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Abstract

Message passing neural networks (MPNN) have seen a steep rise in popularity
since their introduction as generalizations of convolutional neural networks to
graph structured data, and are now considered state-of-the-art tools for solving
a large variety of graph-focused problems. We study the generalization error of
MPNNs in graph classification and regression. We assume that graphs of different
classes are sampled from different random graph models. We show that, when
training a MPNN on a dataset sampled from such a distribution, the generalization
gap increases in the complexity of the MPNN, and decreases, not only with respect
to the number of training samples, but also with the average number of nodes in
the graphs. This shows how a MPNN with high complexity can generalize from a
small dataset of graphs, as long as the graphs are large. The generalization bound
is derived from a uniform convergence result, that shows that any MPNN, applied
on a graph, approximates the MPNN applied on the geometric model that the graph
discretizes.

1 Introduction

A graph is an abstract structure that represents a set of objects along with the connections that exist
between those objects. In many important fields, such as chemistry, biology, social networks, or
computer graphics, data can be described by graphs. This has led to a tremendous interest in the
development of machine learning models for graph-structured data in recent years. A ubiquitous tool
for processing such data are graph convolutional neural networks (GCNNs), which extend standard
Euclidean convolutional neural networks (CNNs) to graph-structured data.

Most GCNNs used in practice can be described using the general architecture of Message Passing
Neural Networks (MPNNs). MPNNs generalize the convolution operator to graph domains by a
neighborhood aggregation or message passing scheme. By f

(t−1)
i denoting the feature of node i in

layer t− 1 and ej,i denoting edge features from node j to i, one layer in a message passing graph
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neural network is given by

f
(t)
i = Ψ(t)

(
f
(t−1)
i ,AGG

{
Φ(t)(f

(t−1)
i , f

(t−1)
j , ej,i)

}
j∈N (i)

)
, (1)

where N (i) is the set of nodes connected to node i, AGG denotes a differentiable and permutation
invariant function, e.g., sum, mean, or max, and Ψ(t) and Φ(t) denote differentiable functions such as
MLPs (Multi-Layer Perceptrons) [Fey and Lenssen, 2019].

MPNNs have shown state-of-the-art performance in many graph machine learning tasks such as
node or graph classification. As such, MPNNs had a tremendous impact to the applied sciences,
with promising achievements such as discovering a new class of antibiotics [Stokes et al., 2020],
and has impacted the industry with applications in social media, recommendation systems, and 3D
reconstruction, among others (see, e.g., [Ying et al., 2018, Wang et al., 2018a,b, Monti et al., 2019,
Fan et al., 2019]). The practical success of MPNNs led to a significant boost in research aimed at
understanding the theoretical properties of MPNNs. See, e.g., the variational inference point of view
of MPNNs [Dai et al., 2016], and algorithmic alignment of MPNNs with combinatorial algorithms
[Xu et al., 2019, Morris et al., 2019].

In this paper we study the generalization capabilities of MPNNs with mean aggregation in a graph
classification task. Previous works developed generalization bounds that do not depend on any model
of the data, namely, graphs in these works can be generated and labeled in any arbitrary way [Scarselli
et al., 2018, Garg et al., 2020, Liao et al., 2021]. In this work, we consider a generative model for
the graphs which is theoretically powerful and general on the one hand, and allows much tighter
generalization bounds on the other hand.

Formally, we are given pairs of graphs and graph signals x = (G, f) and a target output y, where
(x,y) are jointly drawn from a distribution µG(x,y). The goal is to learn a MPNN Θ that approx-
imates y by Θ(x). For this, one uses a loss function L, which measures the discrepancy between
the true label y and the output of the MPNN Θ(x). The aim of a machine learning algorithm is to
minimize the statistical loss (also called expected loss)

Rexp(Θ) = E(x,y)∼µG

[
L(Θ(x),y)

]
.

In (data-driven) machine learning one has only access to a training set instead of knowing the
distribution µG . Namely, we consider a multi-graph setting, where the training set T = (xi =
(Gi, f i),yi)mi=1 is a collection of m samples drawn i.i.d. from the distribution µG(x,y). Then,
instead of minimizing the statistical loss, one minimizes the empirical loss, given by

Remp(Θ) =
1

m

m∑
i=1

L(Θ(xi),yi).

