
Appendix

In Appendix A, we introduce notations that we use throughout the rest of the appendix. In Appendix
B, we study the convergence of MPNNs and give the proof of Theorem 3.1. In Appendix C, we
analyze generalization properties of MPNNs and prove our main contribution, Theorem 3.3 from
Section 3. We give some details on the numerical experiments from Section 4 in Appendix D. For
completeness, we recall in Appendix E well-known results that we frequently use.

A Definitions and Notation

We denote metric spaces by (χ, d), where d : χ × χ → [0,∞) denotes the metric in the space χ.
The ball around x ∈ χ of radius ϵ > 0 is defined to be Bϵ(x) = {y ∈ χ | d(x, y) < ϵ}. Since, in
our analysis, the nodes of the graph are taken as the sample points X = (X1, . . . , XN ) in χ, we
identify node i of the graph G with the point Xi, for every i = 1, . . . , N . Moreover, since graph
signals f = (f1, . . . , fN ) represent mappings from nodes in V to feature values, we denote, by abuse
of notation, f(Xi) := fi for i = 1, . . . , N .
Definition A.1 ([Vershynin, 2018]). Let (χ, d) be a compact metric space.

1. The ε-covering numbers of χ, denoted by C(χ, ε, d), is the minimal number of balls of radius
ε required to cover χ.

2. The Minkowski dimension of χ is defined to be

dim(χ) = inf{D ≥ 0 | ∀ε ∈ (0, 1) C(χ, ε, d) ≤ ε−D}.

Next, we define various notions of degree.
Definition A.2. Let W : χ× χ → [0,∞) be a kernel , X = (X1, . . . , XN ) sample points, and G
the corresponding sampled graph.

1. We define the kernel degree of W at x ∈ χ by

dW (x) =

∫
χ

W (x, y)dµ(y). (9)

2. Given a point x ∈ χ that need not be in X , we define the graph-kernel degree of X at x by

dX(x) =
1

N

N∑
i=1

W (x,Xi). (10)

3. The normalized degree of G at the node Xc ∈ X is defined by

dG(Xc) =
1

N

N∑
i=1

W (Xc, Xi). (11)

When x /∈ X , dX(x) is interpreted as the degree of the node x in the graph (x,X1, . . . , Xn) with
edge weights sampled from W .

Based on the different version of degrees in Definition A.2, we define the corresponding three versions
of mean aggregation.
Definition A.3. Given the kernel W , we define the continuous mean aggregation of the metric-space
message signal U : χ× χ → RF by

MWU =

∫
χ

W (·, y)
dW (·)

U(·, y)dµ(y).

In Definition A.3, U(x, y) represents a message sent from the point y to the point x in the metric
space. Given a metric-space signal f : χ → RF ′

and a message function Φ, we have

MWΦ(f, f) =

∫
χ

W (·, y)
dW (·)

Φ
(
f(·), f(y)

)
dµ(y).
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Definition A.4. Let W be a kernel X = X1, . . . , XN sample points. For a metric-space message
signal U : χ× χ → RF , we define the graph-kernel mean aggregation by

MXU =
1

N

∑
j

W (·, Xj)

dX(·)
U(·, Xj).

Note that in the definition of MX , messages are sent from graph nodes to arbitrary points in the
metric space. Hence, MXU : χ → RF is a metric-space signal.
Definition A.5. Let G be a graph with nodes X = X1, . . . , XN . For a graph message signal
U : X ×X → RF , where U(Xi, Xj) represents a message sent from the node Xj to the node Xi,
we define the mean aggregation by

(MGU)(Xi) =
1

N

∑
j

W (Xi, Xj)

dX(Xi)
U(Xi, Xj).

Note that MGU : X → RF is a graph signal.
Remark A.6. Given a graph signal f : X → RF , which can be written as a finite sequence f = (fi)i,
and a message function Φ : R2F → RH , we define

Φ(f , f) :=
(
Φ(fi, fj)

)N
i,j=1

.

Hence, given a graph signal f : X → RF and the graph messages U(Xi, Xj) = Φ(f(Xi), f(Xj)),
we have

MGU = MGΦ(f , f) =
1

N

∑
j

W (·, Xj)

dX(·)
Φ
(
f(·), f(Xj)

)
.

Next, we define the different norms used in our analysis.
Definition A.7.

1. For a vector z = (z1, . . . , zF ) ∈ RF , we define as usual

∥z∥∞ = max
1≤k≤F

|zk|.

2. For a function g : χ → RF , we define

∥g∥∞ = max
1≤k≤F

sup
x∈χ

∣∣(g(x))
k

∣∣,
3. Given a graph with N nodes, we define the norm ∥f∥2;∞ of graph feature maps f =

(f1, . . . , fN ) ∈ RN×F , with feature dimension F , as the root mean square over the infinity
norms of the node features, i.e.,

∥f∥2;∞ =

√√√√ 1

N

N∑
i=1

∥fi∥2∞.

Definition A.8. For a metric-space signal f : χ → RF and samples X = (X1, . . . , XN ) in χ, we
define the sampling operator SX by

SXf =
(
f(Xi)

)N
i=1

∈ RN×F .

For a metric-space signal f : χ → RF and a graph signal f ∈ RN×F , we define the distance dist as
dist(f , f) = ∥f − SXf∥2;∞., i.e,

dist(f, f) =

(
1

N

N∑
i=1

∥fi − (SXf)i∥2∞

)1/2

. (12)
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Given a MPNN, we define the formal bias of the update and message functions by ∥Ψ(l)(0, 0)∥∞
and ∥Φ(l)(0, 0)∥∞ respectively. Furthermore, we say that a function Φ : RF → RH is Lipschitz
continuous if there exists a LΦ > 0 such that for every x, x′ ∈ RH , we have

∥Φ(x)− Φ(x′)∥∞ ≤ LΦ∥x− x′∥∞.

Similarly, a function f : χ → RF is Lipschitz continuous if there exists a Lf > 0 such that for every
x, x′ ∈ χ, we have

∥Φ(x)− Φ(x′)∥∞ ≤ Lfd(x, x
′).

Next we introduce notations for the mappings between consecutive layers of a MPNN.

Definition A.9. Let Θ = ((Φ(l))Tl=1, (Ψ
(l))Tl=1) be a MPNN with T layers and feature dimensions

(Fl)
T
l=1. For l = 1, . . . , T , we define the mapping from the (l − 1)’th layer to the l’th layer of the

gMPNN as

Λ
(l)
ΘG

: RN×Fl−1 → RN×Fl

f (l−1) 7→ f (l).

Similarly, we define Λ
(l)
ΘW

as the mapping from the (l − 1)’th layer to the l’th layer of the cMPNN
f (l−1) 7→ f (l).

Definition A.9 leads to the following,

Θ
(T )
G = Λ

(T )
ΘG

◦ Λ(T−1)
ΘG

◦ . . . ◦ Λ(1)
ΘG

and
Θ

(T )
W = Λ

(T )
ΘW

◦ Λ(T−1)
ΘW

◦ . . . ◦ Λ(1)
ΘW

Lastly, we formulate the following assumption on the space χ, the kernel W , and the MPNN Θ, to
which we will refer often in Appendix B.

Assumption A.10. Let (χ, d) be a metric space and W : χ× χ → [0,∞). Let Θ be a MPNN with
message and update functions Φ(l) : R2Fl → RHl and Ψ(l) : RFl+Hl → RFl+1 , l = 1, . . . , T − 1.

1. The space χ is compact, and there exist Dχ, Cχ ≥ 0 such that C(χ, ε, d) ≤ Cχε
−Dχ for

every ε > 0. 5

2. The diameter of χ is bounded by 1. Namely, diam(χ) := supx,y∈χ d(x, y) ≤ 1.

3. The kernel satisfies ∥W∥∞ < ∞.

4. For every y ∈ χ, the function W (·, y) is Lipschitz continuous (with respect to its first
variable) with Lipschitz constant LW .

5. For every x ∈ χ, the function W (x, ·) is Lipschitz continuous (with respect to its second
variable) with Lipschitz constant LW .

6. There exists a constant dmin > 0 such that for every x ∈ χ, we have dW (x) ≥ dmin.

7. For every l = 1, . . . , T , the message function Φ(l) and update function Ψ(l) are Lipschitz
continuous with Lipschitz constants LΦ(l) and LΨ(l) respectively.

8. There exists a constant Wdiag > 0 such that for every x ∈ χ, we have W (x, x) ≥ Wdiag >
0.

B Convergence Analysis

In this section we provide the proofs for Theorem 3.1 from Section 3.

5The Minkowski dimension dim(χ) is a lower bound for all such possible Dχ.
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B.1 Preparation

This section is a preparation for the upcoming proof of Theorem 3.1 from Section 3. An important
goal of this section is to formulate and prove Lemma B.5, which provides a uniform concentration
of measure of the uniform error between the continuous mean aggregation MW and the graph-
kernel mean aggregation MX . We then show in Corollary B.6 that this uniform bound is preserved
by application of an update function. We begin with the following concentration of error lemma
which is a slight modification of [Keriven et al., 2020, Lemma 4], and can be derived directly
from [Keriven et al., 2020, Lemma 4], by using the assumption C(χ, ε, d) ≤ Cχε

−Dχ instead of
C(χ, ε, d) ≤ ε− dim(χ).
Lemma B.1 (Lemma 4, [Keriven et al., 2020].). Let (χ, d, µ) be a metric-measure space and W be
a kernel s.t. Assumptions A.10.1-4. are satisfied. Consider a metric-space signal f : χ → R with
∥f∥∞ < ∞. Suppose that X1, . . . , XN are drawn i.i.d. from µ on χ and let p ∈ (0, 1). Then, with
probability at least 1− p, we have∥∥∥∥∥ 1

N

N∑
i=1

W (·, Xi)f(Xi)−
∫
χ

W (·, x)f(x)dµ(x)

∥∥∥∥∥
∞

≤
∥f∥∞

(
ζLW (

√
log(Cχ) +

√
Dχ) + (

√
2∥W∥∞ + ζLW )

√
log 2/p

)
√
N

,

where
ζ :=

2√
2
e
( 2

ln(2)
+ 1
) 1√

ln(2)
C (13)

and C is the universal constant from Dudley’s inequality (see Theorem 8.1.6 [Vershynin, 2018]).

As a consequence of Lemma B.1, we can derive a sufficient condition on the sample size N which
ensures that the graph-kernel degrees are uniformly bounded from below.
Lemma B.2. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-4.
and A.10.6. are satisfied. Suppose that X1, . . . , XN are drawn i.i.d. from µ on χ and let p ∈ (0, 1).
Let

√
N ≥ 2

(
ζ
LW
dmin

(√
log(Cχ) +

√
Dχ

)
+

√
2∥W∥∞ + ζLW

dmin

√
log 2/p

)
, (14)

where ζ is defined in (13). Then, with probability at least 1− p the following two inequalities hold:
For every x ∈ χ,

dX(x) ≥ dmin

2
(15)

and ∥∥∥∥∥ 1

N

N∑
i=1

W (·, Xi)f(Xi)−
∫
χ

W (·, x)f(x)dµ(x)

∥∥∥∥∥
∞

≤
∥f∥∞

(
ζLW (

√
log(Cχ) +

√
Dχ) + (

√
2∥W∥∞ + ζLW )

√
log 2/p

)
√
N

.

(16)

Proof. By Lemma B.1, with f = 1, with probability at least 1− p we have

∥dX(·)− dW (·)∥∞ ≤

(
ζLW

(√
log(Cχ) +

√
Dχ

)
+
(√

2∥W∥∞ + ζLW
)√

log 2/p
)

√
N

.

By using the lower bound (14) of
√
N , we have ∥dX(·) − dW (·)∥∞ ≤ dmin

2 . Let x ∈ χ. By
Assumption A.10.6, we have |dW (x)| ≥ dmin, hence |dX(x)| ≥ dmin/2.

The following lemma is a uniform concentration of measure of the Monte Carlo approximation of
Lipschitz functions. Related results about uniform law of large numbers for Lipschitz functions can
be found in [Vershynin, 2018, Chapter 8.2]. Our result holds for general metric spaces with finite
Minkowski dimension.
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Lemma B.3. Let (χ, d, µ) be a metric-measure space s.t. Assumption A.10.1. is satisfied. Suppose
that X1, . . . , XN are drawn i.i.d. from µ on χ. For every p > 0, there exists an event EpLip ⊂ χN

regarding the choice of (X1, . . . , XN ) ∈ χN , with probability µN (EpLip) ≥ 1 − p, such that the
following uniform bound is satisfied: For every Lipschitz continuous function F : χ → RF with
Lipschitz constant LF , we have∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (x)dµ(x)

∥∥∥∥∥
∞

≤ N
− 1

2(Dχ+1)

(
2LF +

Cχ√
2
∥F∥∞

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
.

For completion, we provide a proof of Lemma B.3.

Proof. Let r > 0. By Assumption A.10.1, there exists an open covering (Bj)j∈J of χ by a family
of balls with radius r such that |J | ≤ Cχr

−Dχ . For j = 2, . . . , |J |, we define Ij := Bj \ ∪i<jBi,
and define I1 = B1. Hence, (Ij)j∈J is a family of measurable sets such that Ij ∩ Ii = ∅ for all
i ̸= j ∈ J ,

⋃
j∈J Ij = χ, and diam(Ij) ≤ 2r for all j ∈ J , where by convention diam(∅) = 0.

For each j ∈ J , let zj be the center of the ball Bj .

Next, we compute a concentration of error bound on the difference between the measure of Ij and its
Monte Carlo approximation, which is uniform in j ∈ J . Let j ∈ J and q ∈ (0, 1). By Hoeffding’s
inequality, there is an event Eqj with probability µ(Ej) ≥ 1− q, in which∥∥∥∥∥ 1

N

N∑
i=1

1Ij (Xi)− µ(Ik)

∥∥∥∥∥
∞

≤ 1√
2

√
log(2/q)√

N
. (17)

Consider the event

E |J |q
Lip =

|J |⋂
j=1

Eqj ,

with probability µN (E |J |q
Lip ) ≥ 1 − |J |q. In this event, (17) holds for all j ∈ J . We change the

failure probability variable p = |J |q, and denote EpLip = E |J |q
Lip .

Next we bound uniformly the Monte Carlo approximation error of the integral of bounded Lipschitz
continuous functions F : χ → RF . Let F : χ → RF be a bounded Lipschitz continuous function
with Lipschitz constant LF . We define the step function

F r(y) =
∑
j∈J

F (zj)1Ij (y).

Then, ∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
1

N

N∑
i=1

F r(Xi)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

+

∥∥∥∥∫
χ

F r(y)dµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥
∞

=: (1) + (2) + (3).

(18)
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To bound (1), we define for each Xi the unique index ji ∈ J s.t. Xi ∈ Iji . We calculate,∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
1

N

N∑
i=1

F r(Xi)

∥∥∥∥∥
∞

≤ 1

N

N∑
i=1

∥∥∥∥∥∥F (Xi)−
∑
j∈J

F (zj)1Ij (Xi)

∥∥∥∥∥∥
∞

=
1

N

N∑
i=1

∥F (Xi)− F (zji)∥∞

≤rLF .

We proceed by bounding (2). In the event of EpLip, which holds with probability at least 1−p, equation
(17) holds for all j ∈ J . In this event, we get∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑
j∈J

(
1

N

N∑
i=1

F (zj)1Ij (Xi)−
∫
Ij

F (zj)dy

)∥∥∥∥∥∥
∞

≤
∑
j∈J

∥F∥∞

∣∣∣∣∣ 1N
N∑
i=1

1Ij (Xi)− µ(Ij)

∣∣∣∣∣
≤ |J |∥F∥∞

1√
2

√
log(2|J |/p)√

N
.

Recall that |J | ≤ Cχr
−Dχ . Then, with probability at least 1− p∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

≤ Cχr
−Dχ∥F∥∞

1√
2

√
log(Cχ)−Dχ log(r) + log(2/p)

√
N

.

To bound (3), we calculate∥∥∥∥∫
χ

F r(y)dµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥
∞

=

∥∥∥∥∥∥
∫
χ

∑
j∈J

F (zj)1Ijdµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥∥
∞

≤
∑
j∈J

∫
Ij

∥F (zj)− F (y)∥∞ dµ(y)

≤ rLF .

By plugging the bounds of (1), (2) and (3) into (18), we get∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤ 2rLF + Cχr
−Dχ∥F∥∞

1√
2

√
log(Cχ)−Dχ log(r) + log(2/p)

√
N

.

Lastly, choosing r = N
− 1

2(Dχ+1) gives us an overall error of∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤ N
− 1

2(Dχ+1)

(
2LF + Cχ∥F∥∞

1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
Since the event EpLip is independent of the choice of F : χ → RF , the proof is finished.

The next lemma is based on Lemma B.3, and provides a uniform concentration of measure on the
L∞-error between a non-normalized version of the kernel mean aggregation from Definition A.3 and
a non-normalized version of the graph-kernel mean aggregation from Definition A.4.
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Lemma B.4. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-3
and A.10.5. are satisfied. Let p ∈ (0, 1). Suppose that X1, . . . , XN are drawn i.i.d. from µ on χ such
that (X1, . . . , XN ) ∈ EpLip, where the event EpLip is defined in Lemma B.3. Then, for every x ∈ χ,
f : χ → RF with Lipschitz constant Lf , and Φ : R2F → RH with Lipschitz constant LΦ, we have∥∥∥∥∥ 1

N

N∑
i=1

W (x,Xi)Φ
(
f(x), f(Xi)

)
−
∫
χ

W (x, y)Φ
(
f(x), f(y)

)
dµ(y)

∥∥∥∥∥
∞

≤ N
− 1

2(Dχ+1)

(
2
(
∥W∥∞LΦLf + LW

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))
+ Cχ

(
∥W∥∞

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

)) 1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
.

