extend
our work to the complex case, the extension to more practical non-Gaussian measurement models
such as sub-sampled Fourier measurements is a very interesting future direction. Another direction
is to use different preprocessing functions to enhance the performance of our spectral initialization
method [56, 54, 57]. Moreover, if one has the access to the nonlinear link function f , the Bayes-
optimal performances can characterized using message-passing algorithms [5, 58, 3]. It would be
interesting to connect or compare our results with the corresponding Bayes-optimal rate.
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