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Figure 3: The rooted subtree of node v1 with 1-hop message passing and K-hop message passing. Here we
assume that K = 2 and the number of layers is 2.
In this section, we further discuss two different types of K-hop kernel and K-hop message passing.

A.1 More about K-hop kernel

First, recall the shortest path distance kernel and graph diffusion kernel defined in Definition 1
and 2. Given two definitions, the first thing we can conclude is that the K-hop neighbors of node
v under two different kernels will be the same, namely NK,spd

v,G = NK,gd
v,G as both two kernels

capture all nodes that can be reached from node v within the distance of K. Second, we have
N 1,spd

v,G = Q1,spd
v,G = N 1,gd

v,G = Q1,gd
v,G , which means the neighbor set is same for both the shortest path

distance kernel and the graph diffusion kernel when K = 1. The third thing is that Qk,spd
v,G will not

always equal to Qk,gd
v,G for some k. Since for shortest path distance kernel, one node will only appear

in at most one of Qk,spd
v,G for k = 1, 2, ...,K. Instead, nodes can appear in multiple Qk,gd

v,G . This is the
key reason why the choice of the kernel can affect the expressive power of K-hop message passing.

A.2 More about K-hop message passing

Here, we use an example shown in Figure 3 to illustrate how K-hop message passing works and
compare it with 1-hop message passing. The input graph is shown on the left top of the figure.
Suppose we want to learn the representation of node v1 using 2 layer message passing GNNs. First,
if we perform 1-hop message passing, it will encode a 2-height rooted subtree, which is shown on
the right top of the figure. Note that each node is learned using the same set of parameters, which is
indicated by filling each node with the same color (white in the figure). Now, we consider performing
a 2-hop message passing GNN with the shortest path distance kernel. The rooted subtree of node v1
is shown in the middle of the figure. we can see that at each height, both 1st hop neighbors and 2nd
hop neighbors are included. Furthermore, different sets of parameters are used for different hops,
which is indicated by filling nodes in the different hops with different colors (blue for 1st hop and
yellow for 2nd hop). Finally, at the bottom of the figure, we show the 2-hop message passing GNN
with graph diffusion kernel. It is easy to see the rooted subtree is different from the one that uses the
shortest path distance kernel, as nodes can appear in both the 1st hop and 2nd hop of neighbors.
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B Proof of injectiveness of Equation (3)

In this section, we formally prove that Equation (3) is an injective mapping of the neighbor represen-
tations at different hops. As here each layer l is doing exactly the same procedure, we only need to
prove it for one iteration. Therefore we ignore the superscript and rewrite Equation (3) as:

mk
v = MESk({{(hu, euv)|u ∈ Qk,t

v,G}}), h
k
v = UPDk(m

k
v , hv),

ĥv = COMBINE({{hkv |k = 1, 2, ...,K}}).
(6)

Next, we state the following proposition:
Proposition 3. There exist injective functions MESk,UPDk, k = 1, 2, ...,K, and an injective multiset
function COMBINE, such that ĥv is an injective mapping of

{{
(k, {{(hu, euv)|u ∈ Qk,t

v,G}}, hv) | k =

1, 2, ...,K
}}

.

Proof. The existence of injective message passing (MESk,UPDk) and multiset pooling (COMBINE)
functions are well proved in [7]. So below we prove the injectiveness of ĥv . First, we combine MSEk

and UPDk together into ϕk:

hkv = ϕk({{(hu, euv)|u ∈ Qk,t
v,G}}, hv). (7)

Note that ϕk is still injective as the composition of injective functions is injective. Next, we need to
prove that hkv is an injective mapping of (k, {{(hu, euv)|u ∈ Qk,t

v,G}}, hv). To prove it, we rewrite the
function ϕk(·) into ϕ(k)(·), that is, ϕ is an injective function taking k as input and outputs a function
ϕk = ϕ(k). We let ϕ(k1)(x1) and ϕ(k2)(x2) output different values for k1 ̸= k2 given any input
x1, x2, e.g., always let the final output dimension be k. Then, we can rewrite hkv as

hkv = ϕ(k)({{(hu, euv)|u ∈ Qk,t
v,G}}, hv)

= ψ(k, {{(hu, euv)|u ∈ Qk,t
v,G}}, hv),

(8)

where we have composed two injective functions ϕ(·) and ϕ(k)(·) into a single one ψ(·). Since
given different k, ϕ(k)(·) always outputs distinct values for any input, and given fixed k, ϕ(k)(·)
always outputs different values for different ({{(hu, euv)|u ∈ Qk,t

v,G}}, hv), the resulting ψ(·) al-
ways outputs different values for different (k, {{(hu, euv)|u ∈ Qk,t

v,G}}, hv), i.e., it injectively
maps (k, {{(hu, euv)|u ∈ Qk,t

v,G}}, hv). Thus, we have proved that hkv is an injective mapping of
(k, {{(hu, euv)|u ∈ Qk,t

v,G}}, hv).

Finally, since COMBINE is an injective multiset function, we conclude that its output ĥv is an
injective mapping of

{{
(k, {{(hu, euv)|u ∈ Qk,t

v,G}}, hv) | k = 1, 2, ...,K
}}

.