(19)

Proof. For any x ∈ χ, f : χ → RF and Φ : R2F → RH , we define the random variable

Yx;Φ =
1

N

N∑
i=1

W (x,Xi)Φ
(
f(x), f(Xi)

)
−
∫
χ

W (x, y)Φ
(
f(x), f(y)

)
dµ(y)

on the sample space χN . Applying Lemma B.3 on the integrand Fx(y) := W (x, y)Φ
(
f(x), f(y)

)
,

uniformly on the choice of the parameter x ∈ χ, yields in the event EpLip:

∥Yx;Φ∥∞ ≤ N
− 1

2(Dχ+1)

(
2LFx

+ Cχ∥Fx∥∞
1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
.

(20)

So it remains to calculate the Lipschitz constant and the infinity-norm of Fx. For this, calculate for
y, y′ ∈ χ

∥Fx(y)− Fx(y
′)∥∞ =∥W (x, y)Φ

(
f(x), f(y)

)
−W (x, y′)Φ

(
f(x), f(y′)

)
∥∞

≤∥W (x, y)Φ
(
f(x), f(y)

)
−W (x, y)Φ

(
f(x), f(y′)

)
∥∞

+∥W (x, y)Φ
(
f(x), f(y′)

)
−W (x, y′)Φ

(
f(x), f(y′)

)
∥∞

≤
(
∥W∥∞LΦLf + LW (LΦ∥f∥∞ + ∥Φ(0, 0)∥∞)

)
d(y, y′)

and
∥Fx(·)∥∞ = ∥W (x, ·)Φ

(
f(x), f(·)

)
∥∞

≤ ∥W∥∞(LΦ∥f∥∞ + ∥Φ(0, 0)∥∞).

The next lemma provides a uniform concentration of measure bound on the error between the
graph-kernel mean aggregation MX and the continuous mean aggregation MW .
Lemma B.5. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-6.
are satisfied. Let N ∈ N satisfy (14). Let EpLip be the event defined in Lemma B.3. There exists an event
Fp

Lip ⊂ EpLip regarding the choice of i.i.d X1, . . . , XN from µ in χ, with probability µ(Fp
Lip) ≥ 1−2p,

such that condition (15) together with (21) below are satisfied: for every f : χ → RF with Lipschitz
constant Lf and Φ : R2F → RH with Lipschitz constant LΦ

∥(MX −MW )
(
Φ(f, f)

)
∥∞ ≤ 4

ε1√
Nd2min

∥W∥∞(LΦ∥f∥∞ + ∥Φ(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦLf +

LW
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))
+ Cχ

(∥W∥∞
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

)) 1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
,

(21)
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where

ε1 = LW
(√

log(Cχ) +
√
Dχ

)
+
(√

2∥W∥∞ + LW
)√

log 2/p. (22)

Proof. By Lemma B.2, we have with probability at least 1− p

∥dX − dW ∥∞ ≤ ε1√
N

= ζ
LW

(√
log(Cχ) +

√
Dχ

)
+
(√

2∥W∥∞ + LW
)√

log 2/p
√
N

≤ dmin

2
,

(23)

where the second inequality follows from (14). Furthermore, in the same event we have

|dX(x)|∞ ≥ dmin

2

for all x ∈ χ. Moreover, |dW (x)|∞ ≥ dmin by Assumption A.10.6. Hence, for all x ∈ χ, we have∣∣∣∣ 1

dX(x)
− 1

dW (x)

∣∣∣∣ = |dW (x)− dX(x)|
|dX(x)dW (x)|

≤ 4
ε1√

Nd2min

.
(24)

Denote that intersection of EpLip and the event in which (23) occur by Fp
Lip. Let (X1, . . . , XN ) be i.i.d

samples in Fp
Lip. Define W̃ (x, y) = W (x,y)

dW (x) . Next we apply Lemma B.4 on the kernel W̃ . For this,

note that for x ∈ χ the kernel W̃ (x, ·) is Lipschitz continuous (with respect to the second variable)
with Lipschitz constant LW̃ = LW

dmin
, since for y, y′ ∈ χ, we have∣∣∣∣W (x, y)

dW (x)
− W (x, y′)

dW (x)

∣∣∣∣ ≤ LW
dmin

d(y, y′).

Moreover, for all y ∈ χ we have ∥W̃ (·, y)∥∞ ≤ ∥W∥∞
dmin

.

Then, we use Lemma B.4 to obtain, for every f : χ → RF and Φ : R2F → RH as specified in the
lemma,∥∥∥∥∥ 1

N

N∑
i=1

W̃ (·, Xi)Φ
(
f(·), f(Xi)

)
−
∫
χ

W̃ (·, y)Φ
(
f(·), f(y)

)
dµ(y)

∥∥∥∥∥
∞

≤ N
− 1

2(Dχ+1)

(
2
(
∥W̃∥∞LΦLf + LW̃

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))
+ Cχ

(
∥W̃∥∞

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

)) 1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)

≤ N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦLf +

LW
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))
+ Cχ

(∥W∥∞
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

)) 1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
.

(25)
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Then, by (24) and (25), for every f : χ → RF and Φ : R2F → RH as specified in the lemma,
∥(MX −MW )Φ(f, f)∥∞

=

∥∥∥∥∥ 1

N

N∑
i=1

W (·, Xi)

dX(·)
Φ
(
f(·), f(Xi)

)
−
∫
χ

W (·, x)
dW (·)

Φ
(
f(·), f(x)

)
dµ(x)

∥∥∥∥∥
∞

≤ 1

N

N∑
i=1

∥∥W (x,Xi)Φ
(
f(·), f(Xi)

)∥∥
∞

∥∥∥∥ 1

dX(·)
− 1

dW (·)

∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
i=1

W̃ (·, Xi)Φ
(
f(·), f(Xi)

)
−
∫
χ

W̃ (·, x)Φ
(
f(·), f(x)

)
dµ(x)

∥∥∥∥∥
∞

≤ 4
ε1√

Nd2min
∥W∥∞(LΦ∥f∥∞ + ∥Φ(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦLf +

LW
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))
+ Cχ

(∥W∥∞
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

)) 1√
2

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
.

The next corollary shows that Lemma B.5 is preserved by the application of an update function.
Corollary B.6. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-6.
are satisfied. Let p > 0 and N ∈ N satisfy (14). Suppose that X1, . . . , XN are drawn i.i.d. from µ
on χ. If the event Fp

Lip from Lemma B.5 occurs, then condition (15) together with (26) below are
satisfied: for every f : χ → RF with Lipschitz constant Lf , Φ : R2F → RH with Lipschitz constant
LΦ and Ψ : RF+H → RF ′

with Lipschitz constant LΨ∥∥∥Ψ(f(·),MX

(
Φ(f, f)

)
(·)
)
−Ψ

(
f(·),MW

(
Φ(f, f)

)
(·)
)∥∥∥

∞

≤ LΨ

(
4

ε1√
Nd2min

∥W∥∞(LΦ∥f∥∞ + ∥Φ(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦLf +

LW
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))
+

Cχ√
2

(∥W∥∞
dmin

(
LΦ∥f∥∞ + ∥Φ(0, 0)∥∞

))√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

))
,

(26)
where ε1 is defined in (22).

Proof. We calculate,∥∥∥Ψ(f(·),MX

(
Φ(f, f)

)
(·)
)
−Ψ

(
f(·),MW

(
Φ(f, f)

)
(·)
)∥∥∥

∞

≤LΨ

∥∥MX

(
Φ(f, f)

)
(·)−MW

(
Φ(f, f)

)
(·)
∥∥
∞ ,

and apply Lemma B.5 to the right-hand-side.

We continue by providing three lemmas which capture deterministic properties of cMPNNs and
gMPNNs. We start by showing that the infinity norm of the output of the l-th layer of a cMPNN f (l)

can be bounded in terms of the infinity norm of its input f .
Lemma B.7. Let (χ, d, µ) be a metric-measure space, W be a kernel and Θ = ((Φ(l))Tl=1, (Ψ

(l))Tl=1)
be a MPNN s.t. Assumptions A.10.1-7. are satisfied. Consider a metric-space signal f : χ → RF
with ∥f∥∞ < ∞. Then, for l = 0, . . . , T − 1, the cMPNN output f (l+1) satisfies

∥f (l+1)∥∞ ≤ B
(l+1)
1 + ∥f∥∞B

(l+1)
2 ,

22



where

B
(l+1)
1 =

l+1∑
k=1

(
LΨ(k)∥Φ(k)(0, 0)∥∞ + ∥Ψ(k)(0, 0)∥∞

) l+1∏
l′=k+1

LΨ(l′)

(
1 + LΦ(l′)

)
(27)

and

B
(l+1)
2 =

l+1∏
k=1

LΨ(k) (1 + LΦ(k)) . (28)

Proof. Let l = 0, . . . , T − 1. Then, for k = 0, . . . , l, we have

∥f (k+1)(·)∥∞ =
∥∥∥Ψ(k+1)

(
f (k)(·),MW

(
Φ(k+1)(f (k), f (k))

)
(·)
)∥∥∥

∞

≤
∥∥∥Ψ(k+1)

(
f (k)(·),MW

(
Φ(k+1)(f (k), f (k))

)
(·)
)
−Ψ(k+1)(0, 0)

∥∥∥
∞

+ ∥Ψ(k+1)(0, 0)∥∞

≤ LΨ(k+1)

(
∥f (k)∥∞ +

∥∥MW

(
Φ(k+1)(f (k), f (k))

)
(·)
∥∥
∞

)
+ ∥Ψ(k+1)(0, 0)∥∞.

For the message term, we have∥∥MW

(
Φ(k+1)(f (k), f (k))

)
(·)
∥∥
∞ =

∥∥∥∥∫
χ

W (·, y)
dW (·)

Φ(k+1)
(
f (k)(·), f (k)(y)

)
dµ(y)

∥∥∥∥
∞

≤
∥∥∥∥∫

χ

∣∣∣∣W (·, y)
dW (·)

∣∣∣∣ dµ(y) · sup
y∈χ

∣∣∣Φ(k+1)(f (k)(·), f (k)(y))
∣∣∣∥∥∥∥

∞

≤ LΦ(k+1)∥f (k)∥∞ + ∥Φ(k+1)(0, 0)∥∞.

Hence,

∥f (k+1)(·)∥∞

≤ LΨ(k+1)

(
∥f (k)∥∞ + (LΦ(k+1)∥f (k)∥∞ + ∥Φ(k+1)(0, 0)∥∞)

)
+ ∥Ψ(k+1)(0, 0)∥∞,

which we can reorder to

∥f (k+1)(·)∥∞

≤ LΨ(k+1)

(
1 + LΦ(k+1)

)
∥f (k)∥∞ + LΨ(k+1)∥Φ(k+1)(0, 0)∥∞ + ∥Ψ(k+1)(0, 0)∥∞.

We apply Lemma B.11 to solve this recurrence relation which finishes the proof.

In the following, we denote by Lf(l) the Lipschitz constant of f (l). The next lemma bounds Lf(l+1)

in terms of Lf .

Lemma B.8. Let (χ, d, µ) be a metric-measure space, W be a kernel and Θ = ((Φ(l))Tl=1, (Ψ
(l))Tl=1)

be a MPNN s.t. Assumptions A.10.1-7. are satisfied. Consider a Lipschitz continuous metric-space
signal f : χ → RF with ∥f∥∞ < ∞ and Lipschitz constant Lf . Then, for l = 0, . . . , T − 1, the
cMPNN output f (l+1) is Lipschitz continuous with Lipschitz constant Lf(l+1) satisfying

Lf(l+1) ≤
l+1∑
k=1

((
LΨ(k)

LW
dmin

(∥Φ(k)(0, 0)∥∞ + LΦ(k)∥f (k−1)∥∞) + LΨ(k)∥W∥∞(∥Φ(k)(0, 0)∥∞

+ LΦ(k)∥f (k−1)∥∞)
LW
d2min

) l+1∏
l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

))

+ Lf

l+1∏
k=1

LΨ(k)

(
1 +

∥W∥∞
dmin

LΦ(k)

)
.
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Proof. Let l = 0, . . . , T − 1 and consider k = 0, . . . , l. For x, x′ ∈ χ, we have

∥f (k+1)(x)− f (k+1)(x′)∥∞

=
∥∥∥Ψ(k+1)

(
f (k)(x),MW

(
Φ(k+1)(f (k), f (k))

)
(x)
)

−Ψ(k+1)
(
f (k)(x′),MW

(
Φ(k+1)(f (k), f (k))

)
(x′)

)∥∥∥
∞

≤ LΨ(k+1)

(∥∥∥f (k)(x)− f (k)(x′)
∥∥∥
∞

+
∥∥∥MW

(
Φ(k+1)(f (k), f (k))

)
(x)−MW

(
Φ(k+1)(f (k), f (k))

)
(x′)

∥∥∥
∞

)
≤ LΨ(k+1)

(
Lf(k)d(x, x′) + ∥MW

(
Φ(k+1)(f (k), f (k))

)
(x)−MW

(
Φ(k+1)(f (k), f (k))

)
(x′)∥∞

)
.

(29)

For the second term, we have

∥MW

(
Φ(k+1)(f (k), f (k))

)
(x)−MW

(
Φ(k+1)(f (k), f (k))

)
(x′)∥∞

= ∥
∫
χ

W (x, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)
− W (x′, y)

dW (x′)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)
dµ(y)∥∞

≤
∫
χ

∥∥∥W (x, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)
− W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)∥∥∥
∞
dµ(y)

+

∫
χ

∥∥∥W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)
− W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)∥∥∥
∞
dµ(y)

+

∫
χ

∥∥∥W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)
− W (x′, y)

dW (x′)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)∥∥∥
∞
dµ(y)

= (A) + (B) + (C)

(30)

For (A), we have

(A) =

∫
χ

∥∥∥W (x, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)
− W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)∥∥∥
∞
dµ(y)

=

∫
χ

|W (x, y)−W (x′, y)|
dW (x)

∥∥∥Φ(k+1)
(
f (k)(x), f (k)(y)

)∥∥∥
∞
dµ(y)

≤ LW
d(x, x′)

dmin

∫
χ

∥∥∥Φ(k+1)
(
f (k)(x), f (k)(y)

)∥∥∥
∞
dµ(y)

≤ LW
dmin

(
∥Φ(k+1)(0, 0)∥∞ + LΦ(k+1)∥f (k)∥∞

)
d(x, x′).

For (B), we have

(B) =

∫
χ

∥∥∥W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x), f (k)(y)

)
− W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)∥∥∥
∞
dµ(y)

=

∫
χ

|W (x′, y)|
|dW (x)|

∥∥∥Φ(k+1)
(
f (k)(x), f (k)(y)

)
− Φ(k+1)

(
f (k)(x′), f (k)(y)

)∥∥∥
∞
dµ(y)

≤ ∥W∥∞
dmin

LΦ(k+1)

∫
χ

∥∥(f (k)(x), f (k)(y)
)
−
(
f (k)(x′), f (k)(y)

)∥∥
∞dµ(y)

≤ ∥W∥∞
dmin

LΦ(k+1)∥f (k)(x)− f (k)(x′)
)
∥∞

≤ ∥W∥∞
dmin

LΦ(k+1)Lf(k)d(x, x′).
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For (C), we have

(C) =

∫
χ

∥∥∥W (x′, y)

dW (x)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)
− W (x′, y)

dW (x′)
Φ(k+1)

(
f (k)(x′), f (k)(y)

)∥∥∥
∞
dµ(y)

=

∫
χ

|W (x′, y)|
∣∣∣ 1

dW (x)
− 1

dW (x′)

∣∣∣∥∥∥Φ(k+1)
(
f (k)(x′), f (k)(y)

)∥∥∥
∞
dµ(y)

≤ ∥W∥∞(∥Φ(k+1)(0, 0)∥∞ + LΦ(k+1)∥f (k)∥∞)
LW
d2min

d(x, x′),

where the last inequality holds since∣∣∣∣ 1

dW (x)
− 1

dW (x′)

∣∣∣∣ ≤ |dW (x′)− dW (x)|
|dW (x)dW (x′)|

≤ 1

d2min

|dW (x′)− dW (x)|

≤ 1

d2min

∫
χ

|W (x′, y)−W (x, y)|dµ(y)

≤ 1

d2min

∫
χ

LW d(x, x′)dµ(y)

≤ LW
d2min

d(x, x′).

Hence, by plugging (30) and our bounds for (A), (B) and (C) into (29), we have
∥f (k+1)(x)− f (k+1)(x′)∥∞

≤ LΨ(k+1)

(
Lf(k)d(x, x′) + ∥MW

(
Φ(k+1)(f (k), f (k))

)
(x)−MW

(
Φ(k+1)(f (k), f (k))

)
(x′)∥∞

)
≤ LΨ(k+1)

(
Lf(k)d(x, x′) + (A) + (B) + (C)

)
≤ LΨ(k+1)

(
Lf(k) +

LW
dmin

(
∥Φ(k+1)(0, 0)∥∞ + LΦ(k+1)∥f (k)∥∞

)
+

∥W∥∞
dmin

LΦ(k+1)Lf(k) + ∥W∥∞(∥Φ(k+1)(0, 0)∥∞ + LΦ(k+1)∥f (k)∥∞)
LW
d2min

)
d(x, x′).

