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A Proof of Theorems and Corollaries

A.1 Proof of Theorem 1

Proof. Since
HCIL(x) = H(y, {P(x ∈ Xk,j |D)}k,j)

= −
∑
k,j

yk,j logP(x ∈ Xk,j |D)

= − logP(x ∈ Xk0,j0 |D),

HWP (x) = H(ỹ, {P(x ∈ Xk0,j |x ∈ Xk0 , D)}j)

= −
∑
j

yk0,j logP(x ∈ Xk0,j |x ∈ Xk0
, D)

= − logP(x ∈ Xk0,j0 |x ∈ Xk0 , D),

and
HTP (x) = H(ȳ, {P(x ∈ Xk|D)}k)

= −
∑
k

ȳk logP(x ∈ Xk|D)

= − logP(x ∈ Xk0
|D),

we have
HCIL(x) = − logP(x ∈ Xk0,j0 |D)

= − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D)− logP(x ∈ Xk0

|D)

= HWP (x) +HTP (x)

≤ ϵ+ δ.

A.2 Proof of Corollary 1.

Proof. By proof of Theorem 1, we have
HCIL(x) = HWP (x) +HTP (x).

Taking expectations on both sides, we have i)
Ex∼U(X)[HCIL(x)] = Ex∼U(X)[HWP (x)] + Ex∼U(X)[HTP (x)]

≤ Ex∼U(X)[HWP (x)] + δ.
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and ii)
Ex∼U(X)[HCIL(x)] = Ex∼U(X)[HWP (x)] + Ex∼U(X)[HTP (x)]

≤ ϵ+ Ex∼U(X)[HTP (x)].

A.3 Proof of Theorem 2.

Proof. i) Assume x ∈ Xk0 .

For k = k0, we have
HOOD,k0(x) = − logP′

k0
(x ∈ Xk0 |D)

= − logP(x ∈ Xk0
|D)

= HTP (x) ≤ δ.
For k ̸= k0, we have

HOOD,k(x) = − logP′
k(x /∈ Xk|D)

= − log(1−P′
k(x ∈ Xk|D))

= − log(1−P(x ∈ Xk|D))

= − logP(x ∈ ∪k′ ̸=kXk′ |D)

≤ − logP(x ∈ Xk0
|D)

= HTP (x) ≤ δ.

ii) Assume x ∈ Xk0 .

For k = k0, by HOOD,k0
(x) ≤ δk0

, we have
− logP′

k0
(x ∈ Xk0 |D) ≤ δk0 ,

which means
P′

k0
(x ∈ Xk0

|D) ≥ e−δk0 .

For k ̸= k0, by HOOD,k(x) ≤ δk, we have
− logP′

k(x /∈ Xk|D) ≤ δk,

which means
P′

k(x ∈ Xk|D) ≤ 1− e−δk .

Therefore, we have

P(x ∈ Xk0 |D) =
P′

k0
(x ∈ Xk0

|D)∑
k′ P′

k′(x ∈ Xk′ |D)

≥ e−δk0

1 +
∑

k ̸=k0
1− e−δk

=
e−δk0

e−δk0 +
∑

k 1− e−δk

=
1

1 + eδk0

∑
k 1− e−δk

.

Hence,
HTP (x) = − logP(x ∈ Xk0 |D)

≤ − log
1

1 + eδk0

∑
k 1− e−δk

= log[1 + eδk0

∑
k

1− e−δk ]

≤ eδk0 (
∑
k

1− e−δk)

= (
∑
k

1x∈Xk
eδk)(

∑
k

1− e−δk).
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A.4 Proof of Theorem 3.

Proof. Using Theorem 1 and 2,

HCIL(x) = − logP(x ∈ Xk0,j0 |D)

= − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D)− logP(x ∈ Xk0

|D)

= HWP (x) +HTP (x)

≤ ϵ+HTP (x)

≤ ϵ+ (
∑
k

1x∈Xk
eδk)(

∑
k

1− e−δk)

A.5 Proof of Theorem 4.

Proof. i) Assume x ∈ Xk0,j0 ⊂ Xk0 .

Define P(x ∈ Xk,j |x ∈ Xk, D) = P(x ∈ Xk,j |D).

According to proof of Theorem 1,

HWP (x) = − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D),

HCIL(x) = − logP(x ∈ Xk0,j0 |D).

Hence, we have
HWP (x) = − logP(x ∈ Xk0,j0 |x ∈ Xk0

, D)

= − logP(x ∈ Xk0,j0 |D)

= HCIL(x) ≤ η.

ii) Assume x ∈ Xk0,j0 ⊂ Xk0
.

Define P(x ∈ Xk|D) =
∑

j P(x ∈ Xk,j |D).

According to proof of Theorem 1,

HTP (x) = − logP(x ∈ Xk0
|D),

HCIL(x) = − logP(x ∈ Xk0,j0 |D).