The optimized MPNN then depends on the dataset, and is hence denoted by ΘT . The generalization
error is defined to be

GE(ΘT ) = |Rexp(ΘT )−Remp(ΘT )|. (2)
One then usually bounds (2) by the uniform generalization error

GE = sup
Θ

|Rexp(Θ)−Remp(Θ)|, (3)

where the supremum is taken over some space of MPNNs. Bounds of GE typically take the form
GE2 ≤ C

mq(N), where C is a constant that describes the complexity of the model class (e.g., number
of parameters), m is the size of the training set, and q(N) is a constant that depends on the (average)
size of the graphs. For such bounds, see, e.g., VC-dimension based bounds [Scarselli et al., 2018],
Rademacher complexity based bounds [Garg et al., 2020], and PAC-Bayesian based bounds [Liao
et al., 2021].

While in previous bounds from the literature q(N) either increases in N or in the average degree, in
this paper we develop a generalization bound that decays in the average number of nodes N . The
idea is to treat the nodes of each graph as randomly sampled from some random graph model. In
this point of view, not only the different graphs xi are seen as random samples, but the union of
all nodes of all graphs comprise together the random samples of the empirical loss. In the spirit of
Monte Carlo theory, such a point of view should lead to a decay of the error between the empirical
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and statistical losses as N increases. As opposed to graphs, nodes cannot be seen as independent, due
to the correlations entailed by the graph structure. Hence, our analysis focuses on developing Monte
Carlo error bounds in a correlated nodes regime.

Since in our approach we model graphs as randomly sampled from underlying continuous models,
we define the application of message passing neural networks, not only on graphs, but also on
the underlying space from which graphs are sampled. We then formulate and prove the following
convergence result, that we write here informally. Let x = (G, f) be drawn from the model χ, then
with high probability, we have for all MPNNs Θ

∥Θ(x)−Θ(χ)∥ = O(N−α),

where N is the number of nodes in x and α > 0. Based on this convergence result, we are able prove
a generalization bound that decays in N .

1.1 Validity of the Proposed Model

The random graph models in our work are graphons [Lovász, 2012] with associated graphon signals
(see Definition 2.3). The main assumption in our analysis is that graphs that are sampled from the
same graphon belong to the same class. While this may seem like a limitation, it is actually a very
mild and reasonable assumption. It is well known that equivalence classes of isomorphic graphs can
be characterized by homomorphism densities [Lovász, 1967]. Namely, given two graphs G1, G2,
if (and only if) for every simple graph F the number of homomorphisms from F to G1 is equal
to the number of homomorphisms from F to G2, then G1 is isomorphic to G2. Graphon analysis
relaxes this observation to a continuous similarity measure. A sequence of graphs {Gj}j∈N is said
to converge in the graphon sense, if for every simple graph F the homomorphism densities of F
in the graphs {Gj}j∈N converge to some value. Graphs from such a sequence can be thought of as
being similar in some sense which relaxes the combinatorial notion of graph isomorphism. Moreover,
for each such converging sequence, there is a unique (up to some symmetry) limit object, called
a graphon. This graphon is also seen as a generative model for graphs in the respective sequence,
where graphs are generated by randomly sampling the graphon (see Definition 2.3). Now, since it is
well known that MPNNs cannot distinguish between isomorphic graphs, it is also unreasonable to
expect them to separate two graphs that are sampled from the same graphon. We hence assume that
two graphs that are sampled from the same graphon belong to the same class (but not necessarily
vice versa). This assumption allows us to derive a generalization bound that is much tighter than
previously proposed bounds (see Figure 1 for comparison).

From a practical stance, our graphon assumption is reasonable since many graph models are special
cases of graphons, like Erdős–Rényi, stochastic block model, and random geometric graphs [Penrose,
2003]. Moreover, the decoder of a graph variational autoencoder [Kipf and Welling, 2016] can be
seen as a graphon.

1.2 Related Work

In this subsection we briefly survey different approaches for studying the convergence and generaliza-
tion capabilities of GCNNs that were introduced in previous contributions. We give a comparison
with our results in Section 3.

Levie et al. [2021] introduce the notion of GCNN transferability – the ability to transfer a GCNN
between different graphs, which is closely related to generalization. For example, Levie et al. [2019],
Gama et al. [2020], Kenlay et al. [2021] show that the output of spectral-based GCNNs is linearly
stable with respect to perturbations of the input graphs. Levie et al. [2021] prove that spectral-based
methods are transferable under graphs and graph signals that are sampled from the same latent
space. Keriven et al. [2020], Ruiz et al. [2021a,b], Maskey et al. [2021] show that spectral-based
GCNNs are transferable under graphs that approximate the same limit object – the so called graphon.
Cervino et al. [2021] show that gradients of spectral-based GCNNs are transferable under graphs that
approximate the same graphon.