Hence,

Lf(k+1) ≤ LΨ(k+1)

LW
dmin

(∥Φ(k+1)(0, 0)∥∞ + LΦ(k+1)∥f (k)∥∞) + LΨ(k+1)

(
1 +

∥W∥∞
dmin

LΦ(k+1)

)
Lf(k)

+ LΨ(k+1)∥W∥∞(∥Φ(k+1)(0, 0)∥∞ + LΦ(k+1)∥f (k)∥∞)
LW
d2min

.

We finish the proof by solving the recurrence relation with Lemma B.11.

Corollary B.9. Consider the same setting as in Lemma B.8. Then, for l = 0, . . . , T − 1,

Lf(l) ≤ Z
(l)
1 + Z

(l)
2 ∥f∥∞ + Z

(l)
3 Lf ,

where Z
(l)
1 , Z(l)

2 and Z
(l)
3 are independent of f and defined as

Z
(l)
1 =

l∑
k=1

((
LΨ(k)

LW
dmin

∥Φ(k)(0, 0)∥∞ + LΨ(k)∥W∥∞∥Φ(k)(0, 0)∥∞
LW
d2min

)
+B

(k−1)
1

(
LΨ(k)

LW
dmin

LΦ(k) + LΨ(k)∥W∥∞LΦ(k)

LW
d2min

)) l∏
l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

)
,

Z
(l)
2 =

l∑
k=1

B
(k−1)
2

(
LΨ(k)

LW
dmin

LΦ(k) + LΨ(k)∥W∥∞LΦ(k)

LW
d2min

) l∏
l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

)
,

Z
(l)
3 =

l∏
k=1

LΨ(k)

(
1 +

∥W∥∞
dmin

LΦ(k)

)
,

(31)
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where B
(k)
1 and B

(k)
2 are defined in (27) and (28).

Proof. By Lemma B.8, we have

Lf(l) ≤
l∑

k=1

((
LΨ(k)

LW
dmin

(∥Φ(k)(0, 0)∥∞ + LΦ(k)∥f (k−1)∥∞) + LΨ(k)∥W∥∞(∥Φ(k)(0, 0)∥∞

+ LΦ(k)∥f (k−1)∥∞)
LW
d2min

) l∏
l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

))

+ Lf

l∏
k=1

LΨ(k)

(
1 +

∥W∥∞
dmin

LΦ(k)

)
=

l∑
k=1

(
LΨ(k)

LW
dmin

∥Φ(k)(0, 0)∥∞ + LΨ(k)∥W∥∞∥Φ(k)(0, 0)∥∞
LW
d2min

)
l∏

l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

)

+

l∑
k=1

∥f (k−1)∥∞
(
LΨ(k)

LW
dmin

LΦ(k) + LΨ(k)∥W∥∞LΦ(k)

LW
d2min

)
l∏

l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

)

+ Lf

l∏
k=1

LΨ(k)

(
1 +

∥W∥∞
dmin

LΦ(k)

)
≤

l∑
k=1

(
LΨ(k)

LW
dmin

∥Φ(k)(0, 0)∥∞ + LΨ(k)∥W∥∞∥Φ(k)(0, 0)∥∞
LW
d2min

)
l∏

l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

)

+

l∑
k=1

(B
(k−1)
1 +B

(k−1)
2 ∥f∥∞)

(
LΨ(k)

LW
dmin

LΦ(k) + LΨ(k)∥W∥∞LΦ(k)

LW
d2min

)
l∏

l′=k+1

LΨ(l′)

(
1 +

∥W∥∞
dmin

LΦ(l′)

)

+ Lf

l∏
k=1

LΨ(k)

(
1 +

∥W∥∞
dmin

LΦ(k)

)
,

where the last inequality holds by Lemma B.7.

We continue with the following simple lemma which bounds the infinity norm of the output of a
gMPNN.

Lemma B.10. Let (χ, d, µ) be a metric-measure space, W be a kernel and Θ =(
(Φ(l))Tl=1, (Ψ

(l))Tl=1

)
be a MPNN s.t. Assumptions A.10.1-8. are satisfied. Consider a metric-

space signal f : χ → RF with ∥f∥∞ < ∞. Consider a graph (G, f) ∼ (W, f) with N nodes and
corresponding graph features. Then,

∥ΘG(f)∥22;∞ ≤ NT (A′ +A′′∥f∥2∞),
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where

A′ =

T∑
l=1

(
2(LΨ(l))2

2

Wdiag
∥W∥∞∥Φ(l)(0, 0)∥2∞ + 2∥Ψ(l)(0, 0)∥2∞

)
T∏

l′=l+1

2(LΨ(l′))2
( 2

Wdiag
∥W∥∞(LΦ(l′))2 + 1

)
and

A′′ =

T∏
l=1

2(LΨ(l))2
( 2

Wdiag
∥W∥∞(LΦ(l))2 + 1

)
.

Proof. Let l = 0, . . . , T − 1. We have

∥f (l+1)∥22;∞ =
1

N

N∑
i=1

∥f (l+1)
i ∥2∞,

where f
(l+1)
i = Ψ(l+1)(f

(l)
i ,m

(l+1)
i ) with m

(l+1)
i = MG

(
Φ(l+1)(f (l), f (l))

)
(Xi). By using the

Lipschitz continuity of Ψ(l+1), we get

∥f (l+1)
i ∥2∞ ≤ 2

(
∥Ψ(l+1)(f

(l)
i ,m

(l+1)
i )−Ψ(l+1)(0, 0)∥2∞ + ∥Ψ(l+1)(0, 0)∥2∞

)
≤ 2
(
(LΨ(l+1))2(∥f (l)i ∥2∞ + ∥m(l+1)

i ∥2∞) + ∥Ψ(l+1)(0, 0)∥2∞
) (32)

For the message term we calculate

∥m(l+1)
i ∥2∞ =

∥∥∥∥∥∥ 1∑N
j=1 W (Xi, Xj)

N∑
j=1

W (Xi, Xj)Φ
(l+1)(f

(l)
i , f

(l)
j )

∥∥∥∥∥∥
2

∞

=

∣∣∣∣∣ 1∑N
j=1 W (Xi, Xj)

∣∣∣∣∣
2
∥∥∥∥∥∥
N∑
j=1

√
W (Xi, Xj) ·

√
W (Xi, Xj)Φ

(l+1)(f
(l)
i , f

(l)
j )

∥∥∥∥∥∥
2

∞

≤

∣∣∣∣∣ 1∑N
j=1 W (Xi, Xj)

∣∣∣∣∣
2 N∑
j=1

|W (Xi, Xj)|
N∑
j=1

|W (Xi, Xj)|∥Φ(l+1)(f
(l)
i , f

(l)
j )∥2∞

≤

∣∣∣∣∣ 1∑N
j=1 W (Xi, Xj)

∣∣∣∣∣ ∥W∥∞
N∑
j=1

∥Φ(l+1)(f
(l)
i , f

(l)
j )∥2∞

≤ ∥W∥∞
Wdiag

N∑
j=1

∥Φ(l+1)(f
(l)
i , f

(l)
j )∥2∞

where the inequality follows from Cauchy-Schwarz inequality. Per assumption, we have
|W (Xi, Xi)| ≥ Wdiag and for every i = 1, . . . , N ,

∥Φ(l+1)(f
(l)
i , f

(l)
j )∥2∞ = ∥Φ(l+1)(f

(l)
i , f

(l)
j )− Φ(l+1)(0, 0) + Φ(l+1)(0, 0)∥2∞

≤ 2
(
∥Φ(l+1)(f

(l)
i , f

(l)
j )− Φ(l+1)(0, 0)∥2∞ + ∥Φ(l+1)(0, 0)∥2∞

)
≤ 2
(
(LΦ(l+1))2(∥f (l)i ∥2∞ + ∥f (l)j ∥2∞) + ∥Φ(l+1)(0, 0)∥2∞.

)
Hence,

∥m(l+1)
i ∥2∞ ≤ 2∥W∥∞

Wdiag

N

N

N∑
j=1

(
(LΦ(l+1))2(∥f (l)i ∥2∞ + ∥f (l)j ∥2∞) + ∥Φ(l+1)(0, 0)∥2∞

)
≤ N

2∥W∥∞
Wdiag

(
(LΦ(l+1))2∥f (l)i ∥2∞ + (LΦ(l+1))2∥f (l)∥22;∞ + ∥Φ(l+1)(0, 0)∥2∞

)
.

(33)
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By (32) and (33), we have

∥f (l+1)∥22;∞ ≤ 1

N

N∑
i=1

2
(
(LΨ(l+1))2(∥f (l)i ∥2∞ + ∥m(l+1)

i ∥2∞) + ∥Ψ(l+1)(0, 0)∥2∞
)

≤ 1

N

N∑
i=1

2

(
(LΨ(l+1))2

(
∥f (l)i ∥2∞ +N

2∥W∥∞
Wdiag

(
(LΦ(l+1))2∥f (l)i ∥2∞

+ (LΦ(l+1))2∥f (l)∥22;∞ + ∥Φ(l+1)(0, 0)∥2∞
))

+ ∥Ψ(l+1)(0, 0)∥2∞

)

= 2(LΨ(l+1))2
( 1

N

N∑
i=1

∥f (l)i ∥2∞ +N
2∥W∥∞
Wdiag

(
(LΦ(l+1))2

1

N

N∑
i=1

∥f (l)i ∥2∞

+ (LΦ(l+1))2∥f (l)∥22;∞ + ∥Φ(l+1)(0, 0)∥2∞
))

+ 2∥Ψ(l+1)(0, 0)∥2∞

= 2(LΨ(l+1))2
(
∥f (l)∥22;∞ +N

2∥W∥∞
Wdiag

(
(LΦ(l+1))2∥f (l)∥22;∞ + ∥Φ(l+1)(0, 0)∥2∞

))
+ 2∥Ψ(l+1)(0, 0)∥2∞

= 2(LΨ(l+1))2
(
N

2∥W∥∞
Wdiag

(LΦ(l+1))2 + 1
)
∥f (l)∥22;∞

+ 2(LΨ(l+1))2N
2∥W∥∞
Wdiag

∥Φ(l+1)(0, 0)∥2∞ + 2∥Ψ(l+1)(0, 0)∥2∞

Hence, by ∥f∥22;∞ ≤ ∥f∥2∞ and Lemma B.11, we have

∥f (T )∥22;∞ ≤
T∑
l=1

(
2(LΨ(l))2N

2∥W∥∞
Wdiag

∥Φ(l)(0, 0)∥2∞ + 2∥Ψ(l)(0, 0)∥2∞
)

T∏
l′=l+1

2(LΨ(l′))2
(
N

2∥W∥∞
Wdiag

(LΦ(l′))2 + 1
)

+ ∥f∥2∞
T∏
l=1

(
2(LΨ(l))2

(
N

2∥W∥∞
Wdiag

(LΦ(l))2 + 1
))

≤ NT
T∑
l=1

(
2(LΨ(l))2

2∥W∥∞
Wdiag

∥Φ(l)(0, 0)∥2∞ + 2∥Ψ(l)(0, 0)∥2∞
)

T∏
l′=l+1

2(LΨ(l′))2
( 2

W2
diag

∥W∥2∞(LΦ(l′))2 + 1
)

+ ∥f∥2∞NT
T∏
l

(
2(LΨ(l))2

(2∥W∥∞
Wdiag

(LΦ(l))2 + 1
))

.

We finish this subsection with the following easily verifiable lemma that provides a general solution
for certain recurrence relations.
Lemma B.11. Let (η(l))Tl=0 be a sequence of real numbers satisfying η(l+1) ≤ a(l+1)η(l) + b(l+1)

for l = 0, . . . , T − 1, for some real numbers a(l), b(l), l = 1, . . . , T . Then

η(T ) ≤
T∑
l=1

bl
T∏

l′=l+1

a(l
′) + η(0)

T∏
l=1

a(l),

where we define the product
∏T
T+1 as 1.
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B.2 Proof of Theorem 3.1

The idea of the Proof of Theorem 3.1 is as follows. We first use Corollary B.6 to bound the error
between a cMPNN and a gMPNN layer-wise, when the input of layer l of the gMPNN is exactly
the sampled graph signal from the output of layer l − 1 of the cMPNN. This is shown in Corollary
B.12. Then, we use this to provide a recurrence relation for the true error between a cMPNN and
the corresponding gMPNN in Lemma B.13. We solve this recurrence relation in Corollary B.14,
where we have an error bound that depends only on the parameters of the MPNN, the regularity of the
kernel and the regularity of the continuous output metric-space signals of the layers of the cMPNN.
We remove the last dependency in Theorem B.15. We then analyze the additional error by a final
pooling layer, leading to the formulation and final proof of Theorem 3.1, rewritten as Theorem B.18.

Corollary B.12. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-
6 are satisfied. Let p ∈ (0, 1

2 ). Consider a graph (G, f) ∼ (W, f) with N nodes and corresponding
graph features, where N satisfies (14). If the event Fp

Lip from Lemma B.5 occurs, then condition
(15) together with (34) below are satisfied: For every MPNN Θ satisfying Assumption A.10.7. and
f : χ → RF with Lipschitz constant Lf , we have

dist
(
Λ
(l+1)
ΘG

(SXf (l)),Λ
(l+1)
ΘW

(f (l))
)
≤ Q(l+1) (34)

for all l = 0, . . . , T − 1, where f (l) = Θ
(l)
W f as defined in (5), and Λ

(l+1)
ΘG

and Λ
(l+1)
ΘW

are defined in
Definition A.9. Here,

Q(l+1) = LΨ(l+1)

(
4

ε1√
Nd2min

∥W∥∞(LΦ(l+1)∥f (l)∥∞ + ∥Φ(l+1)(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦ(l+1)Lf(l) +

LW
dmin

(
LΦ(l+1)∥f (l)∥∞ + ∥Φ(l+1)(0, 0)∥∞

))
+

Cχ√
2

(∥W∥∞
dmin

(
LΦ(l+1)∥f (l)∥∞ + ∥Φ(l+1)(0, 0)∥∞

))
·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

))
,

(35)

and dist is defined in (12).
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Proof. Let l = 0, . . . , T − 1. We have,(
dist

(
Λ
(l+1)
ΘG

(SXf (l)),Λ
(l+1)
ΘW

(f (l))
))2

= ∥Λ(l+1)
ΘG

(SXf (l))− SXΛ
(l+1)
ΘW

(f (l))∥22;∞

=
1

N

N∑
i=1

∥Λ(l+1)
ΘG

(SXf (l))(Xi)− SXΛ
(l+1)
ΘW

(f (l))(Xi)∥2∞

=
1

N

N∑
i=1

∥∥∥Ψ(l+1)
(
f (l)(Xi),MG

(
Φ(l+1)(SXf (l), SXf (l))

)
(Xi)

)
−Ψ(l+1)

(
f (l)(Xi),MW

(
Φ(l+1)(f (l), f (l))

)
(Xi)

)∥∥∥2
∞

=
1

N

N∑
i=1

∥∥∥Ψ(l+1)
(
f (l)(Xi),MX

(
Φ(l+1)(f (l), f (l))

)
(Xi)

)
−Ψ(l+1)

(
f (l)(Xi),MW

(
Φ(l+1)(f (l), f (l))

)
(Xi)

)∥∥∥2
∞

≤ L2
Ψ(l+1)

(
4

ε1√
Nd2min

∥W∥∞(LΦ(l+1)∥f (l)∥∞ + ∥Φ(l+1)(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦ(l+1)Lf(l) +

LW
dmin

(
LΦ(l+1)∥f (l)∥∞ + ∥Φ(l+1)(0, 0)∥∞

))
+

Cχ√
2

(∥W∥∞
dmin

(
LΦ(l+1)∥f (l)∥∞ + ∥Φ(l+1)(0, 0)∥∞

))
·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

))2

,

where the final inequality holds, by applying Corollary B.6.

Lemma B.13. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-6.
are satisfied. Let p ∈ (0, 1

2 ). Consider a graph (G, f) ∼ (W, f) with N nodes and corresponding
graph features, where N satisfies (14). Denote, for l = 1, . . . , T ,

ε(l) = dist(Θ
(l)
G (f),Θ

(l)
W (f)),

and ε(0) = dist(f , f). If the event Fp
Lip from Lemma B.5 occurs, then, for every MPNN Θ satisfying

Assumption A.10.7. and f : χ → RF with Lipschitz constant Lf , the following recurrence relation
holds:

ε(l) ≤ K(l+1)ε(l) +Q(l+1)

for l = 0, . . . , T − 1. Here, Q(l+1) is defined in (35), and

K(l+1) =

√
(LΨ(l+1))2 +

8∥W∥2∞
d2min

(LΦ(l+1))2(LΨ(l+1))2. (36)

Proof. In the event Fp
Lip, by Corollary B.12, we have for every MPNN Θ satisfying Assumption

A.10.7. and f : χ → RF with Lipschitz constant Lf ,

dist
(
Λ
(l+1)
ΘG

(SXf (l)),Λ
(l+1)
ΘW

(f (l))
)
≤ Q(l+1) (37)

for l = 0, . . . , T − 1, and

|dX(x)| ≥ dmin

2
(38)
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for all x ∈ χ. Let l = 0, . . . , T − 1. We have

dist(Θ
(l+1)
G (f),Θ

(l+1)
W (f))

= ∥Θ(l+1)
G (f)− SXΘ

(l+1)
W (f)∥2;∞

≤ ∥Θ(l+1)
G (f)− Λ

(l+1)
ΘG

(SXf (l))∥2;∞ + ∥Λ(l+1)
ΘG

(SXf (l))− SXΘ
(l+1)
ΘW

(f)∥2;∞
= ∥Λ(l+1)

G (f (l))− Λ
(l+1)
G (SXf (l))∥2;∞ + ∥Λ(l+1)

ΘG
(SXf (l))− SXΛ

(l+1)
ΘW

(f (l))∥2;∞
≤ ∥Λ(l+1)

ΘG
(f (l))− Λ

(l+1)
ΘG

(SXf (l))∥2;∞ +Q(l+1).