Hence, we have
HTP (x) = − logP(x ∈ Xk0

|D)

= − log
∑
j

P(x ∈ Xk0,j |D)

≤ − logP(x ∈ Xk0,j0 |D)

= HCIL(x) ≤ η.

iii) Assume x ∈ Xk0,j0 ⊂ Xk0 .

Define P′
i(x ∈ Xk|D) = P(x ∈ Xk|D) =

∑
j P(x ∈ Xk,j |D).

According to proof of Theorem 4 ii), we have

HTP (x) ≤ η.

According to proof of Theorem 2 i), we have

HOOD,i(x) ≤ HTP (x).

Therefore,
HOOD,i(x) ≤ HTP (x) ≤ η.
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Table 5: Performance comparison between the original output and output post-processed with OOD
detection technique ODIN. Note that ODIN is not applicable to iCaRL and Mnemonics as they are
not based on softmax but some distance functions. The result for C100-10T are reported in the main
paper.

M-5T C10-5T C100-20T T-5T T-10T
Method OOD AUC CIL AUC CIL AUC CIL AUC CIL AUC CIL

OWM Original 99.13 95.81 81.33 51.79 71.90 24.15 58.49 10.00 59.48 8.57
ODIN 98.86 95.16 71.72 40.65 68.52 23.05 58.46 10.77 59.38 9.52

MUC Original 92.27 74.90 79.49 52.85 66.20 14.19 68.42 33.57 62.63 17.39
ODIN 92.67 75.71 79.54 53.22 65.72 14.11 68.32 33.45 62.17 17.27

PASS Original 98.74 76.58 66.51 47.34 70.26 24.99 65.18 28.40 63.27 19.07
ODIN 90.40 74.33 63.08 35.20 69.81 21.83 65.93 29.03 62.73 17.78

LwF Original 99.19 85.46 89.39 54.67 89.84 44.33 78.20 32.17 79.43 24.28
ODIN 98.52 90.39 88.94 63.04 88.68 47.56 76.83 36.20 77.02 28.29

BiC Original 99.40 94.11 90.89 61.41 89.46 48.92 80.17 41.75 80.37 33.77
ODIN 98.57 95.14 91.86 64.29 87.89 47.40 74.54 37.40 76.27 29.06

DER++ Original 99.78 95.29 90.16 66.04 85.44 46.59 71.80 35.80 72.41 30.49
ODIN 99.09 94.96 87.08 63.07 87.72 49.26 73.92 37.87 72.91 32.52

HAT Original 94.46 81.86 82.47 62.67 75.35 25.64 72.28 38.46 71.82 29.78
ODIN 94.56 82.06 82.45 62.60 75.36 25.84 72.31 38.61 71.83 30.01

HyperNet Original 85.83 56.55 78.54 53.40 72.04 18.67 54.58 7.91 55.37 5.32
ODIN 86.89 64.31 79.39 56.72 73.89 23.8 54.60 8.64 55.53 6.91

Sup Original 90.70 70.06 79.16 62.37 81.14 34.70 74.13 41.82 74.59 36.46
ODIN 90.68 69.70 82.38 62.63 81.48 36.35 73.96 41.10 74.61 36.46

B Additional Results and Explanation Regarding Table 1 in the Main Paper

In Sec. 4.3, we showed that a better OOD detection improves CIL performance. For the post-
processing method ODIN, we only reported the results on C100-10T due to space limitations. Tab. 5
shows the results on the other datasets.

A continual learning method with a better AUC shows a better CIL performance than other methods
with lower AUC. For instance, original HAT achieves AUC of 82.47 while HyperNet achieves 78.54
on C10-5T. The CIL for HAT is 62.67 while it is 53.40 for HyperNet. However, there are some
exceptions that this comparison does not hold. An example is LwF. Its AUC and CIL are 89.39 and
54.67 on C10-5T. Although its AUC is better than HAT, the CIL is lower. This is due to the fact that
CIL improves with WP and TP according to Theorem 1. The contraposition of Theorem 4 also says if
the cross-entropy of TIL is large, that of CIL is also large. Indeed, the average within-task prediction
(WP) accuracy for LwF on C10-5T is 95.2 while the same for HAT is 96.7. Improving WP is also
important in achieving good CIL performances.

For PASS, we had to tune τk using a validation set. This is because the softmax in Eq. 10 improves
AUC by making the IND (in-distribution) and OOD scores more separable within a task, but
deteriorates the final scores across tasks. To be specific, the test instances are predicted as one of
the classes in the first task after softmax because the relative values between classes in task 1 is
larger than the other tasks in PASS. Therefore, larger τ1 and smaller τk, for k > 1, are chosen to
compensate the relative values.

C Definitions of TP

As noted in the main paper, the class prediction in Eq. 2 varies by definition of WP and TP. The
precise definition of WP and TP depends on implementation. Due to this subjectivity, we follow
the prediction method as the existing methods in continual learning, which is the argmax over the
output. In this section, we show that the argmax over output is a special case of Eq. 2. We also
provide CIL results using different definitions of TP.