Scarselli et al. [2018] provide generalization bounds that are comparable to VC-dimension bounds
known for CNNs. These bounds are improved by Garg et al. [2020], who provide the first data depen-
dent generalization bounds for MPNNs with sum aggregation that are comparable to Rademacher
bounds for recurrent neural networks. Liao et al. [2021] derive a generalization bound via a PAC-
Bayesian approach that is governed by the maximum node degree and spectral norms of the weights.
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Verma and Zhang [2019a] consider generalization abilities of single-layer spectral GCNNs for node-
classification task and provide a generalization bound that is directly proportional to the largest
eigenvalue of the graph Laplacian. Another work along these lines comes from Yehudai et al. [2021],
who show that certain MPNNs (with sum aggregation) do not generalize from small to large graphs.

1.3 Main Contributions

We follow the route of Keriven et al. [2020] and consider graphs as discretizations of continuous
spaces in our analysis, called random graph models (RGM, see Definition 2.3). We introduce a
continuous version of message passing neural networks – the realization of MPNNs on random graph
models, which we call cMPNNs. Such cMPNNs are seen as limit objects of graph MPNNs, when
the number of graph nodes goes to infinity. We prove, up to our knowledge, the first convergence
result of the graph MPNN to the corresponding cMPNN as the number of nodes increases, which is
uniform in the choice of the MPNN.

For the generalization analysis, we assume that the data distribution µG represents graphs which are
randomly sampled from a collection of template RGMs, with a random number of nodes. Using our
convergence results, we can then prove that the generalization error between the training set and the
true distribution is small. Here, we give the following informal version of Theorem 3.3.

Theorem 1.1 (Informal version of Theorem 3.3). Consider a graph classification task with m
training samples T = (xi = (Gi, f i),yi)mi=1 drawn i.i.d. from the data distribution µG(x,y) on a
metric-measure space χ of dimension Dχ. Suppose that the size N of each graph in T is drawn from
a distribution ν. Then

ET ∼µm
G

[
sup
Θ

(
Remp(Θ)−Rexp(Θ)

)2] ≤ C

m
EN∼ν

[
N

− 1
Dχ+1

]
.

The constant C represents the complexity of the hypothesis space of the network, via the Lipschitz
constants of the message and update functions and the depth of the MPNNs.

Theorem 3.3 shows how we can use fewer graphs m than model complexity C when training MPNNs
if the graphs are sufficiently large.

2 Preliminaries

A weighted graph G = (V,W, E) with N nodes is a tuple, where V = {1, . . . , N} is the node set.
The edge set is given by E ⊂ V × V , where (i, j) ∈ E if node i and j are connected by an edge.
W = (wk,l)k,l is the weight matrix, assigning the weight wi,j to the edge (i, j) ∈ E, and assigning
zero if (i, j) is not an edge. The degree di of a node i is defined as di =

∑N
j=1 wi,j . If G is a simple

graph, i.e., a weighted graph with W ∈ {0, 1}N×N , the degree di is the number of nodes connected
to node i by an edge. We define a graph signal f : V → RF as a function that maps nodes to their
features in RF , where F ∈ N is the feature dimension. The signal f can be represented by a matrix
f = (f1, . . . , fN ) ∈ RN×F , where fi ∈ RF is the feature at node i. We also call f a (graph) feature
map.

For a random variable Y distributed according to κ, and a function F of Y , we denote by EY∼κ[F (Y )]
the expected value of F (Y ). Similarly, we denote by VarY∼κ[F (Y )] the variance of F (Y ).

2.1 Message Passing Graph Neural Networks

Message passing graph neural networks (gMPNNs) are defined by realizing an architecture of a
message passing neural network (MPNN) on a graph. MPNNs are defined independently of a
particular graph.