(39)

We bound the first term on the right-hand-side of (39) as follows.

∥Λ(l+1)
ΘG

(f (l))− Λ
(l+1)
ΘG

(SXf (l))∥22;∞

=
1

N

N∑
i=1

∥∥∥Ψ(l+1)
(
f
(l)
i ,MG

(
Φ(l+1)(f (l), f (l))

)
(Xi)

)
−Ψ(l+1)

(
(SXf (l))i,MG

(
Φ(l+1)(SXf (l), SXf (l))

)
(Xi)

)∥∥∥2
∞

≤ 1

N
(LΨ(l+1))2

N∑
i=1

∥∥∥(f (l)i ,MG

(
Φ(l+1)(f (l), f (l))

)
(Xi)

)
−
(
(SXf (l))i,MG

(
Φ(l+1)(SXf (l), SXf (l))

)
(Xi)

)∥∥∥2
∞

≤ 1

N
(LΨ(l+1))2

( N∑
i=1

∥∥∥f (l)i − (SXf (l))i

∥∥∥2
∞

+

N∑
i=1

∥∥∥MG

(
Φ(l+1)(f (l), f (l))

)
(Xi)−MG

(
Φ(l+1)(SXf (l), SXf (l))

)
(Xi)

∥∥∥2
∞

)
≤ (LΨ(l+1))2

((
dist(f (l), f (l))

)2
+

1

N

N∑
i=1

∥∥MG

(
Φ(l+1)(f (l), f (l))

)
(Xi)−MG

(
Φ(l+1)(SXf (l), SXf (l))

)
(Xi)

∥∥2
∞

)
≤ (LΨ(l+1))2

(
(ε(l))2

+
1

N

N∑
i=1

∥∥MG

(
Φ(l+1)(f (l), f (l))

)
(Xi)−MG

(
Φ(l+1)(SXf (l), SXf (l))

)
(Xi)

∥∥2
∞

)
.

(40)
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Now, for every i = 1, . . . , N , we have∥∥∥MG

(
Φ(l+1)

(
f (l), f (l)

))
(Xi)−MG

(
Φ(l+1)

(
SXf (l), SXf (l)

))
(Xi)

∥∥∥2
∞

=
∥∥∥ 1

N

N∑
j=1

W (Xi, Xj)

dX(Xi)
Φ(l+1)

(
f (l)(Xi), f

(l)(Xj)
)

− 1

N

N∑
j=1

W (Xi, Xj)

dX(Xi)
Φ(l+1)

(
SXf (l)(Xi), S

Xf (l)(Xj)
)∥∥∥2

∞

=
∥∥∥ 1

N

N∑
j=1

W (Xi, Xj)

dX(Xi)

(
Φ(l+1)

(
f (l)(Xi), f

(l)(Xj)
)
− Φ(l+1)

(
SXf (l)(Xi), S

Xf (l)(Xj)
))∥∥∥2

∞

≤ 1

N2

N∑
j=1

∣∣∣W (Xi, Xj)

dX(Xi)

∣∣∣2 N∑
j=1

∥∥∥(Φ(l+1)
(
f (l)(Xi), f

(l)(Xj)
)
− Φ(l+1)

(
SXf (l)(Xi), S

Xf (l)(Xj)
))∥∥∥2

∞

≤ 4∥W∥2∞
d2min

1

N

N∑
j=1

∥∥∥(Φ(l+1)
(
f (l)(Xi), f

(l)(Xj)
)
− Φ(l+1)

(
SXf (l)(Xi), S

Xf (l)(Xj)
))∥∥∥2

∞
,

(41)
where the second-to-last inequality holds by the Cauchy–Schwarz inequality and the last inequality
holds by (38). Now, for the term on the right-hand-side of (41), we have

1

N

N∑
j=1

∥∥∥Φ(l+1)
(
f (l)(Xi), f

(l)(Xj)
)
− Φ(l+1)

(
SXf (l)(Xi), S

Xf (l)(Xj)
)∥∥∥2

∞

≤ (LΦ(l+1))2
1

N

N∑
j=1

(∥∥f (l)(Xi)− SXf (l)(Xi)
∥∥2
∞ +

∥∥f (l)(Xj)− SXf (l)(Xj)
∥∥2
∞

)
≤ (LΦ(l+1))2

∥∥f (l)(Xi)− SXf (l)(Xi)
∥∥2
∞ + (LΦ(l+1))2(ε(l))2.

(42)

Hence, by inserting (42) into (41) and (41) into (40), we have

∥Λ(l+1)
ΘG

(f (l))− Λ
(l+1)
ΘG

(SXf (l))∥22;∞

≤ (LΨ(l+1))2
(
(ε(l))2 +

1

N

N∑
i=1

∥∥MG

(
Φ(l)(f (l), f (l))

)
(Xi)−MG

(
Φ(l)(SXf (l), SXf (l))

)
(Xi)

∥∥2
∞

)
≤ (LΨ(l+1))2

(
(ε(l))2 +

4∥W∥2∞
d2min

(LΦ(l+1))2
( 1
N

N∑
i=1

∥∥f (l)(Xi)− SXf (l)(Xi)
∥∥2
∞ + (ε(l))2

))
≤ (LΨ(l+1))2

(
(ε(l))2 +

4∥W∥2∞
d2min

(LΦ(l+1))2
(
(ε(l))2 + (ε(l))2

))
≤ (LΨ(l+1))2

(
(ε(l))2 +

8∥W∥2∞
d2min

(LΦ(l+1))2(ε(l))2
)
.

By inserting this into (39), we conclude

dist(Θ
(l+1)
G (f),Θ

(l+1)
W (f)) ≤ (LΨ(l+1))2

(
1 +

8∥W∥2∞
d2min

(LΦ(l+1))2
)
(ε(l))2 +Q(l+1).

Corollary B.14. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-
6. are satisfied. Let p ∈ (0, 1

2 ). Consider a graph (G, f) ∼ (W, f) with N nodes and corresponding
graph features, where N satisfies (14). If the event Fp

Lip from Lemma B.5 occurs, then, for every
MPNN Θ satisfying Assumption A.10.7. and every Lipschitz continuous f : χ → RF with Lipschitz
constant Lf ,

dist
(
ΘG(f(X)),ΘW (f)

)
≤

T∑
l=1

Q(l)
T∏

l′=l+1

K(l′),
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where Q(l) and K(l′) are defined in (35) and (36), respectively.

Proof. By Lemma B.13, for every MPNN Θ satisfying Assumption A.10.7. and every Lipschitz
continuous f : χ → RF with Lipschitz constant Lf , the recurrence relation

ε(l+1) ≤ K(l+1)ε(l) +Q(l+1)

holds for l = 0, . . . , T − 1. We use that ε(0) = 0 and ε(T ) = dist
(
ΘG(f(X)),ΘW (f)

)
, and solve

this recurrence relation by Lemma B.11 to finish the proof.

Theorem B.15. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-6.
are satisfied. Let p ∈ (0, 1

2 ). Consider a graph (G, f) ∼ (W, f) with N nodes and corresponding
graph features, where N satisfies (14). If the event Fp

Lip from Lemma B.5 occurs, then for every
MPNN Θ satisfying Assumption A.10.7 and f : χ → RF with Lipschitz constant Lf ,

dist
(
ΘG(f(X)),ΘW (f)

)
≤ N− 1

2 (Ω1 +Ω2 log(2/p) + Ω3∥f∥∞ +Ω4∥f∥∞ log(2/p))

+N
− 1

2(Dχ+1)
(
Ω5 +Ω6∥f∥∞ +Ω7Lf

)
+N

− 1
2(Dχ+1)

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p) · (Ω8 +Ω9∥f∥∞),

where Ωi, for i = 1, . . . , 9, are constants of the MPNN Θ, defined in (48), which depend only on the
Lipschitz constants of the message and update functions {LΦ(l) , LΨ(l)}Tl=1, and the formal biases
{∥Φ(l)(0, 0)∥∞}Tl=1.

Proof. In the event Fp
Lip, by Corollary B.14, for every MPNN Θ satisfying Assumption A.10.7. and

f : χ → RF with Lipschitz constant Lf ,

dist
(
ΘG(f(X)),ΘW (f)

)
≤

T∑
l=1

Q(l)
T∏

l′=l+1

K(l′), (43)

where

Q(l) = LΨ(l)

(
4

ε1√
Nd2min

∥W∥∞(LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(
2
(∥W∥∞

dmin
LΦ(l)Lf(l−1) +

LW
dmin

(
LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞

))
+

Cχ√
2

(∥W∥∞
dmin

(
LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞

))
·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

))
,

and

(K(l′))2 = (LΨ(l′))2 +
8∥W∥2∞
d2min

(LΦ(l′))2(LΨ(l′))2.
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We plug the definition of Q(l) into the right-hand-side of (43), to get

dist
(
ΘG(f(X)),ΘW (f)

)
≤

T∑
l=1

LΨ(l)

(
4

ε1√
Nd2min

∥W∥∞(LΦ(l)∥f l−1)∥∞ + ∥Φ(l)(0, 0)∥∞)

+N
− 1

2(Dχ+1)

(2∥W∥∞
dmin

LΦ(l)Lf(l−1) +
2LW
dmin

(LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞)

+
Cχ√
2

(∥W∥∞
dmin

(LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞)
)

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)) T∏
l′=l+1

K(l′).

(44)

By Lemma B.7, we have

||f (l)||∞ ≤ B
(l)
1 +B

(l)
2 ||f ||∞, (45)

where B
(l)
1 , B(l)

2 are independent of f . Furthermore, we have

Lf(l) ≤ Z
(l)
1 + Z

(l)
2 ∥f∥∞ + Z

(l)
3 Lf , (46)

where Z
(l)
1 , Z(l)

2 and Z
(l)
3 are independent of f , and defined in (31). We plug the bound of Lf(l−1)

from (46) into (43)

dist
(
ΘG(f(X)),ΘW (f)

)
≤

T∑
l=1

LΨ(l)

(
4

ε1√
Nd2min

∥W∥∞(LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞) +N
− 1

2(Dχ+1)

·
(2∥W∥∞

dmin
LΦ(l)(Z

(l−1)
1 + Z

(l−1)
2 ∥f∥∞ + Z

(l−1)
3 Lf ) +

2LW
dmin

(LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞)

+
Cχ√
2

(∥W∥∞
dmin

(LΦ(l)∥f (l−1)∥∞ + ∥Φ(l)(0, 0)∥∞)
)

·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)) T∏
l′=l+1

K(l′).

We insert the bound of ∥f (l−1)∥∞ from (45) in the above expression, to get

≤
T∑
l=1

LΨ(l)

(
4

ε1√
Nd2min

∥W∥∞
(
LΦ(l)(B

(l−1)
1 +B

(l−1)
2 ||f ||∞) + ∥Φ(l)(0, 0)∥∞

)
+N

− 1
2(Dχ+1)

·
(2∥W∥∞

dmin
LΦ(l)(Z

(l−1)
1 + Z

(l−1)
2 ∥f∥∞ + Z

(l−1)
3 Lf ) +

2LW
dmin

(
B

(l−1)
1 +B

(l−1)
2 ||f ||∞

)
+

Cχ√
2

(∥W∥∞
dmin

(
LΦ(l)(B

(l−1)
1 +B

(l−1)
2 ||f ||∞) + ∥Φ(l)(0, 0)∥∞

))
√

log(Cχ) +
Dχ

2(Dχ + 1)
log(N) + log(2/p)

)) T∏
l′=l+1

K(l′).

(47)

We insert the bound for ε1, defined in (22) as

ε1 = ζ
(
LW

(√
log(Cχ) +

√
Dχ

)
+
(√

2∥W∥∞ + LW
)√

log 2/p
)
,
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into (47) to get

≤
T∑
l=1

LΨ(l)

(
4
ζ
(
LW

(√
log(Cχ) +

√
Dχ

)
+
(√

2∥W∥∞ + LW
)√

log 2/p
)

√
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· ∥W∥∞
(
LΦ(l)(B

(l−1)
1 +B

(l−1)
2 ||f ||∞) + ∥Φ(l)(0, 0)∥∞

)
+N

− 1
2(Dχ+1)

(2∥W∥∞
dmin

LΦ(l)(Z
(l−1)
1 + Z

(l−1)
2 ∥f∥∞ + Z

(l−1)
3 Lf )

+
2LW
dmin

(
B

(l−1)
1 +B

(l−1)
2 ||f ||∞

)
+

Cχ√
2

(∥W∥∞
dmin

(
LΦ(l)(B

(l−1)
1 +B

(l−1)
2 ||f ||∞) + ∥Φ(l)(0, 0)∥∞

))
·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)) T∏
l′=l+1

K(l′).

Then, rearranging the terms yields

=

T∑
l=1

LΨ(l)4
ζLW

(√
log(Cχ) +

√
Dχ

)
√
Nd2min

∥W∥∞
(
LΦ(l)B

(l−1)
1 + ∥Φ(l)(0, 0)∥∞

) T∏
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K(l′)

+

T∑
l=1

LΨ(l)4
ζ(
√
2∥W∥∞ + LW )

√
log 2/p√
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∥W∥∞

(
LΦ(l)B
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1 + ∥Φ(l)(0, 0)∥∞

) T∏
l′=l+1

K(l′)

+
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LΨ(l)4
ζLW

(√
log(Cχ) +

√
Dχ
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√
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∥W∥∞
(
LΦ(l)B

(l−1)
2 ∥f∥∞
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+
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√
2∥W∥∞ + LW )

√
log 2/p√

Nd2min
∥W∥∞

(
LΦ(l)B
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2 ∥f∥∞

) T∏
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K(l′)

+
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LΨ(l)N
− 1

2(Dχ+1)

(2∥W∥∞
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LΦ(l)Z
(l−1)
1 +

2LW
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(l−1)
1
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l′=l+1

K(l′)

+

T∑
l=1

LΨ(l)N
− 1

2(Dχ+1)

(2∥W∥∞
dmin

LΦ(l)Z
(l−1)
2 ∥f∥∞ +

2LW
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B
(l−1)
2 ∥f∥∞

) T∏
l′=l+1

K(l′)

+

T∑
l=1

LΨ(l)N
− 1

2(Dχ+1) 2
∥W∥∞
dmin

LΦ(l)Z
(l−1)
3 Lf

T∏
l′=l+1

K(l′)

+

T∑
l=1

LΨ(l)N
− 1

2(Dχ+1)
Cχ√
2

∥W∥∞
dmin

(LΦ(l)B
(l−1)
1 + ∥Φ(l)(0, 0)∥∞)

·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

) T∏
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K(l′)

+

T∑
l=1

LΨ(l)N
− 1

2(Dχ+1)
Cχ√
2

∥W∥∞
dmin

LΦ(l)B
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·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)
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K(l′)
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=: Ω1
1√
N

+Ω2
log(2/p)√

N
+Ω3

∥f∥∞√
N

+Ω4
∥f∥∞ log(2/p)√

N

+N
− 1

2(Dχ+1)
(
Ω5 +Ω6∥f∥∞ +Ω7Lf

)
+N

− 1
2(Dχ+1)

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p) · (Ω8 +Ω9∥f∥∞),

where we define

Ω1 =

T∑
l=1

LΨ(l)4
ζLW

(√
log(Cχ) +

√
Dχ

)
d2min

∥W∥∞
(
LΦ(l)B

(l−1)
1 + ∥Φ(l)(0, 0)∥∞

) T∏
l′=l+1

K(l′)

Ω2 =

T∑
l=1

LΨ(l)4
ζ(
√
2∥W∥∞ + LW )

d2min
∥W∥∞

(
LΦ(l)B

(l−1)
1 + ∥Φ(l)(0, 0)∥∞

) T∏
l′=l+1

K(l′)

Ω3 =

T∑
l=1

LΨ(l)4
ζLW

(√
log(Cχ) +

√
Dχ

)
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∥W∥∞
(
LΦ(l)B

(l−1)
2

) T∏
l′=l+1

K(l′)

Ω4 =

T∑
l=1

LΨ(l)4
ζ(
√
2∥W∥∞ + LW )

√
log 2/p

d2min
∥W∥∞

(
LΦ(l)B

(l−1)
2

) T∏
l′=l+1

K(l′)

Ω5 =

T∑
l=1

LΨ(l)

(
2∥W∥∞
dmin

LΦ(l)Z
(l−1)
1 +

2LW
dmin

B
(l−1)
1

) T∏
l′=l+1

K(l′)

Ω6 =

T∑
l=1

LΨ(l)

(
2∥W∥∞
dmin

LΦ(l)Z
(l−1)
2 +

2LW
dmin

B
(l−1)
2

) T∏
l′=l+1

K(l′)

Ω7 =

T∑
l=1

LΨ(l)2
∥W∥∞
dmin

LΦ(l)Z
(l−1)
3

T∏
l′=l+1

K(l′)

Ω8 =

T∑
l=1

LΨ(l)

Cχ√
2

∥W∥∞
dmin

(
LΦ(l)B

(l−1)
1 + ∥Φ(l)(0, 0)∥∞

) T∏
l′=l+1

K(l′)

Ω9 =

T∑
l=1

LΨ(l)

Cχ√
2

∥W∥∞
dmin

LΦ(l)B
(l−1)
2

T∏
l′=l+1

K(l′),

(48)
where Z(l−1)

1 , Z
(l−1)
2 , Z

(l−1)
3 are defined in (31), B(l−1)

1 and B
(l−1)
2 are defined in (27) and (28), and

K(l′) =

√
(LΨ(l′))2 +

8∥W∥2∞
d2min

(LΦ(l′))2(LΨ(l′))2.