We first establish another theorem. This is an extension of Theorem 2 and connects the standard
prediction method to our analysis.
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Theorem 5 (Extension of Theorem 2). i) If HTP (x) ≤ δ, let P′
k(x ∈ Xk|D) = P(x ∈ Xk|D)1/τk ,

∀τk > 0, then HOOD,k(x) ≤ max(δ/τk,− log(1− (1− e−δ)1/τk),∀ k = 1, . . . , T .

ii) If HOOD,k(x) ≤ δk, k = 1, . . . , T , let P(x ∈ Xk|D) =
P′

k(x∈Xk|D)1/τk∑
j P′

j(x∈Xj |D)1/τj
, ∀τk > 0, then

HTP (x) ≤
∑

k

1x∈Xk
δk

τk
+

∑
k(1−e−δk )1/τk∑

k 1x∈Xk
(1−(1−e−δk )1/τk )

, where 1x∈Xk
is an indicator function.

In Theorem 5 (proof appears later), we can observe that δ/τk decreases with the increase of τk, while
− log(1 − (1 − e−δ)1/τk) increases. Hence, when TP is given, let δ = HTP (x), we can find the
optimal τi to define OOD by solving δ/τk = − log(1− (1− e−δ)1/τk). Similarly, given OOD, let
δk = HOOD,k(x), we can find the optimal τ1, . . . , τT to define TP by finding the global minima of∑

k

1x∈Xk
δk

τk
+

∑
k(1−e−δk )1/τk∑

k 1x∈Xk
(1−(1−e−δk )1/τk )

. The optimal τk can be found using a memory buffer to
save a small number of previous data like that in a replay-based continual learning method.

In Theorem 5 (ii), let P′
k(x ∈ Xk|D) = σ(max f(x)k), where σ is the sigmoid and f(x)k is the

output of task k and choose τk ≈ 0 for each k. Then P(x ∈ Xk|D) becomes approximately 1 for the
task k where the maximum logit value appears and 0 for the rest tasks. Therefore, Eq. 2 in the paper

P(x ∈ Xk,j |D) = P(x ∈ Xk,j |x ∈ Xk, D)P(x ∈ Xk|D)

is zero for all classes in tasks k′ ̸= k. Since only the probabilities of classes in task k are non-zero,
taking argmax over all class probabilities gives the same class as argmax over output logits.

We have also tried another definition of WP and TP. The considered WP is

P(x ∈ Xk,j |x ∈ Xk, D) =
ef(x)kj/νk∑
j e

f(x)kj/νk
, (12)

where νk is a temperature scaling parameter for task k, and the TP is

P(x ∈ Xk|D) =
P′

k(x ∈ Xk|D)∑
k P

′
k(x ∈ Xk|D)

, (13)

where P′
k(x ∈ Xk|D) = maxj e

f(x)kj/τk/
∑

j e
f(x)kj/τk and τk is a temperature scaling parameter.

This is the maximum softmax of task k. We choose νk = 0.1 and τk = 5 for all k. A good τ and ν
can be found using grid search on a validation set. However, one can also find the optimal values by
optimization using some past data saved for memory buffer. The CIL results for the new prediction
method is in Tab. 6.

Proof of Theorem 5. i) Assume x ∈ Xk0
.

For k = k0, we have
HOOD,k0

(x) = − logP′
k0
(x ∈ Xk0

|D)

= − 1

τk0

logP(x ∈ Xk0 |D)

=
1

τk0

HTP (x) ≤
δ

τk0

.

For k ̸= k0, we have

HOOD,k(x) = − logP′
k(x /∈ Xk|D)

= − log(1−P′
k(x ∈ Xk|D))

= − log(1−P(x ∈ Xk|D)1/τk)

= − log(1− (1−P(x ∈ ∪k′ ̸=kXk′ |D))1/τk)

≤ − log(1− (1−P(x ∈ Xk0
|D))1/τk)

= − log(1− (1− e−HTP (x))1/τk)

≤ − log(1− (1− e−δ)1/τk).