Definition 2.1. Let T ∈ N denote the number of layers. For t = 1, . . . , T , let Φ(t) : R2Ft−1 → RHt−1

and Ψ(t) : RFt−1+Ht−1 → RFt be functions that we call the message and update functions, where
Ft ∈ N is called the feature dimension of layer t. The corresponding message passing neural network
(MPNN) Θ is defined to be the sequence

Θ = ((Φ(t))Tt=1, (Ψ
(t))Tt=1).
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The message and the update function in Definition 2.1 are often defined as multi-layer-perceptrons
(MLPs). In a MPNNs, messages are sent between nodes and aggregated. An aggregation scheme is
a permutation invariant function that takes the collection of features in the edges of each node and
computes a new nodes feature. In this paper, we consider MPNNs with mean aggregation. Then, a
gMPNN processes graph signals by realizing a MPNN on the graph as follows.
Definition 2.2. Let G = (V,W) be a weighted graph and Θ be a MPNN, as defined in Definition
2.1. For each t ∈ {1, . . . , T}, we define the gMPNN Θ

(t)
G as the mapping that maps input graph

signals f = f (0) ∈ RN×F0 to the features in the t-th layer by

Θ
(t)
G : RN×F0 → RN×Ft , f 7→ f (t) = (f

(t)
i )Ni=1,

where f (t) ∈ RN×Ft are defined sequentially by

m
(t)
i :=

1

di

N∑
j=1

wi,jΦ
(t)(f

(t−1)
i , f

(t−1)
j )

f
(t)
i := Ψ(t)(f

(t−1)
i ,m

(t)
i ),

for every i ∈ V . We call ΘG := Θ
(T )
G a message passing graph neural network (gMPNN).

Given a MPNN Θ as defined in Definition 2.1, the output ΘG(f) ∈ RN×FT is a graph signal. In
graph classification or regression, the network should output a single feature for the whole graph.
Hence, the output of a gMPNN after global pooling is a single vector ΘPG(f) ∈ RFT , defined by

ΘPG(f) =
1

N

N∑
i=1

ΘG(f)i.

For brevity, in this paper we typically do not distinguish between a MPNN and its realization on a
graph.

2.2 Random Graph Models

Let (χ, d, µ) be a metric-measure space, where χ is a set, d is a metric and µ is a probability Borel
measure.

A kernel (also called a graphon), is a measurable mapping W : χ× χ → R. The points x ∈ χ of
the metric space are seen as the nodes of a continuous model, and the kernel is seen as a continuous
version of a weight matrix. Kernels are treated as generative graph models using the following
definition.
Definition 2.3. A random graph model (RGM) on (χ, d, µ) is defined as a pair (W, f) of a kernel
W : χ × χ → R and a measurable function f : χ → R called a metric-space signal. We define
a random graph with corresponding node features (G, f) by sampling N i.i.d. random points
X1, . . . , XN from χ, with probability density µ, as the nodes of G. The weight matrix W = (wi,j)i,j
of G is defined by wi,j = W (Xi, Xj) for i, j = 1, . . . , N . The graph signal f is defined by
fi = f(Xi). We say that (G, f) is drawn from W , and denote (G, f) ∼ (W, f).

2.3 Continuous Message Passing Neural Networks

Given a MPNN, we define continuous message passing neural networks (cMPNNs) that act on kernels
and metric-space signals f : χ → RF , by replacing the graph node features and the aggregation
scheme in (2.2) by continuous counterparts. Let W be a kernel. We define the kernel degree of W at
x ∈ χ by

dW (x) =

∫
χ

W (x, y)dµ(y). (4)

Consider a message signal U : χ× χ → RH , where U(x, y) is interpreted as a message sent from
the point y to the point x in χ. We define the continuous mean aggregation of U by

MW (U)(x) =

∫
χ

W (x, y)

dW (x)
U(x, y)dµ(y).
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Given the messages U(x, y) = Φ(f(x), f(y)), where Φ : R2F → RH , we have

MW (U)(x) = MW

(
Φ
(
f(·), f(··)

))
(x) =

∫
χ

W (x, y)

dW (x)
Φ
(
f(x), f(y)

)
dµ(y).

By abuse of notation, we often denote in short Φ(f, f) := Φ
(
f(·), f(··)

)
.