Next we study the convergence of MPNNs after global pooling. We give the following lemma.

Lemma B.16. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-6.
are satisfied. Suppose that X1, . . . , XN are drawn i.i.d. from µ on χ such that (X1, . . . , XN ) ∈ EpLip,
where the event EpLip is defined in Lemma B.3. Then, for every MPNN Θ satisfying Assumption A.10.7
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and f : χ → RF with Lipschitz constant Lf ,

∥∥∥∥∥ 1

N

N∑
i=1

(
SXΘW (f)

)
(Xi)−

∫
χ

ΘW (f)(y)dµ(y)

∥∥∥∥∥
∞

≤ N
− 1

2(Dχ+1)

(
2(Z

(T )
1 + Z

(T )
2 ∥f∥∞ + Z

(T )
3 Lf ) +

Cχ√
2
(B

(T )
1 +B

(T )
2 ∥f∥∞)

·

√
log(Cχ) +

Dχ

2(Dχ + 1)
log(N) + log(2/p)

)
.

(49)

Here, Z(T )
1 , Z

(T )
2 , Z

(T )
3 and B

(T )
1 , B

(T )
2 are defined in (45) and (46).

Proof. By Lemma B.7, we have

∥Θ(T )
W (f)∥∞ ≤ B

(T )
1 + ∥f∥∞B

(T )
2

and, by Corollary B.8, we have

L
Θ

(T )
W (f)

≤ Z
(T )
1 + Z

(T )
2 ∥f∥∞ + Z

(T )
3 Lf

for all MPNNs Θ and metric-space signals f considered. Hence, by Lemma B.3, equation (49)
holds.

Corollary B.17. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions
A.10.1-6. are satisfied. Consider a graph (G, f) ∼ (W, f) with N nodes and corresponding graph
features, where N satisfies (14). If the event Fp

Lip from Lemma B.5 occurs, then for every MPNN Θ

satisfying Assumption A.10.7 and every f : χ → RF with Lipschitz constant Lf ,

∥∥∥ΘPG(f)−ΘPW (f)
∥∥∥2
∞

≤ S1 + S2∥f∥2∞
N

+
R1 +R2∥f∥2∞ +R3L

2
f

N
1

Dχ+1

+
T1 + T2∥f∥2∞

N
1

Dχ+1

log(N)

+
S3 + S4∥f∥2∞

N
log2(2/p) +

R4 +R5∥f∥2∞
N

1
Dχ+1

log(2/p),

where the constants are defined in (51) below.
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Proof. We have∥∥∥ΘPG(f)−ΘPW (f)
∥∥∥
∞

=
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ΘG(f)(Xi)−
∫
χ

ΘW (f)(y)dµ(y)
∥∥
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∥∥
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∥∥ΘG(f)(Xi)−
(
SXΘW (f)

)
(Xi)

∥∥
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∥∥
∞

+N
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(
2(Z
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(T )
3 Lf ) +

Cχ√
2
(B
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·
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2(Dχ + 1)
log(N) + log(2/p)
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,

where the last inequality holds by Lemma B.16. Together with Theorem B.15, we get∥∥ΘPG(f)−ΘPW (f)
∥∥
∞

≤ Ω1 +Ω2 log(2/p) + Ω3∥f∥∞ +Ω4∥f∥∞ log(2/p)
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(50)

Now we use the inequality (
n∑
i=1

ai

)2

≤ n

n∑
i=1

a2i
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for any ai ∈ R+, i = 1, . . . , N , and square both sides of (50) to get

∥∥ΘPG(f)−ΘPW (f)
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N
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+
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where

S1 = 14Ω2
1

S2 = 14Ω2
3

S3 = 14Ω2
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4
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(51)

and Ω1, . . . ,Ω9 are defined in (48), and B
(T )
1 and B

(T )
2 are defined in (27) and (28).

We now write a version of Theorem 3.1 (about the convergence error of MPNNs) with detailed
constants, and prove it.

Theorem B.18. Let (χ, d, µ) be a metric-measure space and W be a kernel s.t. Assumptions A.10.1-
6. and Assumptions A.10.8 are satisfied. Consider a graph (G, f) ∼ (W, f) with N nodes and
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corresponding graph features. Then, for every f : χ → RF with Lipschitz constant Lf ,

EX1,...,XN∼µN

[
sup

Θ∈LipL,B

∥∥ΘPG(f)−ΘPW (f)
∥∥2
∞

]

≤ 6
√
π

(
S1 + S3 + (S2 + S4)∥f∥2∞

N
+

R1 +R4 + (R2 +R5)∥f∥2∞ +R3L
2
f

N
1

Dχ+1

+

(
T1 + T2∥f∥2∞

)
log(N)

N
1

Dχ+1

)
+O

(
exp(−N)N

3
2T− 3

2

)
,

where the constants are defined in (51).

Proof. For any p > 0, we have with probability at least 1− 2p for every Θ ∈ LipL,B , by Corollary
B.17, that ∥∥ΘPG(f)−ΘPW (f)

∥∥2
∞ ≤ H1 +H2 log(2/p) +H3 log

2(2/p)
if (14) holds, where

H1 =
S1 + S2∥f∥2∞

N
+

R1 +R2∥f∥2∞ +R3L
2
f

N
1

Dχ+1

+
T1 + T2∥f∥2∞

N
1

Dχ+1

log(N),

H2 =
R4 +R5∥f∥2∞

N
1

Dχ+1

and H3 =
S3 + S4∥f∥2∞

N
.

Further, for every p ∈ (0, 1/2), we consider k > 0 such that p = 2 exp(−k2). This means, if p
respectively k satisfies (14), we have with probability at least 1− 4 exp(−k2) for every Θ ∈ LipL,B ,∥∥ΘPG(f)−ΘPW (f)

∥∥2
∞ ≤ H1 +H2k +H3k

2.

If k does not satisfy (14), we get

k > N0 = D1 +D2

√
N,

where D1 ∈ R and D2 > 0 are the matching constants in (14). By Lemma B.10 and Lemma B.7, we
get in this case∥∥ΘPG(f)−ΘPW (f)

∥∥2
∞ =

∥∥∥∥∥ 1

N

N∑
i=1

ΘG(f)i −
∫
χ

ΘW (f)(y)dµ(y)

∥∥∥∥∥
2

∞

≤ 4

N

N∑
i=1

∥ΘG(f)i∥2∞ + 2
∥∥∥∫

χ

ΦW (f)(y)dµ(y)
∥∥∥2
∞

≤ 4

N
∥ΘG(f)∥22;∞ + 2∥ΘW (f)∥2∞

≤ 4

N
NT (A′ +A′′∥f∥2∞) + 2(B

(T )
1 + ∥f∥∞B

(T )
2 )2 =: q(N),

(52)

where the first inequality holds by applying the triangle inequality and Cauchy-Schwarz.

We then calculate the expected value by partitioning the integral over the event space into the
following sum.

EX1,...,XN∼µN

[
sup

Θ∈LipL,B

∥∥ΘPG(f)−ΘPW (f)
∥∥2
∞

]

≤
N0∑
k=0

P
(
H1 +H2k +H3k

2 ≤ sup
Θ∈LipL,B

∥∥ΘPG(f)−ΘPW (f)
∥∥2
∞ < H1 +H2(k + 1) +H3(k + 1)2

)
·
(
H1 +H2(k + 1) +H3(k + 1)2

)
+

∞∑
k=N0

P
(
H1 +H2k +H3k

2 ≤ sup
Θ∈LipL,B

∥∥ΘPG(f)−ΘPW (f)
∥∥2
∞ < H1 +H2(k + 1) +H3(k + 1)2

)
· q(N)

(53)
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To bound the second sum, note that it is a finite sum, since
∥∥ΘPG(f) − ΘPW (f)

∥∥2
∞ is bounded by

q(N), which is defined in (52). The summands are zero if H1 +H2k +H3k
2 > q(N), which holds

for k >
√

q(N)
H3

. Hence, we calculate with the right-hand-side of (53) by

≤ 2

N0∑
k=0

2 exp(−k2) ·
(
H1 +H2(k + 1) +H3(k + 1)2

)

+

⌈√
q(N)
H3

⌉∑
k=N0

4 exp(−N2
0 ) · q(N)

≤ 2

∫ ∞

0

2 exp(−k2) ·
(
H1 +H2(k + 1) +H3(k + 1)2

)
+ 4 exp(−N2

0 )q(N)


√

q(N)

H3

 ,

(54)

where q(N) = O(NT−1) is a polynomial in N as defined above. The first term on the right-hand-side
is bounded by using∫ ∞

0

2(t+ 1)2e−t
2

dt,

∫ ∞

0

2(t+ 1)e−t
2

dt,

∫ ∞

0

2e−t
2

dt ≤ 3
√
π.

For the second term we remember that N0 = D1 +D2

√
N . Hence,

EX1,...,XN∼µN

[
sup

Θ∈LipL,B

∥∥ΘPG(f)−ΘPW (f)
∥∥2
∞

]
≤ 6

√
π(H1 +H2 +H3) +O(exp(−N)N

3
2T− 3

2 ).

C Generalization Analysis

In this section, we provide details on our generalization analysis of MPNNs. In Subsection C.1, we
detail the data distribution from the graph classification task, which was introduced in Subsection 2.4.
In Subsection C.2, we provide a detailed version and a proof for Theorem 3.3 (about the generalization
bound of MPNNs). This is followed by a derivation of the asymptotics of our generalization bound in
Subsection C.3 and a comparison of the asymptotics of our generalization bound with other related
generalization bounds in Subsection C.4.

C.1 The Probability Space of the Dataset

Recall that the measure on the space χj is denoted by µj . Given a class j and N ∈ N, the space of
graphs with N nodes from class j is defined to be (χj)N . The measure on (χj)N is defined to be
(µj)N , namely, the direct product of the measure µj with itself N times. The space Gj of graphs of
any size, which are sampled from class j, is defined to be

Gj :=
⋃
n∈N

(χj)N .

The measure on Gj is denoted by µGj
, and defined as follows.

Definition C.1. A set of graphs S ⊂ Gj is called measurable, if for each N ∈ N, the restriction

SN := {G ∈ S | G has N nodes} ⊂ (χj)N

is measurable with respect to (µj)N . The measure of a measurable set S ⊂ Gj is defined to be

µGj (S) :=

∞∑
N=1

ν(N)(µj)N (SN ),

where ν(N) is the probability of choosing a graph with N nodes (see Subsection 2.4).
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The space of graphs of either of the classes j = 1, . . . ,Γ is defined to be

G :=

Γ⋃
j=1

Gj .

The measure on G is denoted by µG , and defined as follows.

Definition C.2. A set of graphs S ⊂ G is called measurable, if for each j = 1, . . . ,Γ, the restriction

Sj := {G ∈ S | G is sampled from class j} ⊂ Gj

is measurable with respect to µGj
. The measure of a measurable S ⊂ G is defined to be

µG(S) =

Γ∑
j=1

γjµGj (Sj),

where γj is the probability of choosing class j (see Subsection 2.4).

With these notations, the space of graph datasets of size m is defined to be Gm with the direct product
measure µmG . We denote a random graph sampled from the space of graphs by (G, f , y) ∼ µG . Here,
y denotes the class of the graph, namely, the value y such that (G, f) is sampled from class y.

The next lemma is direct, and given without proof.

Lemma C.3. The spaces {G, µG} and {Gj , µGj
}, j = 1, . . . ,Γ, are measure spaces, and µG and

µGj
, j = 1, . . . ,Γ, are probability measures.

Let us next derive a re-parameterization of the space of datasets Gm. Given T ∼ µmG , for every
j = 1, . . . ,Γ, let mj denote the number of graphs in T that fall into the class j. Note that m =
(m1, . . . ,mΓ) has a multinomial distribution with parameters m and γ = (γ1, . . . , γΓ), which we
denote by MNm,γ . Conditioning the choice of the graphs on the choice of m, we can formulate
the data sampling procedure as first sampling m from MNm,γ , and then sampling {Gj

i , f
j
i }
mj

i=1 ∼
(µGj

)mj , j = 1 . . . ,Γ independently of each other. Now, the measure µmG of the space of datasets
can be parameterized as follows.

First, we define the following measure space. Let m = (m1, . . . ,mΓ) satisfy
∑Γ
j=1 mj = m. We

define the space

Gm :=

Γ∏
j=1

Gmj

j ,

with the measure

µGm :=

Γ∏
j=1

µ
mj

Gj
. (55)

The space Gm is interpreted as the space of datasets with exactly mj samples in each class j.

We can now show the following parametrization of the measure space Gm of datasets of size m. The
lemma is direct, and given without proof.

Lemma C.4. A set of datasets S ⊂ Gm is measurable, if and only if for every m = (m1, . . . ,mΓ)

with
∑Γ
j=1 mj = m, the restriction

Sm = {T ∈ S | ∀1 ≤ j ≤ Γ, T contains mj graphs from class j} ⊂ Gm

is measurable with respect to µGm .

With these notations, µmG is decomposed as follows: Gm =
⋃

m Gm, and for every measurable set of
datasets S ⊂ Gm,

µmG (S) =
∑

m: m1+...+mΓ=m

µMNm,γ (m)

Γ∑
j=1

mj∑
i=1

µGj
(Sm).
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C.2 Proof of Theorem 3.3

The following corollary computes the expected robustness of a random graph, of arbitrary size,
sampled from µGj , and is a direct result of Definition C.1 and Theorem B.18.

Corollary C.5. Let {(W j , f j)} be a RGM on the corresponding metric-measure space (χj , dj , µj)
that satisfies Assumptions A.10.1.-6. and A.10.8. Let µGj

be the distribution from Definition C.1.
Then,

E(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

∥∥ΘPGj (f j)−ΘPW j (f j)
∥∥2
∞

]
≤ 6

√
π

((
S
(j)
1 + S

(j)
3 + (S

(j)
2 + S

(j)
4 )∥f j∥2∞

)
EN∼ν

[
N−1

]
+
(
R

(j)
1 +R

(j)
4 + (R

(j)
2 +R

(j)
5 )∥f j∥2∞ +R

(j)
3 L2

fj

)
EN∼ν

[
N

− 1
D

χj +1

]
+
(
T

(j)
1 + T

(j)
2 ∥f j∥2∞

)
EN∼ν

[
log(N)N

− 1
D

χj +1

])
+O

(
EN∼ν

[
exp(−N)N

3T
2 − 3

2

])
,

where S
(j)
l , R

(j)
l , T

(j)
l are the according constants from Theorem B.18 for each class j and are

defined in (51).

When sampling a dataset T ∼ pm, the numbers of samples mj that fall in class χj , for j = 1, . . . ,Γ,
are distributed multinomially. We hence recall a concentration of measure result for multinomial
variables.
Lemma C.6 (Proposition A.6 in [Vaart and Wellner, 1996], Bretagnolle-Huber-Carol inequality). If
the random vector (m1, . . .mΓ) is multinomially distributed with parameters m and γ1, . . . , γΓ, then

P

(
Γ∑
i=1

|mi −mγi| ≥ 2
√
mλ

)
≤ 2Γ exp(−2λ2)

for any λ > 0.

We now write a version of Theorem 3.3 (about the generalization error of MPNNs) with detailed
constants, and prove it.
Theorem C.7. Let {(W j , f j)}Γj=1 be a collection of RGMs on corresponding metric-measure spaces
{(χj , dj , µj)}Γj=1 such that each one satisfies Assumptions A.10.1.-6. and A.10.8. Let µG denote the
data distribution from Definition C.2. Let T =

(
(G1, f1, y1), . . . , (Gm, fm, ym)

)
∼ µmG be a dataset

of graphs. Then,

ET ∼µm
G

 sup
Θ∈LipL,B

(
1

m

m∑
i=1

L(ΘPGi
(fi), yi)− E(G,f ,y)∼µG

[
L(ΘPG(f), y)

])2


≤ 2Γ
8∥L∥2∞

m
π +

6
√
π

m
2ΓΓ

Γ∑
j=1

γjL
2
L

(
√
π
((

S
(j)
1 + S

(j)
3 + (S

(j)
2 + S

(j)
4 )∥f j∥2∞

)
EN∼ν

[
N−1

]
+
(
R

(j)
1 +R

(j)
4 + (R

(j)
2 +R

(j)
5 )∥f j∥2∞ +R

(j)
3 L2

fj

)
EN∼ν

[
N

− 1
D

χj +1

]
+
(
T

(j)
1 + T

(j)
2 ∥f j∥2∞

)
EN∼ν

[
log(N)N

− 1
D

χj +1

])
+O

(
EN∼ν

[
exp(−N)N

3
2T− 3

2

]))
,

where S
(j)
l , R

(j)
l , T

(j)
l are the according constants from Theorem B.18 for each class j and are

defined in (51).