ii) Assume x ∈ Xk0
.
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Table 6: Average classification accuracy. The results are based on class prediction method defined
with WP and TP in Eq. 12 and Eq. 13, respectively. The results can improve by finding optimal
temperature scaling parameters.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 95.1±0.11 40.6±0.47 28.6±0.82 22.9±0.32 10.4±0.54 9.2±0.35
MUC 75.7±0.51 53.2±1.32 30.6±1.21 14.0±0.12 33.1±0.18 17.2±0.13
PASS† 64.5±2.64 33.6±0.71 18.5±1.85 20.8±0.85 21.4±0.44 13.0±0.55
LwF 90.4±1.18 63.0±0.34 51.9±0.88 47.5±0.62 35.9±0.32 27.8±0.29
iCaRL∗ 87.4±4.89 65.3±0.83 52.9±0.39 48.2±0.70 34.8±0.34 27.3±0.17
Mnemonics†∗ 91.8±1.03 65.6±1.55 50.7±0.72 47.9±0.71 36.3±0.30 27.7±0.78
BiC 95.1±0.47 65.5±0.81 50.8±0.69 47.2±0.71 37.0±0.58 29.1±0.34
DER++ 94.9±0.50 63.1±1.12 54.6±1.21 48.9±1.18 37.4±0.72 32.1±0.44
HAT 82.1±3.77 62.6±1.31 41.5±0.80 25.9±0.56 38.9±1.62 30.1±0.52
HyperNet 64.3±2.98 56.7±1.23 32.4±1.07 24.5±1.12 8.9±0.58 7.0±0.52
Sup 69.7±0.97 62.6±1.11 46.8±0.34 36.0±0.32 41.5±1.17 35.7±0.40
HAT+CSI 88.7±1.27 85.2±0.92 62.9±1.07 53.6±0.84 47.0±0.38 46.2±0.30
Sup+CSI 64.9±1.95 87.4±0.40 66.6±0.23 60.5±0.89 47.7±0.30 46.3±0.30
HAT+CSI+c 93.4±0.43 85.2±0.94 63.6±0.69 55.4±0.79 51.4±0.38 46.5±0.26
Sup+CSI+c 62.2±3.49 86.2±0.79 67.0±0.14 60.4±1.04 48.2±0.35 46.1±0.32

For k = k0, by HOOD,k0(x) ≤ δk0 , we have

− logP′
k0
(x ∈ Xk0

|D) ≤ δk0
,

which means

P′
k0
(x ∈ Xk0 |D) ≥ e−δk0 .

For k ̸= k0, by HOOD,k(x) ≤ δk, we have

− logP′
k(x /∈ Xk|D) ≤ δk,

which means

P′
k(x ∈ Xk|D) ≤ 1− e−δk .

Therefore, we have

P(x ∈ Xk0
|D) =

P′
k0
(x ∈ Xk0

|D)1/τk0∑
k P

′
k(x ∈ Xk|D)1/τk

≥ e−δk0
/τk0

1 +
∑

k ̸=k0
(1− e−δk)1/τk

=
e−δk0

/τk0

1− (1− e−δk0 )1/τk0 +
∑

k(1− e−δk)1/τk

=
e−δk0

/τk0

1− (1− e−δk0 )1/τk0

· 1

1 +
∑

k(1−e−δk )1/τk

1−(1−e
−δk0 )

1/τk0

.
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Figure 1: Overview of prediction and training framework of Sup+CSI and HAT+CSI. (a) Sup+CSI:
The CIL prediction is made by taking argmax over the concatenated output values from each task. In
training the network, the training batch is augmented to give different views of samples for contrastive
training in the OOD detection algorithm CSI. The training consists of two steps following CSI. The
first step is learning the feature extractor. In this step, the Edge Popup algorithm [4] is applied to find
a sparse network for each task. The sparse networks, which are indicated by edges of different colors
in the diagram. The second step fine-tunes the classifier only the fixed feature extractor. (b) HAT+CSI:
The CIL prediction is also made by argmax over the concatenated output from each task as Sup+CSI
method. Due to the OOD detection algorithm CSI, the overall training process is similar to Sup+CSI
except that it applies the hard attention algorithm [1]. In training feature extractor, task embeddings
are applied to find hard masks at each layer. Then given the learned feature representations, fine-tunes
the classifier in step 2.

Hence,

HTP (x) = − logP(x ∈ Xk0 |D)

≤ − log
e−δk0

/τk0

1− (1− e−δk0 )1/τk0

· 1

1 +
∑

k(1−e−δk )1/τk

1−(1−e
−δk0 )

1/τk0

=
δk0

τk0

+ log[1− (1− e−δk0 )1/τk0 ] + log

[
1 +

∑
k(1− e−δk)1/τk

1− (1− e−δk0 )1/τk0

]
≤ δk0

τk0

+

∑
k(1− e−δk)1/τk

1− (1− e−δk0 )1/τk0

=
∑
k

1x∈Xk
δk

τk
+

∑
k(1− e−δk)1/τk∑

k 1x∈Xk
(1− (1− e−δk)1/τk)

.

D Details of HAT, Sup, and CSI

We have proposed two highly effective new CIL methods, HAT+CSI and Sup+CSI, by integrating the
existing parameter isolation based continual learning (CL) method HAT [1] or Sup [2] with the strong
OOD detection method CSI [3]. We replaced the training loss of HAT and Sup by that of CSI while
applying the continual learning techniques of the respective method. In this section, we overview
Sup, HAT, and CSI, and explain how to train them continually. Figure 1 shows the overall training
frameworks of Sup+CSI and HAT+CSI.