By replacing mean aggregation by continuous mean aggregation in Definition 2.2, the same message
and update functions that define a graph MPNN can also process metric-space signals.
Definition 2.4. Let W be a kernel and Θ be a MPNN, as defined in Definition 2.1. For each
t ∈ {1, . . . , T}, we define Θ

(t)
W as the mapping that maps the input signal to the signal in the t-th

layer by
Θ

(t)
W : L2(χ) → L2(χ), f 7→ f (t), (5)

where f (t) are defined sequentially by

g(t)(x) = MW

(
Φ(t)

(
f (t−1), f (t−1)

))
(x)

f (t)(x) = Ψ(t)
(
f (t−1)(x), g(t)(x)

) (6)

and f (0) = f : χ → RF0 is the input metric-space signal. We call ΘW := Θ
(T )
W a continuous

message passing neural network (cMPNN).

As with graphs, the output of a cMPNN ΘW on a metric-space signal f : χ → RF0 is another
metric-space signal ΘW (f) : χ → RFT . The output of a cMPNN after global pooling is a single
vector ΘPW (f) ∈ RFT , defined by ΘPW (f) =

∫
χ
ΘW (f)(x)dµ(x).

2.4 Data Distribution for Graph Classification Tasks

In the following, we consider a training data T =
(
xi = (Gi, f i),yi

)m
i=1

of graphs Gi, graph signals
f i, and corresponding values yi that can represent the classes of the graph-signal pairs. The training
data is assumed to be drawn i.i.d. from a distribution µG(x,y) that we describe next.

In this paper, we focus on classification tasks. More precisely we have classes j = 1, . . . ,Γ, each
represented by a RGM (W j , f j) on a metric-measure space (χj , dj , µj). In fact, we suppose that
each class corresponds to a set of metric spaces. For example, a graph representing a chair can be
sampled from a template of either an office chair, a garden chair, a bar stool, etc., and each of these
is represented by a metric space. For simplicity of the exposition, we however treat every template
metric space as its own class. This does not affect our analysis.

The distribution µG(x,y) is defined via the following procedure of data sampling. For sampling one
graph, first, choose a class with probability γj , i.e., for (x,y) ∼ µG and j = 1, . . . ,Γ, γj = P(y = j).
Independently of the choice of the class, choose the number of nodes N ∼ ν, where ν is a discrete
distribution on N ∈ N. After choosing a class y ∈ {1, . . . ,Γ} and the graph size N , a random graph
(G, f) ∼ (Wy, fy) with N nodes is drawn from the space χy with probability density of the nodes
(µy)N .

The notation T ∼ µmG describes a dataset T consisting of m samples (x1,y1), . . . , (xm,ym) drawn
i.i.d. from µG . We refer to Subsection C.1 in the appendix for a detailed definition of the distribution
µG .

3 Convergence and Generalization of MPNNs

In this section, we provide our main results on convergence (Subsection 3.1) and generalization
(Subsection 3.2) of MPNNs. For z ∈ RF , we define ∥z∥∞ = maxj=1,...,F |zj |. Given a metric
space (Y, dY), we define the infinity norm of a vector valued function g : Y → RF by ∥g∥∞ =
maxj=1,...,F ess supy∈Y |(g(y))j |. The function g is called Lipschitz continuous if there exists a
constant Lg ∈ R such that for all y, y′ ∈ Y ,

∥g(y)− g(y′)∥∞ ≤ LgdY(y, y
′).

6



If the domain Y is Euclidean, we always endow it with the L∞-metric.

We measure the error between the output of a continuous MPNN and a gMPNN after pooling as
follows. Given a graph signal f ∈ RN×F and a metric-space signal f : χ → RF , both the graph and
the continuous MPNN map to the same output space, i.e, ΘPW (f),ΘPG(f) ∈ RFT . Namely, the output
dimension of ΘP is independent of the random graph model it is realized on and also independent of
the graph. Hence, we define the error to be the supremum norm ∥ΘPW (f)−ΘPG(f)∥∞. We define the
ε-covering numbers of the metric space χ, denoted by C(χ, ε, d), as the minimal number of balls of
radius ε required to cover χ.