Proof. Given m = (m1, . . . ,mΓ) with
∑Γ
j=1 mj = m, recall that Gm is the space of datasets with

fixed number of samples mj from each class j = 1, . . . ,Γ. The probability measure on Gm is given
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by µGm (see (55)). Similarly to the notation of Lemma C.4, we denote the conditional choice of the
dataset on the choice of m by

Tm :=
{
{Gj

i , f
j
i }
mj

i=1

}Γ
j=1

∼ µGm .

Given k ∈ Z, denote by Mk the set of all m = (m1, . . . ,mΓ) ∈ NΓ
0 with

∑Γ
j=1 mj = m, such that

2
√
mk ≤

∑Γ
j=1 |mj −mγj | < 2

√
m(k + 1). Using these notations, we decompose the expected

generalization error as follows.

ET ∼µm
G

 sup
Θ∈LipL,B

(
1

m

m∑
i=1

L(ΘPGi
(fi), yi)− E(G,f ,y)∼µG

[
L(ΘPG(f), y)

])2


= ET ∼µm
G

 sup
Θ∈LipL,B

 1

m

Γ∑
j=1

mj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)− E(G,f ,y)∼µG

[
L(ΘPG(f), y)

]2


= ET ∼µm
G

 sup
Θ∈LipL,B

 Γ∑
j=1

(
1

m

mj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)− γjE(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

])2


≤
∑
k

P
(
m ∈ Mk

)
× sup

m∈Mk

ETm∼µGm

 sup
Θ∈LipL,B

 Γ∑
j=1

(
1

m

mj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

]))2


(56)

We bound the last term of (56) as follows. For j = 1, . . . ,Γ, if mj ≤ mγj , we add "ghost
samples", i.e., we add additional i.i.d. sampled graphs (Gj

mj
, f jmj

), . . . , (Gj
mγj , f

j
mγj ) ∼ (W j , f j).

By convention, for any two l, q ∈ N0 with l < q, we define

l∑
j=q

cj = −
q∑
j=l

cj
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for any sequence cj of reals, and define
∑q
j=q cj = 0. With these notations, we have

ETm∼µGm

 sup
Θ∈LipL,B

 Γ∑
j=1

(
1

m

mj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

]))2


= ETm∼µGm

[
sup

Θ∈LipL,B

(
Γ∑
j=1

(
1

m

mγj∑
i=1

L(ΘP
Gj

i

(f ji ), yj) +
1

m

mj∑
i=mγj

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

]))2]

≤ ETm∼µGm

 sup
Θ∈LipL,B

2

 Γ∑
j=1

(
1

m

mγj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

]))2


+ ETm∼µGm

2
 Γ∑
j=1

(
1

m
|mγj −mj |∥L∥∞

)2
 .

(57)

Let us first bound the last term of the above bound. Since any m ∈ Mk satisfies
∑Γ
j=1 |mj−mγj | <

2
√
m(k + 1), we have

ETm∼µGm

2
 Γ∑
j=1

(
1

m
|mγj −mj |∥L∥∞

)2
 ≤ 2

m2
∥L∥2∞

 Γ∑
j=1

|mγj −mj |

2

≤ 2

m2
∥L∥2∞4m(k + 1)2 =

8∥L∥2∞
m

(k + 1)2.

Hence, by Lemma C.6,

∑
k

P
(
m ∈ Mk

)
× sup

m∈Mk

ETm∼µGm

2
 Γ∑
j=1

(
1

m
|mγj −mj |∥L∥∞

)2


≤
∑
k

P
(
m ∈ Mk

)
× 8∥L∥2∞

m
(k + 1)2

≤
∑
k

2Γ exp(−2k2)
8∥L∥2∞

m
(k + 1)2

≤
∫ ∞

0

2Γ exp(−2k2)
8∥L∥2∞

m
(k + 1)2dk

= 2Γ
8∥L∥2∞

m

∫ ∞

0

exp(−2k2)(k + 1)2dk

≤ 2Γ
8∥L∥2∞

m
π.
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To bound the first term of the right-hand-side of (57), we have

ETm∼µGm

 sup
Θ∈LipL,B

 Γ∑
j=1

(
1

m

mγj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

L(ΘPGj (f j), yj)

]))2


≤Γ

Γ∑
j=1

ETm∼µGm

[
sup

Θ∈LipL,B

(
1

m

mγj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

L(ΘPGj (f j), yj)

])2


=Γ

Γ∑
j=1

Var(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

1

m

γj ·m∑
i=1

L(ΘPGj (f j), yj)

]

=Γ

Γ∑
j=1

γj
m

Var(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

L(ΘPGj (f j), yj)

]

≤Γ

Γ∑
j=1

γj
m

E(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

∣∣L(ΘPGj (f j), yj)− L(ΘPW j (f j), yj)
∣∣2]

≤Γ

Γ∑
j=1

γj
m

E(Gj ,fj)∼µGj

[
sup

Θ∈LipL,B

L2
L∥ΘPGj (f j)−ΘPW j (f j)∥2∞

]
.

We now apply Corollary C.5 to get

≤ Γ

Γ∑
j=1

γj
m

L2
L

(
6
√
π

((
S1 + S3 + (S2 + S4)∥f j∥2∞

)
EN∼ν

[
N−1

]
+
(
R1 +R4 + (R2 +R5)∥f j∥2∞ +R3L

2
fj

)
EN∼ν

[
N

− 1
D

χj +1

]
+
(
T1 + T2∥f j∥2∞

)
EN∼ν

[
log(N)

N
1

D
j
χ+1

])
+O

(
EN∼ν

[
exp(−N)N

3
2T− 3

2

]))
.
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Hence, by Lemma C.6,

∑
k

P
(
m ∈ Mk

)
× sup

m∈Mk

ETm∼µGm

 sup
Θ∈LipL,B

 Γ∑
j=1

(
1

m

mγj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

]))2


≤
√
π

2
2Γ

Γ∑
j=1

γj
m

ETm∼µGm

 sup
Θ∈LipL,B

 Γ∑
j=1

(
1

m

mγj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)

− 1

m

mγj∑
i=1

E(Gj ,fj)∼µGj

[
L(ΘPGj (f j), yj)

]))2


≤
√
π

2
2ΓΓ

Γ∑
j=1

γj
m

L2
L

(
6
√
π

((
S
(j)
1 + S

(j)
3 + (S

(j)
2 + S

(j)
4 )∥f j∥2∞

)
EN∼ν

[
N−1

]
+
(
R

(j)
1 +R

(j)
4 + (R

(j)
2 +R

(j)
5 )∥f j∥2∞ +R

(j)
3 L2

fj

)
EN∼ν

[
N

− 1
D

χj +1

]
+
(
T

(j)
1 + T

(j)
2 ∥f j∥2∞

)
EN∼ν

[
log(N)

N
1

D
j
χ+1

])
+O

(
EN∼ν

[
exp(−N)N

3
2T− 3

2

]))
,

where S(j)
l , R

(j)
l , T

(j)
l are the according constants from Theorem B.18 for each class j and are defined

in (51). All in all, we get

ET ∼µm
G

 sup
Θ∈LipL,B

 1

m

Γ∑
j=1

mj∑
i=1

L(ΘP
Gj

i

(f ji ), yj)− E(G,f ,y)∼µG

[
L(ΘPG(f), y)

]2


≤ 2Γ
8∥L∥2∞

m
π +

√
π

m
2ΓΓ

Γ∑
j=1

γjL
2
L

(
6
√
π
((

S
(j)
1 + S

(j)
3 + (S

(j)
2 + S

(j)
4 )∥f j∥2∞

)
EN∼ν

[
N−1

]
+
(
R

(j)
1 +R

(j)
4 + (R

(j)
2 +R

(j)
5 )∥f j∥2∞ +R

(j)
3 L2

fj

)
EN∼ν

[
N

− 1
D

χj +1

]
+
(
T

(j)
1 + T

(j)
2 ∥f j∥2∞

)
EN∼ν

[
log(N)

N
1

D
j
χ+1

])
+O

(
EN∼ν

[
exp(−N)N

3
2T− 3

2

]))
.

We define

C = 6
√
π max
j=1,...,Γ

(
4∑
i=1

S
(j)
i +

5∑
i=1

R
(j)
i +

2∑
i=1

T
(j)
i

)
, (58)

leading to

ET ∼µm
G

[
sup

Θ∈LipL,B

(
Remp(Θ

P )−Rexp(Θ
P )
)2]

≤ 2Γ8∥L∥2∞π

m
+

2ΓΓL2
LC

m

∑
j

γj
(
1 + ∥f j∥2∞ + L2

fj

)
·
(
EN∼ν

[
1

N
+

1 + log(N)

N1/Dχj+1
+O

(
exp(−N)N

3
2T− 3

2

)])
.
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C.3 Asymptotics of the Generalization Bound

In this subsection, we derive the asymptotic dependency of our generalization bound in Theo-
rem 3.3 with respect to the uniform Lipschitz bound L of the message and update function, the
depth T , the maximal hidden dimension h and the average graph size, that we denote in this sec-
tion by abuse of notation N . Since we bound the expected square generalization error, and most
other related generalization bounds are formulated in high probability, we transform our bound
in expectation to a bound in high probability, using, e.g., Markov’s Inequality (and then taking
the square root of the square error). By this, the comparison with other generalization bounds
formulated in high probability are valid. Hence, we focus on the constant

√
C, where C is the

constant from Theorem 3.3. We reformulated Theorem 3.3 as Theorem C.7, where we observed
that C ≤ 6

√
πmaxj=1,...,Γ

(∑4
i=1 S

(j)
i +

∑5
i=1 R

(j)
i +

∑2
i=1 T

(j)
i

)
, where S(j)

l , R
(j)
l , T

(j)
l are the

according constants from Theorem B.18 for each class j and are defined in (51). For a better presenta-
tion, we drop the class-superscript by setting Sl = maxj S

(j)
l , for l = 1, . . . , 4, Rl = maxj R

(j)
l , for

l = 1, . . . , 5 and Tl = maxj T
(j)
l , for l = 1, 2. Further, denote Cχ = maxj Cχj , Dχ = maxj Dχj ,

LW = maxj LW j and ∥W∥∞ = maxj ∥W j∥∞.

The constants Ri, Si and Ti are bounded by a polynomial of order 2 in Ωj , for j = 1, . . . , 9, defined
in (48). The constants Ωj , j = 1, . . . , 9, depend on a polynomial of degree one in Z

(l)
1 , Z

(l)
2 , Z

(l)
3 ,

B
(l)
1 , B

(l)
2 and on a polynomial of degree at most T − 1 in K(l) for l = 1, . . . , T − 1. Here,

Z
(l)
1 , Z

(l)
2 , Z

(l)
3 are defined in (31), B(l)

1 and B
(l)
2 are defined in (27) and (28), and

K(l′) =

√
(LΨ(l′))2 +

8∥W∥2∞
d2min

(LΦ(l′))2(LΨ(l′))2.

Hence, our strategy is as follows. We first work out the asymptotic behaviour of Z(l)
1 , Z

(l)
2 , Z

(l)
3 ,

B
(l)
1 , B

(l)
2 and K(l) for l = 1, . . . , T − 1 with respect to the parameters. Then, we derive the

asymptotics of Ωj , j = 1, . . . , 9. These already agree with the asymptotic of
√
C. For this, we

writeA ≲ xk if A is bounded by a polynomial of order k in x.

We begin with observing that K(l′) ≲ L2 ∥W∥∞
dmin

. Since we only consider MPNNs Θ ∈ LipL,B , we
have for l = 1, . . . , T ,

B
(l)
1 ≤

l∑
k=1

(
LΨ(k)

∥W∥∞
dmin
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∥W∥∞
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)
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dmin

(
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L2
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∥W∥l∞
dlmin

L2lB.

and

B
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2 ≤

l∏
k=1

LΨ(k)

(
1 +

∥W∥∞
dmin

LΦ(k)

)
≲

∥W∥l∞
dlmin

L2l.
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For l = 1, . . . , T , the constants Z(l)
1 , are defined in (31). We have

Z
(l)
1 ≤

l∑
k=1

((
LΨ(k)

LW
dmin

∥Φ(k)(0, 0)∥∞ + LΨ(k)∥W∥∞∥Φ(k)(0, 0)∥∞
LW
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We have
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LΨ(k)
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1 +
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dmin

LΦ(k)

)
≲

∥W∥l∞
dlmin

L2l.

For i = 1, . . . , 9, the constant Ωi depends on K(l) for which we have

K(l′) ≤

√
(LΨ(l′))2 +

8∥W∥2∞
d2min

(LΦ(l′))2(LΨ(l′))2 ≲
∥W∥∞
dmin
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For Ω1, we calculate
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ζLW
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Similar calculations lead to
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Hence,

GE ≲
2Γ/2√
m

+
2Γ/2

(√
log(Cχ) +

√
Dχ

)
BL2TLW ∥W∥T∞√

mdT+1
min

EN∼ν

[√
log(N)

N
1

2(Dχ+1)

]
. (59)

C.4 Generalization Bound Comparison

In this subsection, we compare our generalization bound, especially the asymptotics derived in
the previous subsection, with other related generalization bounds. Since related work does neither
consider the same network architecture, nor the same data distribution as our work, we emphasize the
setting of each of the cited results. We then write the asymptotics of the cited bounds in terms of
the maximal hidden dimension h, depth T , Lipschitz bound L of the message and update functions,
maximal node d degree and graph size N . We recall (59), where we derived the asymptotics of our
generalization bound from Theorem 3.3 with respect to T, L and N as

O

(
EN∼ν

[√
log(N)

N
1

2(Dχ+1)

])
, O

(
L2T

)
and O(1) with respect to h.

C.4.1 PAC-Bayesian Approach based Bound

The generalization analysis of [Liao et al., 2021] considers MPNNs with sum aggregation for a
K-class graph classification setting. The authors differentiate between the input node feature vectors
xv, which is an unchanged input for every layer, and the node embedding/representation in the l-th
layer f (l), where they take f (0) = 0. More formally, the MPNNs takes the following form.
Definition C.8. Let G be a graph with graph features x. A MPNN (in [Liao et al., 2021]) with T
layers is defined by taking the input feature representation f (0) = 0, and mapping it to the features
f (l) in the l-th layer, which are defined recursively by

f (l)v = Ψ

W1xv +W2ρ

 ∑
u∈N (v)

Φ(f (l−1)
u )

 , (60)

where ρ, Ψ and Φ are nonlinear transformations, and W1 and W2 are linear transformations. This is
followed by a global pooling layer, which takes as an input f (T−1) ∈ RN×K , and returns the vector

1

N
1N f (T−1)WT ∈ R1×K ,

where WT is a linear transformation. Here 1N denotes the vector (1, . . . , 1) ∈ R1×N , where N is
the number of nodes in the graph.

The message and update functions in Definition C.8 are the same in every layer. It is assumed that
Ψ, ρ and Φ have Lipschitz constants LΨ, Lρ and LΦ. Furthermore it is assumed that W1,W2 and
WT have bounded norms, i.e., ∥W1∥2 ≤ B1, ∥W2∥2 ≤ B2 and ∥WT ∥2 ≤ BT .

The expected multiclass margin loss is then defined as

RD,γ(Θ) = P(G,x,y)∼D

((
ΘPG(x)

)
y
≤ γ +max

j ̸=y

(
ΘPG(x)

)
j

)
,

where D is the unknown data distribution, γ > 0 and ΘPG is the MPNN after pooling. Accordingly,
the empirical loss is defined as

RT ,γ(Θ) =
1

m

∑
(Gi,xi,yi)∈T

1

((
ΘPGi

(xi)
)
yi

≤ γ +max
j ̸=yi

(
ΘPGi

(xi)
)
j

)
,

where the summand 1
((

ΘPGi
(xi)

)
yi

≤ γ +maxj ̸=yi

(
ΘPGi

(xi)
)
j

)
is equal to 1 if

(
ΘPGi

(xi)
)
yi

≤
γ +maxj ̸=yi

(
ΘPGi

(xi)
)
j

and otherwise 0.

Furthermore, the following assumptions hold for the training set and the considered MPNNs
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Assumption C.9.

1. The training set T = {(G1,x1,y1), . . . , (Gm,xm,ym)} is drawn i.i.d. from some distribu-
tion D, where all graphs are simple and have node degrees at most d− 1.

2. The maximum hidden dimension across all layers is h.

3. The node features are drawn in an l2-ball with radius B from the node feature space X .

The generalization bound is formulated in terms of the following constants: ζ =
min (∥W1∥2, ∥W2∥2, ∥WT ∥2), |w|22 = ∥W1∥2F + ∥W2∥2F + ∥WT ∥2F , λ = ∥W1∥2∥WT ∥2, ξ =

LΨ
(dC)l−1−1
dC−1 , and the percolation complexity C = LΨLρLΦ∥W2∥2. We summarize the main result

[Liao et al., 2021, Theorem 3.4] as follows.
Theorem. Let T > 1. Then for any δ, γ > 0, with probability at least 1− δ over the choice of the
training set T ∼ Dm of m graphs, for any T -layered MPNN Θ, we have,

1. If dC = 1, then

RD,0(Θ) ≤ RT ,γ(Θ)

+O

√B2 max (ζ−6, λ3L3
Ψ) (T + 1)4h log(Th)|w|22 + log m

δ

γ2m

 .

2. If dC ̸= 1, then

RD,0(Θ) ≤ RT ,γ(Θ)

+O

√B2
(
max

(
ζ−(T+1), (λξ)(T+1)/T

))2
T 2h log(Th)|w|22 + log m(T+1)

δ

γ2m

 .