Denote feature extractor by h, classifier by f , and the parameters by W. In the main paper, we
denote the output of task k by f(x)k for both a single-head or multi-head method (e.g., Eq. 9) for
consistency. In this section, we use f(x, k) to indicate the output of task k to be more explicit as both
HAT and Sup are multi-head methods (one head for each task) designed for task incremental learning
(TIL).
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D.1 Sup

SupSup (Sup) [2] trains supermasks by Edge Popup algorithm [4]. More precisely, given initial W,
find binary masks Mk for task k to minimize the cross-entropy loss

L = − 1

|Xk|
∑

log p(y|x, k), (14)

where Xk is the training data for task k, and

p(y|x, k) = f(h(x;W ⊗Mk)), (15)

where ⊗ indicates an element-wise product. The masks are obtained by selecting the top p% of
entries in the score matrices V. The p value determines the sparsity of the mask Mk. The subnetwork
found by Edge Popup algorithm is indicated by different colors in Figure 1(a).

Given the task-id k of a test instance at inference, the system (which is referred as Sup GG in the
original Sup paper) uses the task-specific mask Mk to obtain the classification output. By integrating
the OOD detection method, CSI, during training, Sup+CSI does not require to know the task-id of
test instance, which makes Sup+CSI applicable to CIL (class incremental learning).

D.2 HAT

We now discuss the hard attention (mask) mechanism of HAT [1]. It finds binary masks akl for each
layer l and task k, and uses them to block/unblock information flow at forward and backward pass.
More precisely, the hard attention is defined as

akl = σ(sekl ), (16)

where σ is the sigmoid, s is a positive constant, and ekl is a learnable embedding. To approximate the
binary mask, the system uses a large s value. The attention is applied to the output at each layer as

h
′

l = akl ⊗ hl, (17)

where ⊗ is an element-wise product, and

hl = ReLU(Wlhl−1 + bl). (18)

The neurons with attention value 1 is important for task k while those with zero attention value are
not necessary for the task, and thus they can be freely changed without affecting the output value
h

′

l. The system needs to know which neurons are important to protect the previous knowledge from
forgetting. Denote the accumulated attentions of all previous tasks by

a<k
l = max(a<k−1

l , ak−1
l ), (19)

where a0l is the zero vector and max is an element-wise maximum. The gradients of parameters
corresponding to important neurons is modified as

∇w′
ij,l =

(
1−min

(
a<k
i,l , a

<k
j,l−1

))
∇wij,l, (20)

where a<k
i,l is the i’th unit of a<k

l and l = 1, · · · , L− 1. The hard attention is not applied to the last
layer L since it is a task-specific classification layer.

To encourage sparsity in akl , the system uses regularization as

Lr = λk

∑
l

∑
i a

k
i,l

(
1− a<k

i,l

)
∑

l

∑
i

(
1− a<k

i,l

) , (21)

where λk is a hyper-parameter. The system minimizes the loss

L = Lce + Lr, (22)

where Lce is the cross-entropy loss. The overall framework of the algorithm is shown in Figure 1(b).
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D.3 CSI

We now explain the OOD detection method CSI, and how to incorporate it in HAT and Sup. CSI is
based on contrastive learning [5, 6] and data augmentation due to their excellent performance [3].
Since this section focuses on how to learn a single task based on OOD detection, we omit the task-id
unless necessary. The OOD training process is similar to that of contrastive learning. It consists
of two steps: 1) learning the feature representation by the composite g ◦ h, where h is a feature
extractor and g is a projection to contrastive representation, and 2) learning a linear classifier f
mapping the feature representation of h to the label space. This two step training process is outlined
in Figure 1(a) and (b). In the following, we describe the training process: contrastive learning for
feature representation learning (1), and OOD classifier building (2). We then explain how to make a
prediction based on an ensemble method to further improve prediction.

D.3.1 Contrastive Loss for Feature Learning.

This is step 1. Supervised contrastive learning is used to try to repel data of different classes and
align data of the same class more closely to make it easier to classify them. A key operation is data
augmentation via transformations.

Given a batch of N samples, each sample x is first duplicated and each version then goes through
three initial augmentations (horizontal flip, color changes, and Inception crop [7]) to generate two
different views x1 and x2 (they keep the same class label as x). Denote the augmented batch by B,
which now has 2N samples. In [8, 3], it was shown that using image rotations is effective in learning
OOD detection models because such rotations can effectively serve as out-of-distribution (OOD)
training data. For each augmented sample x ∈ B with class y of a task, we rotate x by 90◦, 180◦, 270◦

to create three images, which are assigned three new classes y1, y2, and y3, respectively. This results
in a larger augmented batch B̃. Since we generate three new images from each x, the size of B̃
is 8N . For each original class, we now have 4 classes. For a sample x ∈ B̃, let B̃(x) = B̃\{x}
and let P (x) ⊂ B̃\{x} be a set consisting of the data of the same class as x distinct from x. The
contrastive representation of a sample x is zx = g(h(x, k))/∥g(h(x, k))∥, where k is the current
task. In learning, we minimize the supervised contrastive loss [9] of task t.