For every j = 1, . . . ,Γ, we make the following assumptions, which hold for the remainder of the
paper. We assume that there exist constants Cχj , Dχj > 0 such that

C(χj , ε, d) ≤ Cχj ε−Dχj (7)

for every ε > 0. Denote Dχ = maxj Dχj and Cχ = maxj Cχj . Such constants exist for every
metric space with finite Minkowski dimension (see Appendix A). We assume that diam(χj) :=
supx,y∈χj{d(x, y)} ≤ 1. Further, we only consider kernels W j such that there exists a constant
dmin > 0 satisfying

dW j (x) ≥ dmin, (8)

where the kernel degree dW j is defined in (4). We moreover assume that W j(x, ·) and W j(·, x)
are Lipschitz continuous (with respect to its second and first variable, respectively) with Lipschitz
constant LW j for every x ∈ χ. We also assume that the metric-space signal f j : χ → RF is
Lipschitz continuous. Since the diameter of χj is finite, this means that f j ∈ L∞(χ). We consider
the following class of MPNNs

LipL,B :={
Θ =

(
(Φ(l))Tl=1, (Ψ

(l))Tl=1

) ∣∣∣ ∀l = 1, . . . , T, Φ(l) : RFl → RHl and Ψ(l) : RFl+Hl → RFl+1

satisfy LΦ(l) , LΨ(l) ≤ L and ∥Φ(l)(0, 0)∥∞, ∥Ψ(l)(0, 0)∥∞ ≤ B
}
.

3.1 Convergence

In this subsection we show that the error between the cMPNN and the according gMPNN decays
when the number of nodes increases.

Theorem 3.1. Let W : χ2 → R be a Lipschitz continuous kernel with Lipschitz constant LW ,
where the metric space χ satisfies (7) with respect to the constants Cχ, Dχ > 0, and W satisfies (8).
Consider a graph (G, f) ∼ (W, f) with N nodes X1, . . . , XN drawn i.i.d. from χ with probability
density µ. Then, for every Lipschitz continuous f : χ → RF ,

EX1,...,XN∼µN

[
sup

Θ∈LipL,B

∥∥ΘPG(f)−ΘPW (f)
∥∥2
∞

]
≤ C ′(1 + ∥f∥2∞ + L2

f

) log(N)

N1/(Dχ+1)
+O(N−1),

where C ′ is defined in Subsection B.2 of the appendix.

Remark 3.2. The constant C ′ in Theorem 3.1 depends polynomially on the Lipschitz constants
LΦ(l) and LΨ(l) of the message and update functions Φ(l) and Ψ(l), on the so called formal biases
∥Φ(l)(0, 0)∥∞ and ∥Ψ(l)(0, 0)∥∞, on ∥W∥∞, on the Lipschitz constant LW of W , on

√
log(Cχ) +√

Dχ, and on 1
dmin

, where the degree of the polynomial is T . A regularization of these constants can
alleviate the exponential dependency of the bound on T .

The proof of Theorem 3.1 is given in Subsection B.2 of the appendix.

Discussion and Comparison to other Convergence Results The work closest related to our
convergence results is by Keriven et al. [2020], where the authors show convergence of a fixed
spectral GCNN to its continuous counterpart with comparable regularity assumptions as in Theorem
3.1. Our result holds for MPNNs, which are more general than spectral GCNNs. Moreover, our
bound is uniform in the choice of the MPNN Θ. This last property is essential for leveraging the
convergence result to derive a generalization bound. Indeed, using the bound from Keriven et al.
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[2020], for each MPNN Θ there is a different high probability event EΘ where the convergence error
is small. However, the trained MPNN Θ = ΘT depends on the dataset T and cannot be fixed in the
analysis. Hence, we would need to intersect all events

⋂
Θ EΘ to guarantee a small convergence error

of the trained network ΘT , which would not result in an event of high probability.

3.2 Generalization

In this subsection, we state the main result of our paper, which provides a non-asymptotic bound on
the generalization error of MPNNs, as defined in (3). We consider a graph classification task with
a training set T = (xi = (Gi, f i),yi)mi=1 and Γ classes. The graphs and graph features in T are
drawn i.i.d. from a probability distribution µG(x,y) as described in Subsection 2.4. We recall that
the distribution that samples the size of the graph is denote by ν.

Given a MPNN with pooling, ΘP , and its output dimension RFT , we consider a non-negative loss
function L : RFT × {1, . . . ,Γ} → [0,∞). Additionally, we assume that L is Lipschitz continuous
with Lipschitz constant LL. Note that although the cross-entropy loss, a popular choice for loss
function in classification tasks, is not Lipschitz-continuous, cross-entropy composed on softmax is.
Theorem 3.3. There exists a constant C > 0 such that

ET ∼pm

[
sup

Θ∈LipL,B

(
Remp(Θ

P )−Rexp(Θ
P )
)2]

≤ 2Γ8∥L∥2∞π

m

+
2ΓL2

LC

m

∑
j

γj
(
1 + ∥f j∥2∞ + L2

fj

)
·
(
EN∼ν

[
1

N
+

1 + log(N)

N1/(Dχj+1)
+O

(
exp(−N)N3T−1

2

)])
,

where C is specified in Subsection C.2 of the appendix.