We only consider the non-degenerative case dC ≠ 1, as it is the generic case, which can again
be split into two cases. As the authors in [Liao et al., 2021] mention, these two cases cor-
respond to max(ζ−1, (λξ)

1
T ) = ζ−1 (case A) and max(ζ−1, (λξ)

1
T ) = (λξ)

1
T (case B). In

practice case B occurs more often, where the generalization bound depends on the parameters
with orders O

(
d

(T+1)(T−2)
T

)
, O

(√
h log h

)
and O

(
λ1+ 1

T ξ1+
1
T

√
∥W1∥2F + ∥W2∥2F + ∥Wl∥2F

)
.

In case A, the generalization bound depends on the parameters with orders O
(√

h log h
)

and

O
(
ζ−(T+1)

√
∥W1∥2F + ∥W2∥2F + ∥Wl∥2F

)
.

We now describe the architecture in Definition C.8 in terms of the message passing framework from
(1). For l = 1, . . . , T , we denote by m

(l)
i and f

(l)
i the message and graph feature of node i in the l-th

layer, respectively. Given a simple graph G with node features (xi)i, we set fi = xi as the input for
the MPNN. Then the message function in the first layer is given by Φ(1)(fi, fj) = fi. We recall that
the message in MPNNs with sum aggregation is calculated as m(1)

i =
∑
j∈N (i) Φ

(1)(fi, fj). The

update function in the first layer is given by Ψ(1)(fi,m
(1)
i ) =

(
Φ(W1fi), fi

)
. For l = 2, . . . , T − 1,

the message functions are defined as

Φ(l)(f
(l−1)
i , f

(l−1)
j ) = Φ(f

(l−1)
i )

and the update functions are defined as

Ψ(l)(f
(l−1)
i ,m

(l)
i ) = Ψ

(
W1(f

(l−1)
i )2 +W2ρ

(
m

(l)
i

)
, (f

(l−1)
i )2

)
,

where (f
(l−1)
i )2 stays unchanged through all layers, and is equal to the input graph features xi. The

aggregation scheme is given by sum aggregation. Finally, the pooling in Definition C.8 can be
described by a graph MPNN layer with update function WT followed by average pooling. With
this construction of message and update functions the MPNN Θ =

(
(Ψ(l))Tl=1, (Φ

(l))Tl=1

)
with sum

aggregation matches the architecture in Definition C.8.
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We summarize the Lipschitz bounds for the message and update functions by LΦ(1) = 1, LΦ(T ) =
1, LΨ(1) = LΦ, LΦ(T ) = ∥WT ∥2 and LΦ(l) = LΦ, LΨ(l) = LΨ

(
∥W1∥2 + ∥W2∥2Lρ

)
for l =

2, . . . , T − 1. For deriving our generalization bound in Theorem 3.1, we assume that there exists a
uniform Lipschitz bound for the message and update functions, denoted by L. Hence, we assume
that LΦ ≤ L, LΨ∥W1∥2 + LΨ∥W2∥2Lρ ≤ L and ∥WT ∥2 ≤ L.

For simplicity and better comparison with our generalization bound, we make use of the following
upper bounds,

C = LΨLρLΦ∥W2∥ ≤ L2,

ξ = LΨ
(dC)T−1 − 1

dC − 1
≤ L(L2)T−2,

ζ = min(∥W1∥2, ∥W2∥2, ∥Wl∥2) ≤ L and
λ = ∥W1∥2∥Wl∥2 ≤ L.

(61)

This leads to

O
(
λ1+ 1

l ξ1+
1
l

√
∥W1∥2F + ∥W2∥2F + ∥Wl∥2F

)
= O

(
L1+ 1

T (L(L2)T−2)1+
1
T L
)

= O
(
L2T−2/T+1

)
.

Hence, the asympotics of the generalization bound in [Liao et al., 2021] with respect to the maximal
hidden dimension h, the Lipschitz bound L, the depth T and the maximum node degree d can be
summarized respectively as

O
(
d

(T+1)(T−2)
T

)
, O

(√
h log h

)
and O

(
L2T−2/T+1

)
.

C.4.2 Rademacher Complexity based Bound

We next analyze the bound derived in [Garg et al., 2020]. Since [Garg et al., 2020] consider the same
architecture, defined in Definition C.8, as [Liao et al., 2021], we adopt the notation from Subsection
C.4.1. The authors in [Garg et al., 2020] consider a binary graph classification task with the same
Assumptions C.9 on the training set and the MPNN as in [Liao et al., 2021]. The main result can be
summarized as follows.
Theorem. Let T > 1. Then for any δ, γ > 0, with probability at least 1− δ over the choice of the
training set T ∼ Dm of m graphs, for any T -layered MPNN Θ, we have,
RD,0(Θ) ≤ RT ,γ(Θ)

+O

 1

γm
+ h∥WT ∥2Z

√√√√ log
(
∥WT ∥2

√
mmax

(
Z, ξ

√
hmax

(
B∥W1∥2, R̄∥W2∥2

)))
γ2m

+

√
1
δ

m

 ,

where R̄ is a constant specified in [Garg et al., 2020] that satisfies R̄ ≤ LρLΦdB∥W1∥2ξ, and
Z = B∥W1∥2∥WT ∥2.

We only consider the case max
(
Z, ξ

√
hmax

(
BB1, R̄B2

))
= ξ

√
hR̄B2, which is the

generic case (see [Liao et al., 2021, Subsection A.5.2] for the other cases). Thus the
generalization bound from [Garg et al., 2020] depends on the parameters with orders

O
(
dT−1

√
log(d2T−3)

)
,O
(
h

√
log

√
h

)
and O

(
λCξ

√
log(∥W2∥2λξ2)

)
.

Similarly to Subsection C.4.1, we consider a uniform Lipschitz bound L for the message and update
functions. We thus consider the upper bounds on ξ, λ and C, summarized in (61), which leads to

O
(
λCξ

√
log(∥W2∥2λξ2))

)
= O

(
L2T

√
log(L4T−4)

)
.

Hence, the asympotics of the Rademacher based generalization bound in [Garg et al., 2020] with
respect to the maximal hidden dimension h, the Lipschitz bound L, the depth T and the maximum
node degree d can be summarized as

O
(
dT−1

√
log(d2T−3)

)
, O

(
h

√
log

√
h

)
and O

(
L2T

√
log(L4T−4)

)
.
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VC-Dimension Based Bound [Scarselli et al., 2018] The work by [Scarselli et al., 2018] considers
graph neural networks in supervised classification or regression tasks, where the input is a graph G
with graph feature map x and one node of interest v in which we want to produce a prediction. They
apply a recurrent graph neural network on the graph G with graph feature x, and then evaluate the
output graph feature map f only in v. They then calculate the loss between f(v) and its given desired
target y. More formally, the training dataset T is defined as T = {(Gi,xi, vi,yi) | 1 ≤ i ≤ m},
where m is the number of graphs and each tuple (Gi,xi, vi,yi) denotes a graph Gi with graph
features xi, the supervised node vi, and the desired target yi for that node.

Given a graph G = (V,E) with graph features x the graph neural network architecture is defined
implicitly, as a method that solves a system of equations, and the solution is the output of the network.
The equation is given by

fi =
∑

j∈N (i)

Φ(xi, fj ,xj), ∀i ∈ V (62)

where Φ is a multi-layer-perceptron with input [xi, fj ,xj ], and the solution f to (62) is defined as the
output of this part of the network. The output of the network oi ∈ R for the node i is then defined by

oi = g(xi, fi), (63)

where g is a multi-layer-perceptron. Given the training data set T , the empirical loss Remp is then
defined by the sum of the squared errors, i.e.,

Remp =

m∑
i=1

(yi − ovi)
2.

One way to solve the fixed point problem (62) is by a fixed point iteration, which means that we can
interpret the architecture as a recurrent message passing network (theoretically with infinite depth),
where all message functions in all layers are equal to Φ.

Scarselli et al. [2018] derive VC-dimension bounds for the mapping that takes as an input a tuple
(G,x, v) of a graph G with features x and node of interest v and outputs ov as defined in (62) and
(63). The VC-dimension bound depends on the total number of parameters p of the network and
a predefined maximum graph size N . Furthermore, the bound for the VC-dimension depends on
the choice of the activation function in the MLPs Φ and g. If the activation is given by tanh and
logistic sigmoid activations the VC-dimension scales as O(p4N2). Since p can be related to the
maximum hidden dimension h by p ∈ O(h2), the VC-dimension scales as O(h8N2). Consequently,
the asymptotics of the generalization bounds in [Scarselli et al., 2018] with respect to h and N can be
summarized as

O(h4) and O(N).

For piecewise polynomial activations the VC-dimension scales as O(h4 log(N)N), hence the gener-
alization bound scales in this case as

O(h2) and O(
√

log(N)N)

with respect to h and N .

D Details on Numerical Experiments and Additional Experiments

In this section we report additional experiments and write all details corresponding to Section 4. We
First give an example that illustrate our convergence theorem (Theorem 3.1), and then introduce a
comparison between our generalization bound and the Rademacher complexity [Garg et al., 2020]
and PAC-Bayesian [Liao et al., 2021] bounds, evaluated on synthetic datasets.

D.1 Convergence Experiments

In this section, we show simple numerical experiments on the convergence of sampled MPNNs from
a random geometric graph model, on toy data. We consider random geometric graphs [Penrose,
2003], which can be described by using RGMs with the kernel W (x, y) = 1Br(x)(y) on [0, 1]2,
equipped with the uniform distribution and the standard Euclidean norm. Here 1Br(x) is the indicator
function of the ball around x with radius r. Even though 1Br(x)(y) is not Lipschitz continuous, and
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Figure 2: The average worst-case error between MPNNs realized on graphs and on the limit RGM,
with varying number of nodes, drawn from the RGM W (x, y) = 1Br(x)(y) (where 1Br(x) is the
indicator function of the ball around x with radius r = 0.2 in the space ([0, 1]2, ∥ · ∥R2 ,L)), and a
random low frequency signal. Left: graph sizes on the x-Axis and error on logarithmic y-Axis. Right:
log2 of the graph sizes on the x-Axis and log10 of the error on the y-Axis. The slope of the curve
represents the exponential dependency of the error on N .

hence does not satisfy the conditions of Theorems 3.1, 1Br(x)(y) can be approximated by a Lipschitz
continuous function. As the metric-space signal we consider a random low frequency signal (see
Figure 2).

For our network, we choose untrained MPNNs with random weights, where each layer is defined
using EdgeConv [Bronstein et al., 2017] with mean aggregation, and is implemented using Pytorch
Geometric [Fey and Lenssen, 2019]. More precisely, we consider MPNNs with 2 layers. The message
function in the first layer is defined as Φ(1)(fi, fj) = h(1)(fi, fj − fi), where h(1) is a 1-layered MLP
with ReLU activation, input dimension 2 and output dimension 3. The message function in the second
layer is defined as Φ(2)(f

(1)
i , fj

(1)) = h(2)(f
(1)
i , f

(1)
j − f

(1)
i ), where h(2) is a 1-layered MLP with

ReLU activation, input dimension 6 and output dimension 1. The update functions are given by
Ψ(f

(1)
i ,m

(2)
i ) = m

(2)
i . This is a followed by an average pooling layer.

We ran the experiments that depend on random variables 10 times and report the average results with
error bars that indicate the standard error. One run consists of the following steps. We consider 10
different graph sequences, where each graph sequence contains randomly sampled graphs of 2i nodes,
with i = 1, . . . , 13. We then consider 50 (different) randomly initialized MPNNs, and compute for
each graph sequence the worst-case error between the output of the cMPNN to its sampled graphs,
i.e., for every graph size N , we pick the MPNN with the highest error. We then average the resulting
10 errors over the 10 different graph sequences, to approximate the expected error over the choice of
the graph. In Figure 2, we plot the average error over the 10 runs on the logarithmic y-axis and the
number of nodes on the x-Axis. We also provide a log-log-graph of this relation. Recall that in a
log-log-graph a function of the form f(x) = xc appears as a line with slope c. We observe that in
this toy example the worst-case error, which corresponds roughly to the uniform convergence result
in Theorem 3.1, decays faster than our theoretical worst-case error bound −1/6. This suggests that,
at least for band limited signals on random geometric graphs, our convergence bounds are not tight.

Computing the exact cMPNN would involve computing integrals. To approximate this integral, we
sampled a large graph from the RGM. For the largest graph, we choose 214 nodes. Our smaller graphs
consist of 2i nodes, with i = 1, . . . , 13, and are sampled directly from the RGM. As the metric-
space signal we consider a discrete random band-limited signal of resolution 256x256, defined as
f = F−1(v), where v consists of randomly chosen Fourier coefficients in the low positive frequency
band 20x20 such that the coefficients in the lowest positive frequency band 8x8 are amplified by a
factor of 10, and F−1 is the inverse Finite Fourier Transform.

D.2 Generalization Experiments

In this subsection, we provide details for the numerical experiments from Section 4 and report
additional generalization experiments.
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Table 2: Readout of the constants depending on the datasets. Each column represents the value of the
respective dataset parameter used for the calculations of our generalization bounds.

∥W∥∞ LW ∥f∥∞ fL N m dmin

ER-SBM 0.41 0.5 0.5 0.5 50 100K 0.25
ER-EXP 0.5 1 0.5 0.5 50 100K 0.373

EXP-SBM 0.5 1 0.5 0.5 50 100K 0.25

D.2.1 Dataset

We create three different synthetic datasets of random graphs from different random graph models.
The domains of the graphons (the metric space), is taken as the Euclidean space [0, 1]. First, we
consider Erdös-Rényi graphs with edge probably 0.4 with constant signal, represented by (W1, f1)
with W1(x, y) = 0.4 and f1(x) = 0.5. We also consider a smooth version of a stochastic block model,
represented by (W2, f2) with W2(x, y) = sin(2πx) sin(2πy)/2π+0.25 and f2(x) = sin(x)/2. Last,
we consider an exponential radial graphon, represented by (W3, f3) with W3(x, y) = exp(−|x −
y|2)/2 and f3(x) = 0.5x. For each graphon, we create 50K graphs of size 50. We call the Erdös-
Renyi dataset ER, the stochstic block model dataset SBM, and the exponential radial dataset EXP.
We then consider all possible pairs, i.e., ER-SBM, ER-EXP and SBM-EXP, and train a binary
classifier for each pair. We split each dataset to 90% training examples and 10% test.

D.2.2 MPNN Details

For our network, we choose MPNNs intialized with random weights, where each layer is defined
using GraphSage [Hamilton et al., 2017], and is implemented with Pytorch Geometric [Fey and
Lenssen, 2019]. We consider MPNNs with 1,2 and 3 layers. The message functions are defined by

Φ(l)(f
(l−1)
i , f

(l−1)
j ) = f

(l−1)
j .

The update functions are given by

Ψ(l)(f
(l−1)
i ,m

(l−1)
i ) = ρ

(
W

(l)
1 f

(l−1)
i +W

(l)
2 m

(l−1)
i

)
,

where W
(1)
1 ∈ R128×1, W (1)

2 ∈ R128×1 and W
(2)
1 ,W

(3)
1 ∈ R128×128, W (3)

2 ,W
(3)
2 ∈ R128×128. We

then consider a global mean pooling layer, and apply a last linear layer Q (including bias) with input
dimension 128 and output dimension 2. This last linear layer is seen as part of the loss function in the
analysis, and contributes to the generalization bound via the Lipschitz constant and infinity norm of
the loss, as seen in Theorem 3.3.

D.2.3 Experimental Setup

The loss is given by soft-max composed with cross-entropy (composed on the last MLP). We consider
Adam with learning rate lr = 0.01. For experiments with weight decay, we use an l2-regularization
on the weights with factors 0.27, 0.15 and 0.05 for the ER-SBM dataset. For the ER-EXP dataset we
consider weight decay factors 0.37, 0.15 and 0.05. For the SBM-EXP dataset we consider 0.28, 0.05
and 0.05. We train for 1 epoch. The batch size is 64. We consider 1, 2 and 3 layers.

D.2.4 Details on Computations of Our Bound

We compute our generalization bound according to the full formula given in Theorem C.7. The
terms depending on the dataset are: the size of the training dataset m, the average graph size N , the
minimum degree d, the largest infinity norm of the graphons ∥W∥∞, largest Lipschitz norm of the
graphons LW , the largest infinity norm of the metric-space signal ∥f∥∞, the largest Lipschitz norm
of the metric-spaces signals Lf and the number of classes is Γ = 2. For every dataset, we summarize
these terms depending on the dataset in Table 2.

Our bound depend also on the Lipschitz constants of the trained GraphSage MPNN, i.e., on the
Lipschitz norms LΨ(l) and LΦ(l) of the update function Ψ(l) and message function Φ(l), given in
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Subsection D.2.2. We have LΦ(l) =
∥∥[W (l)

1 ,W
(l)
2 ]
∥∥
∞ and LΦ(l) = 1. We readout the norms∥∥[W (l)

1 ,W
(l)
2 ]
∥∥
∞ for every layer, and plug it into our bound. The bound also depends on the infinity

norm and Lipschitz constant of the loss. We compute these constants in the next subsection.