Lc =
1

8N

∑
x∈B̃

−1

|P (x)|
∑

p∈P (x)

log
exp(zx · zp/τ)∑

x′∈B̃(x) exp(zx · zx′/τ)
, (23)

where τ is a scalar temperature, · is dot product, and × is multiplication. The loss is reduced by
repelling z of different classes and aligning z of the same class more closely. Lc basically trains a
feature extractor with good representations for learning an OOD classifier.

Since the feature extractor is shared across tasks in continual learning, a protection is needed to
prevent catastrophic forgetting. HAT and Sup use their respective technique to protect their feature
extractor from forgetting. Therefore, the losses L of Eq. 14 and Lce of Eq. 22 are replaced by Eq. 23
while the forgetting prevention mechanisms still hold.

D.3.2 Learning the Classifier.

This is step 2. Given the feature extractor h trained with the loss in Eq. 23, we freeze h and only
fine-tune the linear classifier f , which is trained to predict the classes of task k and the augmented
rotation classes. f maps the feature representation to the label space in R4|Ck|, where 4 is the number
of rotation classes including the original data with 0◦ rotation and |Ck| is the number of original
classes in task k. We minimize the cross-entropy loss,

Lft = − 1

|B̃|

∑
(x,y)∈B̃

log p̃(y|x, k), (24)

where ft indicates fine-tune, and

p̃(y|x, tk = softmax (f(h(x, k))) (25)

where f(h(x, k)) ∈ R4|Ck|. The output f(h(x, k)) includes the rotation classes. The linear classifier
is trained to predict the original and the rotation classes. Since individual classifier is trained for each
task and the feature extractor is frozen, no protection is necessary.
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D.3.3 Ensemble Class Prediction.

We describe how to predict a label y ∈ Ck (TIL) and y ∈ C (CIL) (C is the set of original classes of
all tasks). We assume all tasks have been learned and their models are protected by masks.

We discuss the prediction of class label y for a test sample x in the TIL setting first. Note that the
network f◦h in Eq. 25 returns logits for rotation classes (including the original task classes). Note also
for each original class label jk ∈ Ck (original classes) of a task k, we created three additional rotation
classes. For class jk, the classifier f will produce four output values from its four rotation class
logits, i.e., fjk,0(h(x0, k)), fjk,90(h(x90, k)), fjk,180(h(x180, k)), and fjk,270(h(x270, k)), where 0,
90, 180, and 270 represent 0◦, 90◦, 180◦, and 270◦ rotations respectively and x0 is the original x. We
compute an ensemble output fjk(h(x, k)) for each class jk ∈ Ck of task k,

f(h(x, k))jk =
1

4

∑
deg

f(h(xdeg, k))jk,deg. (26)

We use Eq. 9 to make the CIL class prediction, where the final class prediction is made as

ŷ = argmax
⊕
i

f(h(x, i)). (27)

E Output Calibration

In this section, we discuss the output calibration technique used in Sec. 4.4 to improve the final
prediction accuracy. Even if an OOD detection of each task was perfect (i.e. the model accept
and reject IND and OOD samples perfectly), the system could make incorrect class prediction if
the magnitudes of outputs across different tasks are different. To ensure that the output values
are comparable, we calibrate the outputs by scaling αk and shifting βk for each task. The optimal
parameters (αk, βk) ∈ R×R can be found by solving optimization problem using samples in memory
buffer. More precisely, denote the memory buffer M and calibration parameters (α, β) ∈ RT ×RT ,
where T is the number of learned tasks. After training T th task, we find optimal calibration parameters
by minimizing the cross-entropy loss,

L = − 1

|M|
∑

(x,y)∈M

log p(y|x) (28)

where p(c|x) is computed using the softmax,

softmax
⊕

[αkf(x)k + βk] (29)

where
⊕

indicates the concatenation and f(x)k is the output of task k as Eq. 9. Given the optimal
parameters (α∗, β∗), we make final prediction as

ŷ = argmax
⊕

[α∗
kf(x)k + β∗

k ] (30)

If we use OODk = σ(α∗
kf(x)k + β∗

k), where σ is the sigmoid, and TPk = OODk/
∑

k′ OODk′ ,
the theoretical results in Sec. 3 hold.

F TIL (WP) Results

The TIL (WP) results of all the systems are reported in Tab. 7. HAT and Sup show strong performances
compared to the other baselines as they leverage task-specific parameters. However, as shown in
Theorem 1, the CIL depends on TP (or OOD). Without an OOD detection mechanism in HAT or
Sup, they perform poorly in CIL as shown in the main paper. The contrastive learning in CSI also
improves the IND prediction (i.e., WP), and this along with OOD detection results in the strong CIL
performance.