The proof of Theorem 3.3 is given in Subsection C.2 of the appendix.
Remark 3.4. The constant C in Theorem 3.3 represents the complexity of the class LipL,B
and can be bounded similarly to the constant C ′ from Theorem 3.1, as described in Remark
3.2. We summarize its dependencies on the parameters of the MPNN and the RGM by

√
C ≲

BL2T 1
dT+1
min

maxj=1,...,Γ

(√
log(Cχj ) +

√
Dχj

)
LW j∥W j∥T∞ and refer to Subsection C.3 of the ap-

pendix for more details. Similarly to Remark 3.2 the exponential dependency of the constant C in
Theorem 3.3 on the depth T and the polynomial dependency on the uniform Lipschitz bound L can
be alleviated by regularizing the latter. We also note that the exponential dependency on the number
of classes Γ in Theorem 3.3 can be eliminated by assuming that the data is representative, i.e., if the
number of training samples that fall into class j = 1, . . . ,Γ is deterministically γjm.

The term 2Γ8∥L∥2
∞π

m in Theorem 3.3 does not depend on the model complexity and is typically much
smaller than the second term. Hence, it does not affect bias–variance tradeoff considerations, and can
be ignored in the situation where m ≫ CEN∼ν [log(N)N

− 1
Dχ+1 ] ≫ 1. Theorem 3.3 allows us to

think not just about graphs as samples, but also about individual nodes as samples. However, nodes
are correlated with their neighbors, and the higher the dimension Dχ is, the larger the neighborhoods

are. This is why the dependency on the number of nodes is N− 1
2(Dχ+1) and not N−1/2. Still, this

dependency of the bound on N explains one way in which we train on less graphs than model
complexity and still generalize well. Another insight is that the generalization bound becomes smaller
the smaller the Lipschitz constants of the message and update functions (see Remark 3.4). This
indicates that regularization methods like weight decay promote generalization.

Comparison to other generalization bounds in graph classification We compare our generaliza-
tion bound with other generalization bounds derived by bounding the VC-dimension [Scarselli et al.,
2018], the Rademacher complexity [Garg et al., 2020], and using a PAC-Bayesian approach [Liao
et al., 2021]. We do not compare with Verma and Zhang [2019b] since they derive generalization
bounds for single-layered MPNNs in node-classification tasks. Hence, the role of depth is unexplored.
Furthermore, their bound scales as O(λ2T

max/m), where T is the number of SGD steps and λmax is
the largest eigenvalue of the graph Laplacian. Hence, the generalization bound can increase monoton-
ically for increasing T (see [Liao et al., 2021] for more details). We summarize the comparison in
Table 1 and provide more details, specially on the comparability, in Subsection C.4 of the appendix.
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Table 1: Comparison of generalization bounds for GNNs. We consider the following formula for
a generic generalization bound: GE ≤ m−1/2A(d,N)B(h)C(L, T ) + Em−1/2, where m is the
samples size, T is the depth, L is the bound of the Lipschitz constants of the message and update
functions, h is the maximum hidden dimension, d is the average node degree and N is the graphs
size and E is a term that does not depend on the model complexity.

A(d,N) B(h) C(L)

VC-Dimension
[Scarselli et al., 2018] O(log(N)N) O(h4) -

Rademacher
Complexity [Garg et al., 2020] O(dT−1

√
log(d2T−3)) O(h

√
log(h)) O(L2T )

PAC-Bayesian
[Liao et al., 2021] O(dT−1) O(

√
h log(h)) O(L2T )

Ours O(EN∼ν [log(N)N
− 1

2(Dχ+1) ]) O(1) O(L2T )

Our analysis derives a generalization bound on MPNNs that has essentially the same dependency
on the sample size m (up to a logarithmic factor), but does not directly depend on the number of
hidden units. We emphasize that our bound depends on negative moments of the expected node size
N . In contrast, the VC-dimension based bound [Scarselli et al., 2018] scales as O(log(N)N), the
Rademacher complexity based bound [Garg et al., 2020] scales as O(dT−1

√
log(d2T−3)), and the

PAC-Bayesian approach based bound [Liao et al., 2021] scales as O(dT−1), where d denotes the
maximum node degree.