D.2.5 Computation of the Infinity Norm and Lipschitz Constant of the Loss

Next we bound the Lipschitz constant and infinity norm of the loss. Namely, we derive properties of
softmax composed on cross-entropy. Softmax composed with the cross-entropy loss in the case of
binary classes take the form

LCE(x;y) = −y1 log

(
ex1

ex1 + ex2

)
− y2 log

(
ex2

ex1 + ex2

)
,

where x = (x1, x2) ∈ R2 and (y1, y2) ∈ {e1, e2} depends on the target label, where e1 = (1, 0) and
e2 = (0, 1). When the target label is fixed, we write in short LCE(x) := LCE(x;y).
Lemma D.1. The loss LCE is Lipschitz continuous with Lipschitz constant 1. Additionally, LCE is
locally bounded in the following sense:

∥LCE∥L∞([−K,K]2) ≤ log(1 + e2K),

where ∥LCE∥L∞([−K,K]2) = maxx∈[−K,K]2 ∥LCE(x)∥.

Proof. We compute
∂

∂x1
LCE(x1, x2) =− y1

(
1− ex1

ex1 + ex2

)
+ y2

ex1

ex1 + ex2

=(y1 + y2)
ex1

ex1 + ex2
− y1

=
ex1

ex1 + ex2
− y1

Since ex1

ex1+ex2
∈ [0, 1] and y1 ∈ {0, 1}, this implies∣∣∣∣ ∂

∂x1
LCE(x1, x2)

∣∣∣∣ ≤ 1.

By symmetry we conclude that LCE is Lipschitz continuous with constant 1.

Last, let (x1, x2) ∈ [−K,K]2 and without loss of generality y1 = 1 and y2 = 0. We have

|LCE(x1, x2)| =− log

(
ex1

ex1 + ex2

)
= log

(
1 +

ex2

ex1

)
≤ log

(
1 + e2K

)
.

The above lemma tells us that in order to bound the infinity norm of the loss we must bound the
domain of the loss - the output of the MPNN.
Lemma D.2. Let Θ =

(
(Φ(l))Tl=1, (Ψ

(l))Tl=1

)
be a MPNN s.t. Assumption 7. is satisfied. Consider a

graph with N nodes and a graph feature map f ∈ RN×F . Then,

∥ΘPG(f)∥∞ ≤ A′ +A′′∥f∥∞;∞,

where

A′ =

T∑
l=1

(
LΨ(l)∥Φ(l)(0, 0)∥∞ + ∥Ψ(l)(0, 0)∥∞

) T∏
l′=l+1

LΨ(l′)

(
LΦ(l′) + 1

)
and

A′′ =

T∏
l=1

LΨ(l)

(
1 + LΦ(l)

)
.
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Proof. Let G be a graph with weight matrix W = (Wi,j)i,j=1...,N . Let l = 0, . . . , T − 1. Then, for
k = 0, . . . , l, we have

∥f (k+1)
i ∥∞ =

∥∥∥Ψ(k+1)
(
f
(k)
i ,m

(k+1)
i

)∥∥∥
∞

≤
∥∥∥Ψ(k+1)

(
f
(k)
i ,m

(k+1)
i

)
−Ψ(k+1)(0, 0)

∥∥∥
∞

+ ∥Ψ(k+1)(0, 0)∥∞

≤ LΨ(k+1)

(
∥f (k)i ∥∞ +

∥∥m(k+1)
i

∥∥
∞

)
+ ∥Ψ(k+1)(0, 0)∥∞,

(64)

where m
(k+1)
i = 1∑N

j=1Wi,j

∑N
j=1 Wi,jΦ

(k+1)
(
f
(k)
i , f

(k)
j

)
. For this message term, we have

∥m(k+1)
i ∥∞ =

∥∥∥∥∥∥ 1∑N
j=1 Wi,j

N∑
j=1

Wi,jΦ
(k+1)

(
f
(k)
i , f

(k)
j

)∥∥∥∥∥∥
∞

≤
∥∥∥∥ max
j=1,...,N

Φ(k+1)
(
f
(k)
i , f

(k)
j

)∥∥∥∥
∞

≤ max
j=1,...,N

LΦ(k+1)∥f (k)j ∥∞ + ∥Φ(k+1)(0, 0)∥∞.

(65)

Denote ∥f∥∞;∞ = maxi=1,...,N maxj=1,...,F |fi,j | for f ∈ RN×F . We have as a result of (64) and
(65)

∥f (k+1)∥∞;∞

≤ LΨ(k+1)

(
∥f (k)∥∞;∞ +

(
LΦ(k+1)∥f (k)∥∞;∞ + ∥Φ(k+1)(0, 0)∥∞

))
+ ∥Ψ(k+1)(0, 0)∥∞

which we can write as

∥f (k+1)∥∞;∞

≤ LΨ(k+1)

(
1 + LΦ(k+1)

)
∥f (k)∥∞;∞ + LΨ(k+1)∥Φ(k+1)(0, 0)∥∞ + ∥Ψ(k+1)(0, 0)∥∞.

We apply Lemma B.11 to solve this recurrence relation, to get

∥f (k)∥∞;∞ ≤
k∑
l=1

(
LΨ(l)∥Φ(l)(0, 0)∥∞ + ∥Ψ(l)(0, 0)∥∞

) k∏
l′=l+1

LΨ(l′)(1 + LΦ(l′))

+∥f (0)∥∞;∞

k∏
l=1

LΨ(l)(1 + LΦ(l))

Now, since for general bounded functions F : χ → Rn and x1, . . . xN ∈ χ∥∥∥∥∥ 1

N

N∑
i=1

F (xi)

∥∥∥∥∥
∞

≤ ∥F∥∞,∞,

the proof is done.

Note that using our analysis, for the MPNN architecture presented in Section D.2.2, the loss is not
just LCE, but the composition of LCE on the last linear layer of the network. We denote this total loss
by Ltotal = LCE ◦Q. Hence, in our analysis the Lipschitz constant of the total loss is bounded by

LLtotal
= ∥Q∥∞,

where ∥Q∥∞ is the induced infinity norm of the matrix Q. The infinity norm bound of the total loss
is bounded by

∥Ltotal∥∞ ≤ log(1 + e2(∥Q∥∞K+b)),

where K is the infinity norm of the MPNN.
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D.2.6 Details on the Computation of Bounds from Other Papers

The papers [Liao et al., 2021] and [Garg et al., 2020] do not provide generalization bounds for general
MPNNs, but only for a specific architecture – GNNs with mean field updates, as defined in Definition
C.8, namely

f
(l)
i = Ψ

W1xi +W2ρ

 ∑
u∈N (v)

Φ(f
(l−1)
j )

 ,

where ρ, Ψ and Φ are nonlinear transformations, and W1 and W2 are linear transformations. This is
followed by a global pooling layer, which takes as an input f (T−1) ∈ RN×K , and returns the vector

1

N
1N f (T−1)WT ∈ R1×K ,

where WT is a linear transformation. Here 1N denotes the vector (1, . . . , 1) ∈ R1×N , where N is
the number of nodes in the graph. As described in Subsection C.4.1, GNNs with mean field updates
are a special case of MPNNs.

The generalization bounds in [Liao et al., 2021] and [Garg et al., 2020] are formulated in terms of
the following constants: ζ = min (∥W1∥2, ∥W2∥2, ∥WT ∥2), |w|22 = ∥W1∥2F + ∥W2∥2F + ∥WT ∥2F ,

λ = ∥W1∥2∥WT ∥2, ξ = LΨ
(dC)l−1−1
dC−1 , and the percolation complexity C = LΨLρLΦ∥W2∥2, where

LΨ, Lρ and LΦ are the Lipschitz constants of Ψ, ρ and Φ. For the calculation of the generalization
bounds, we use the fully non-asymptotic generalizations bounds, provided in [Liao et al., 2021,
Subsection A.7]. There, the PAC-Bayesian based bound is given by√√√√422B2

(
max

(
η−(T+1), (λζ)

T+1
T

))2
T 2h log(4Th)|w|22

γ2m
. (66)

The Rademacher based bound is given by

48h∥WT ∥2Z

√√√√3 log
(
24∥WT ∥2

√
mmax

(
Z,M

√
hmax(B∥W1∥2, R̄∥W2∥2)

))
γ2m

. (67)

Note that GraphSage cannot be described in terms of mean field update networks, and vice versa. In
order to still report some comparison between the generalization bounds, we offer some conversion
between the constants of the two methods, and then apply the PAC-Bayes and Rademacher bounds
on the converted bounds. It should be noted that the comparison is a bit like “comparing apples to
oranges,” but still gives insight into the respective bounds, their asymptotics, and their usefulness in
practical situations.

Since the transformation by Ψ(W1(·) +W2 ◦ ρ(·)) can be seen as an update function, similarly to
the one in GraphSage, we set in the PAC-Bayes bound ∥W1∥2 = ∥W2∥2 = 1/T

∑T
l=1 LΨ(l) , where

LΨ(l) is the Lipschitz constant of the update function of GraphSage in the l-th layer. The message
function in GraphSage is the identity, which corresponds to Φ. We thus convert this to LΦ = 1 in the
PAC-Bayes generalization bound. Finally, we give a lower bound for the maximum degree over all
graphs in the datasets by setting d = Ndmin (note that the PAC-Bayes and Rademacher complexity
based bounds increase with increasing maximum degree).

D.2.7 Generalization Comparison Results

The results are reported in Figure 3. The different experimental setting are given on the x-Axis. We
report experiments for MPNNs with depth T = 1, 2, 3 with weight decay (WD) and without weight
decay (w/o WD). The bound values are reported in a logarithmic y-Axis to improve comparability. In
addition to the figures, we also provide numerical values of the bound calculations in Table 3.

Our generalization bound is tighter than the PAC-Bayes bound and the Rademacher bound under all
settings, i.e., for all datasets, for all depths, with weight decay and also without weight decay.
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Figure 3: The generalization bounds on all datasets, i.e., i) ER-SBM, ii) ER-EXP and iii) EXP-SBM,
for different number of layers T = 1, 2, 3 with weight decay (WD) and without weight decay (w/o
WD). Bounds are given in a log10-scale.

D.3 Additional Comparison of the Generalization Bounds

In this subsection, we present additional plots of the generalization bounds which showcase the
dependency on the average graph sizes in the dataset. The parameters in these plots are set not for a
specific dataset and trained network. The plots can be interpreted as the bounds corresponding to
training with certain constraints or regularization terms leading to the respective constants (Lipschitz
bounds and infinity norms).

We consider a theoretical setting in which we assume that the following parameters are given: The
dataset has 50K graphs, randomly sampled from RGMs with graphons that have maximum infinity
norm ∥W∥∞ = 0.4 and Lipschitz norm LW = 0.5. We assume that the metric-space signal are
bounded by 0.5 and have Lipschitz constants of maximum 0.5. Furthermore, we assume there is a
linear layer after pooling such that the norms of weight matrix and of the bias are upper bounded by
0.5 and 0.1, respectively. The infinity and Lipschitz norms of the loss function are assumed to be
bounded by 1.

We then consider different datasets with graphs of average size N = 24, 25, . . . , 225. Since the
PAC-Bayes and Rademacher generalization bounds scale with the maximum node degree d of the
graphs, we estimate the degree by setting d = N · dmin, where dmin is the graphon degree. We
report our generalization bound with respect to the graph size in Figure 4. The comparison with other
generalization bounds is given in Figure 5. As expected by our theoretical results, our generalization
bound decays with respect to the average graph size. In contrast, we see that both the PAC Bayes
based bound and the Rademacher based bound increase with respect to the increasing graph size.

In Figure 6 we showcase the dependency of our generalization bound on the Lipschitz constant
of the graphons. For this, we fix the graph sizes in the dataset to 1000, and compute the resulting
bounds for increasing Lipschitz norms. The rest of the parameters are as specified above. We plot the
generalization bound for MPNNs with depth 1, 2 and 3 in Figure 6.
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Table 3: Bound comparisons on all synthetic datasets.

T = 1 WD ER - SBM ER - EXP SBM - EXP

Rademacher 3.9597× 100 5.5278× 100 3.6869× 100

PAC-Bayesian 1.9597× 104 5.8187× 103 7.8245× 103

Ours 8.8373× 10−2 1.325× 10−1 2.4495× 10−1

T = 1 w/o WD

Rademacher 1.7329× 105 4.3686× 104 2.2311× 105

PAC-Bayesian 6.0161× 105 2.6146× 104 7.2969× 105

Ours 1.3534× 101 4.4827× 100 1.7109× 101

T = 2 WD

Rademacher 3.2439× 103 6.3963× 103 1.9428× 104

PAC-Bayesian 3.0695× 103 3.2992× 103 1.4299× 104

Ours 1.2817× 100 1.7047× 100 5.4857× 100

T = 2 w/o WD

Rademacher 1.1943× 106 1.4238× 106 1.3619× 107

PAC-Bayesian 4.0392× 107 6.9262× 107 1.3817× 1010

Ours 1.1875× 102 1.478× 102 1.9353× 103

T = 3 WD

Rademacher 2.7221× 105 1.2286× 105 1.2529× 105

PAC-Bayesian 3.9963× 107 2.6016× 106 2.6141× 106

Ours 8.1312× 101 8.1904× 100 2.7574× 101

T = 3 w/o WD

Rademacher 1.1762× 106 1.0872× 106 4.8271× 106

PAC-Bayesian 6.225× 109 5.1689× 109 3.7028× 1011

Ours 3.1606× 103 3.5428× 103 1.8596× 103
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Figure 4: Our generalization bounds with respect to increasing average graph sizes. On the x-axis
we give the average number of nodes in the dataset in log2-scale. On the y-axis, we give our
generalization bound.
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Figure 5: The generalization bounds with respect to increasing average graph sizes. On the x-axis,
we give the average number of nodes in the dataset in log2-scale. On the y-Axis, we give our
generalization bound, the PAC-Bayes based bound and the Rademacher complexity based bound for
MPNNs with depth 2 (left) and depth 3 (right) also in log2-scale.
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Figure 6: Our generalization bounds with respect to increasing average Lipschitz norm of the graphon.
On the x-axis we give the maximal Lipschitz norm of the graphons from which we sampl the dataset.
On the y-axis, we give our generalization bound. The rest of the parameters are equal to the parameters
in the setting of Figure 5 (see Subsection D.3) with fixed graph size N = 1000.

E Background in Random Processes

In this section, we provide background information in probability theory, and focus on random
processes and concentration of measure inequalities.

Definition E.1 (Definition 7.1.1. in [Vershynin, 2018]). A random process is a collection of random
variables (Yt)t∈T on the same probability space, which are indexed by the elements t of some set T .

The following lemma provides an upper bound on the probability that the sum of bounded independent
random variables deviates from its expected value by more than a certain amount.

Theorem E.2 (Hoeffding’s Inequality). Let Y1, . . . , YN be independent random variables such that
a ≤ Yi ≤ b almost surely. Then, for every k > 0,

P
(∣∣∣ 1

N

N∑
i=1

(Yi − E[Yi])
∣∣∣ ≥ k

)
≤ 2 exp

(
− 2k2N

(b− a)2

)
.

Definition E.3 (Definition 2.5.6 in [Vershynin, 2018]). A random variable Y is called a sub-Gaussian
random variable if there exists a constant K ∈ R such that E

[
exp

(
Y 2/K2

)]
≤ 2. The sub-Gaussian

norm of a sub-Gaussian random variable X is defined as

∥Y ∥ψ2
= inf

{
t > 0 : E

[
exp

(
Y 2/t2

)]
≤ 2
}
.

Lemma E.4 (Example 2.5.8 in [Vershynin, 2018]). Any bounded random variable Y is sub-Gaussian
with

∥Y ∥ψ2
≤ 1√

ln(2)
∥Y ∥∞.
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Definition E.5 (Sub-Gaussian increments, Definition 8.1.1 in [Vershynin, 2018]). Consider a random
process (Yx)x∈χ on a metric space (χ, d). We say that the process has sub-Gaussian increments if
there exists a constant K ≥ 0 such that

∥Yx − Yx′∥ψ2 ≤ Kd(x, x′)

for all x, x′ ∈ χ. We call (∥Yx − Yx′∥ψ2)x,x′∈χ the sub-Gaussian increments of (Yx)x∈χ.

Lemma E.6 (Centering of sub-Gaussian random variables, Lemma 2.6.8 in [Vershynin, 2018]). If Y
is a sub-Gaussian random variable, then so is Y − E[Y ], and

∥Y − E[Y ]∥ψ2
≤
( 2

ln(2)
+ 1
)
∥Y ∥ψ2

.

Lemma E.7 (Proposition 2.6.1 in [Vershynin, 2018]). Let Y1, . . . , YN be independent mean-zero
sub-Gaussian random variables. Then,

∑N
i=1 Yi is also a sub-Gaussian random variable, and

∥
N∑
i=1

Yi∥2ψ2
≤ 2√

2
e

N∑
i=1

∥Yi∥2ψ2
.

Theorem E.8 (Dudley’s Inequality, Theorem 8.1.6 in [Vershynin, 2018]). Let (Yx)x be a random
process on a metric space (χ, d) with sub-Gaussian increments, i.e., there exists a K ≥ 0 such that
∥Yx − Yx′∥ψ2 ≤ Kd(x, x′) for all x, x′ ∈ χ. Then, for every u ≥ 0, the event

sup
x,x′∈χ

|Yx − Yx′ | ≤ CK
(∫ ∞

0

√
log C(χ, ε, d)dε+ udiam(χ)

)
holds with probability at least 1− 2 exp(−u2), where C(χ, ε, d) is defined in Definition A.1 and C is
a universal constant, specified in [Vershynin, 2018, Chapter 8].
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