G Hyper-parameters

Here we report the hyper-parameters that we did not report in the main paper due to space limitations.
We mainly report the hyper-parameters of the proposed methods, HAT+CSI, Sup+CSI, and their
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Table 7: The TIL results of all the systems. The calibrated versions (+c) of our methods are omitted
as calibration does not affect TIL performance. Exemplar-free methods are italicized.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 99.7±0.03 85.0±0.07 59.6±0.83 65.4±0.48 22.4±0.87 28.1±0.55
MUC 99.9±0.02 95.1±0.10 77.3±0.83 73.4±9.16 55.9±0.26 47.2±0.22
PASS† 99.5±0.14 83.8±0.68 72.1±0.70 76.8±0.32 49.9±0.56 46.5±0.39
LwF 99.9±0.09 95.2±0.30 86.2±1.00 89.0±0.45 56.4±0.48 55.3±0.35
iCaRL 99.9±0.08 94.9±0.34 84.2±1.04 85.7±0.68 54.5±0.29 52.7±0.37
Mnemonics†∗ 99.9±0.03 94.5±0.46 82.3±0.30 86.2±0.46 54.8±0.16 52.9±0.66
BiC 99.9±0.03 95.4±0.35 84.6±0.48 88.7±0.19 61.5±0.60 62.2±0.45
DER++ 99.7±0.08 92.0±0.54 84.0±9.43 86.6±9.44 57.4±1.31 60.0±0.74
HAT 99.9±0.02 96.7±0.18 84.0±0.23 85.0±0.98 61.2±0.72 63.8±0.41
HyperNet 99.7±0.04 94.6±0.37 76.8±1.22 83.5±0.98 23.9±0.60 28.0±0.69
Sup 99.6±0.01 96.6±0.21 87.9±0.27 91.6±0.15 64.3±0.24 68.4±0.22
HAT+CSI 99.9±0.00 98.7±0.06 92.0±0.37 94.3±0.06 68.4±0.16 72.4±0.21
Sup+CSI 99.0±0.08 98.7±0.07 93.0±0.13 95.3±0.20 65.9±0.25 74.1±0.28

calibrated versions. For all the experiments of the proposed methods, we use the values chosen by
the original CSI [3]. We use LARS [10] optimization with learning rate 0.1 for training the feature
extractor. We linearly increase the learning rate by 0.1 per epoch for the first 10 epochs. After that,
we use cosine scheduler [11] without restart as in [3, 5]. After training the feature extractor, we train
the linear classifier for 100 epochs with SGD with learning rate 0.1 and reduce the rate by 0.1 at 60,
75, and 90 epochs. For all the experiments except MNIST, we train the feature extractor for 700
epochs with batch size 128.

For the following hyper-parameters, we use 10% of training data for validation to find a good set
of values. For the number of epochs and batch size for MNIST, Sup+CSI trains for 1000 epochs
with batch size of 32 while HAT+CSI trains for 700 epochs with batch size of 256. The hard
attention regularization penalty λi in HAT is different by experiments and task i. For MNIST, we use
λ1 = 0.25, and λ2 = · · · = λ5 = 0.1. For C10-5T, we use λ1 = 1.0, and λ2 = · · · = λ5 = 0.75.
For C100-10T, λ1 = 1.5, and λ2 = · · · = λ10 = 1.0 are used. For C100-20T, λ1 = 3.5, and
λ2 = · · · = λ20 = 2.5 are used. For T-5T, λi = 0.75 for all tasks, and lastly, for T-10T, λ1 = 1.0,
and λ2 = · · · = λ10 = 0.75 are used. We use larger λ1 for the first task than the later tasks as we
have found that the larger regularization on the first task results in better accuracy. This is by the
definition of regularization in HAT. The earlier task gives lower penalty than later tasks. We manually
give larger penalty to the first task. We did not search hyper-parameter λt for tasks t ≥ 2. For sparsity
in Sup+CSI, we simply choose the least sparsity value of 32 used in the original Sup paper without
parameter search.

Calibration methods (HAT+CSI+c and Sup+CSI+c) are based on its memory free versions (i.e.
HAT+CSI and Sup+CSI). Therefore, the model training part uses the same hyper-parameters as
their calibration free counterparts. For calibration training, we use SGD with learning rate 0.01, 160
training iterations, and batch size of 15 for HAT+CSI+c for all experiments. For Sup+CSI+c, we use
the same values for all the experiments except for MNIST. For MNIST, we use learning rate 0.05,
batch size of 8, and run 280 iterations.

For the baselines, we use the hyper-parameters reported in the original papers or in their code. If the
hyper-parameters are unknown or the code does not reproduce the result (e.g., the baseline did not
implement a particular dataset or the code had undergone significant version change), we search for
the hyper-parameters as we did for HAT+CSI and Sup+CSI.