4 Numerical Experiments

We give empirical evaluations of our generalization bound in comparison to the PAC-Bayesian
based bound [Liao et al., 2021] and the Rademacher complexity based bound [Garg et al., 2020].
We note that the VC dimension bound by Scarselli et al. [2018] is written in O notations and
hence cannot be quantitatively evaluated. We experiment on a synthetic dataset of 100K random
graphs of 50 nodes, sampled from three different RGMs: the Erdös-Rényi model (ERM) with
edge probability 0.4, a smooth version of a stochastic block model (SBM), based on the kernel
K(x, y) = sin(2πx) sin(2πy)/2π + 0.25 on [0, 1]2, and a geometric graph with kernel K(x, y) =
exp(−|x − y|2). The corresponding signals are given in Appendix D.2.1. Each RGM represents
one class in three binary classification problems, comparing all pairs of RGMs. For the MPNN we
consider GraphSAGE [Hamilton et al., 2017] with mean aggregation, and number of layers T = 1, 2
or 3, implemented using Pytorch Geometric [Fey and Lenssen, 2019]. We consider a maximal hidden
dimension of 128. In Appendix D we give more details and also consider synthetic data sampled
from additional RGMs.

Our generalization bound becomes smaller the smaller the Lipschitz constants of the message and
update functions are. To control the Lipschitz constants, we consider two learning settings. First, we
train with weight decay regularization, which decreases the Lipschitz bounds, and second, we train
with no regularization. For each setting (each choice of the number of layers and regularization) we
train the MPNN, and read the resulting Lipschitz constants of the network. We then plug all constants
into our generalization bound formula (see Theorem C.7 in the appendix for the full formula), and
into the generalization bound formulas of the PAC-Bayes and Rademacher bounds (see Appendix C.4
for the formulas). The results are reported in Figure 1. We observe that our generalization bounds are
orders of magnitude smaller than the other works. In fact, theoretical generalization bounds typically
teach us about the asymptotic behavior of generalization, and about the hyperparameters that affect
generalization, but rarely give realistic numerical bounds (less than 1) that guarantee generalization.
Nevertheless, in one of the scenarios (one layer MPNN) our theory gives the bounds 0.08837 and
0.1325 (respectively in the two datasets of Figure 1), which guarantees generalization in practice.
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Figure 1: Generalization bounds given by our theory, PAC-Bayes [Liao et al., 2021] and Rademacher
complexity [Garg et al., 2020] on a binary classification problem over Erdös-Rényi and SBM (left)
and Erdös-Rényi and a geometric graph (right). Training is done with weight decay (WD) and without
weight decay (w/o WD), and on three models with T = 1, 2 and 3 layers.

5 Conclusion

In this paper we proved that MPNNs with mean aggregation generalize from training to test data
in classification tasks, if the graphs are sampled from RGMs that represent the different classes.
This follows from the fact that the MPNN on sampled graphs converges to the MPNN on the RGM
when the number of nodes goes to infinity. Our generalization bounds become smaller the larger the
graphs, which gives one explanation to how MPNNs with high complexity can generalize well from a
relatively small dataset of large graphs. We observe two main limitations of our current model. First,
the dependency of the generalization bound on the size of the graph N is O(N

− 1
2(Dχ+1) ), which is

typically slower than the observed decay in experiments (See Appendix D.1). One potential future
direction is to improve this dependency using a more sophisticated models of the trained network
and of the message and update functions. Secondly, our model of the data is somewhat limited. One
future direction is to allow deformations of the RGMs, to consider a continuum of RGMs instead of a
finite set, and to consider sparse graphs.
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contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the conclusion in Subsection

5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is

theoretical work with no foreseeable societal consequences
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
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2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Yes
(b) Did you include complete proofs of all theoretical results? [Yes] The appendix includes

complete proofs.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A] The experiments
are very simple which is why we decided to not include the code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] We did not perform training

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] We report the standard error with respect to the
randomness of our experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] We did not perform training, i.e.,
the experiments were toy examples and not computation heavy.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We refer to [Fey and

Lenssen, 2019] for using Pytorch Geometric. We do not use any existing code, data or
model.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We do not use real data. Only toy experiments on synthetic
data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not use real data. Only toy experiments
on synthetic data.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not crowdsource or conduct research with human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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