H Computes and Resources Used in Experiments

This paper provides a guidance on how to solve the CIL problem, backed by theoretical justifications.
Based on the guidance, we have proposed some new CIL methods. Two outstanding ones are
HAT+CSI and Sup+CSI. These methods achieve state-of-the-art CIL performances, but by no mean,
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Table 8: The number of parameters used at inference after learning the final task. The M after each
value indicates millions.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 5.27M 5.27M 5.36M 5.36M 5.46M 5.46M
MUC 1.06M 11.19M 45.06M 45.06M 45.47M 45.47M
PASS 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M
LwF 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M

iCaRL 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M
Mnemonics 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M

BiC 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M
DER++ 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M

HAT 1.04M 11.23M 45.01M 45.28M 44.97M 45.11M
HyperNet 0.48M 0.47M 0.47M 0.47M 0.48M 0.48M

Sup 0.05M 1.43M 5.75M 11.45M 2.95M 5.80M
HAT+CSI 1.07M 11.25M 45.31M 45.58M 45.59M 45.72M

HAT+CSI+c 1.07M 11.25M 45.31M 45.58M 45.59M 45.72M
Sup+CSI 0.28M 1.38M 5.90M 11.60M 3.04M 6.05M

Sup+CSI+c 0.28M 1.38M 5.90M 11.60M 3.04M 6.05M

they are the only approaches. Many CIL algorithms can be designed following the analysis as it is
general to any CL model.

Despite the generality of our work, we report the execution time and required memory for HAT+CSI
and Sup+CSI. The report is based on a machine with NVIDIA RTX 3090 on C10-5T experiments.
HAT+CSI takes 28.68 hours while Sup+CSI runs for 18.41 hours, which are slower than baselines.
Contrastive learning and extensive data augmentation in CSI are the major reason for the slow
execution time. However, if other more efficient OOD detection algorithms can replace CSI, the
running time can be improved with the new OOD detection methods.

As noted in Sec. 4.2, all the methods use the same backbone architecture with the same width and
depth except for OWM and HyperNet for the reasons explained in the main paper. We report the
number of parameters of each method required for inference after learning the last task. Sup and
Sup+CSI uses a very small number of parameters because Sup finds a sparse subnetwork for each task.
Our methods HAT+CSI introduces 7.7K, 17.6K, 68.0K, 47.5K, 191.0K, and 109.0K parameters on
M-5T, C10-5T, C100-10T, C100-20T, T-5T, and T-10T, respectively, at each task. Sup+CSI introduces
56.3K, 284.9K, 590.3K, 580.0K, 607.7K, and 605.1K parameters on the same experiments. The
calibrated methods HAT+CSI+c and Sup+CSI+c introduce 2 parameters (αk, βk) per task.

For HAT and HAT+CSI, the reported number of parameters is based on the network at full capacity.
The hard attention masks consume 71.10, 86.31, 98.89, 99.71, 92.94, and 98.67% of the total network
capacity on average over 5 runs for HAT on M-5T, C10-5T, C100-10T, C100-20T, T-5, and T-10T,
respectively. Similarly, 99.39, 99.56, 99.56, 96.74, 94.94, and 99.18% of the total network capacity
are used for HAT+CSI on the same datasets on average.

I Negative Societal Impacts

The goal of continual learning is to learn a sequence of tasks incrementally. Like many machine
learning algorithms, our proposed methods could be affected by bias in the input data as this work
does not deal with fairness or bias in the data. A possible solution to mitigate the problem is to check
bias in data before training.

J Forgetting Rate

We discuss forgetting rate (i.e., backward transfer) [12], which is defined for task t as

F t =
1

t− 1

t−1∑
k=1

Ainit
k −At

k, (31)
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where Ainit
k is the classification accuracy of task k’s data after learning it for the first time and At

k is
the accuracy of task k’s data after learning task t. We report the forgetting rate after learning the last
task.
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Figure 2: Average forgetting rate (%). The lower the value, the better the method is on forgetting.

Figure 2 shows the forgetting rates of each method. Some methods (e.g., OWM, iCaRL) experience
less forgetting than the proposed methods HAT+CSI and Sup+CSI on M-5T. On this dataset, all
the systems performed well. For instance, OWM and iCaRL achieve 95.8% and 96.0% accuracy
while HAT+CSI and HAT+CSI+c achieve 94.4 and 96.9% accuracy. As we have noted in the main
paper, Sup+CSI and Sup+CSI+c achieve only 80.7 and 81.0 on M-5T although they have improved
drastically from 70.1% of the base method Sup.

OWM and HyperNet show lower forgetting rates than HAT+CSI+c and Sup+CSI+c on T-5T and
T-10T. However, they are not able to adapt to new classes as OWM and HyperNet achieve the
classification accuracy of only 10.0% and 7.9%, respectively, on T-5T and 8.6% and 5.3% on T-10T.
HAT+CSI+c and Sup+CSI+c achieves 51.7% and 49.2%, respectively, on T-5T and 47.6% and 46.2%
on T-10T.

In fact, the performance reduction (i.e., forgetting) in our proposed methods occurs not because the
systems forget the previous task knowledge, but because the systems learn more classes and the
classification naturally becomes harder. The continual learning mechanisms (HAT and Sup) used
in the proposed methods experience little or no forgetting because they find independent subset
of parameters for each task, and the learned parameters are not interfered during training. For the
forgetting rate results in the TIL setting, refer to our earlier workshop paper [13].
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