C Proof of Theorem 1 and simulation result

C.1 Proof of Theorem 1

Here we restate Theorem 1: Consider all pairs of n-sized r-regular graphs, let 3 ≤ r < (2log2n)1/2

and ϵ be a fixed constant. With at most K = ⌊( 12 + ϵ)
log 2n

log (r−1)⌋, there exists a 1 layer K-hop message

passing GNN using the shortest path distance kernel that distinguishes almost all 1− o(n−1/2) such
pairs of graphs.

As we state in the main paper, 1 layer K-hop GNN is equivalent to inject node configuration for each
node label. Therefore, it is sufficient to show that given node configuration AK,spd

v,G for all v ∈ V , we
can distinguish almost every pair of regular graphs. First, we introduce the following lemma.
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Lemma 1. For two graphs G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)) that are randomly and
independently sampled from n-sized r-regular graphs with 3 ≤ r < (2log2n)1/2. We pick two nodes
v1 and v2 from two graphs respectively. Let K = ⌊( 12 + ϵ) log 2n

log (r−1)⌋ where ϵ is a fixed constant,

AK,spd
v1,G(1) = AK,spd

v2,G(2) with the probability at most o(n−3/2).

Proof. This Lemma can be obtained based on Theorem 6 in [53] with minor corrections. Here we
state the proof.

We first introduce the configuration model [54] of n-sized r-regular graphs. Suppose we have n
disjoint sets of items, Wi, i ∈ {1, 2, ..., n}, where each set has r items and corresponds to one node in
the configuration model. A configuration is a partition of all nr items into nr

2 pairs. Denote by Ω the
set of configurations and turn it into a probability space with each configuration the same probability.
Turns out among all configurations in Ω, given r < (2logn)1/2, there are about exp(− r2−1

4 ) or
Ω(n−1/2) portion of them are simple r-regular graphs [54]. Then for these configurations, If there
is a pair of items with one item from set Wi and another item from set Wj , then there is an edge
between node i and j in the corresponding r-regular graph.

Let l0 = ⌊( 12 + ϵ) logn
log (r−1)⌋, We first look at two nodes randomly selected from the configuration

model and consider the following procedure to generate a graph. Let node i and node j be the selected
nodes. In the first step, we select all the edges that directly connect to node i and node j. Then we
have all nodes that are at a distance of 1 to i or j. In the second step, we select all the edges that
connect to nodes at a distance of 1 to either node i or node j. Doing this iteratively for n− 1 steps
and we end up with the union of components of i and j in a random configuration.

We call an edge is indispensable if it is the first edge that ensures a node w is at a certain distance to
{i, j}. Similarly, an edge is dispensable if 1) both two ends of the edge are connected to either i or j;
2) nodes in both two ends of the edge already have at least one edge. Note that edges with both two
ends in the same node are dispensable. As the first k − 1 edges selected so far can connect to at most
k + 1 nodes, the probability that the k-th edge selected is dispensable is at most:

(k + 1)(r − 1)

(n− k − 1)r
≈ k

n− k
.

Therefore the probability that more than 2 of the first ko = ⌊n1/6⌋ edges are dispensable is at most:(
ko
3

)(
ko

n− ko

)3

= o(n−2). (9)

The probability that more than l1 = ⌊n1/8⌋ of the first k1 = ⌊n6/13⌋ edges are dispensable is at most

(
k1

l1 + 1

)(
k1

n− k1

)l1+1

= o(n−2). (10)

The probability that more than l2 = ⌊n5/13⌋ of the first k2 = ⌊n2/3⌋ edges are dispensable is at most(
k2

l2 + 1

)(
k2

n− k2

)l2+1

= o(n−2). (11)

Now, let A be the event that at most 2 of the first ko, at most l1 of the first k1, and at most l2 of the
first k2 edges be dispensable. Given Equation (9)-(11), we know the probability of A is 1− o(n−2).

Disscussion: Briefly speaking, event A means that at the first few k steps of generation, the edge
will reach almost as many nodes as possible and the number of nodes at distance {1, 2, ..., k} will
be certainly r, r(r − 1), ..., r(r − 1)k−1 for either Wi and Wj . Which means Ak,spd

i,G = Ak,spd
j,G with

probability close to 1. Nevertheless, it also allows later members of the node configuration to be
different.

Now, we consider another way of generating a graph with a configuration model. Similar to the
above, suppose we have selected all the edges connecting to at least one node with a distance less
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than k from {i, j} after the k-th step. At the k + 1-th step, we first select all the edges with one node
at a distance of k from node i. Next, we select all the edges with both two ends at a distance of k
from node j. It is easy to see that after these two procedures, the only edges left for completing the
k + 1-th step are the edges that have one end at the distance of k from the node j and another end at
the distance of k + 1 from the node j. Suppose there are tk edges in the nodes at distance k from
node j that have not been generated so far and there are sk nodes that have not generate any edge yet.
Then the final procedure of completing the k + 1-th step is to connect tk edges to sk nodes. This
procedure goes on for every k to generate the final graph.

Now let us assume that A holds. It is easily seen that then for k ≤ l0, we have:

tk ≥ (r − 1)k−3 and sk ≥ n/2, (12)

where both two bounds are rather crude. Now, after the first two procedures of k+ 1-th step, we have
all the nodes at the distance of k + 1 from node i, which means we already determined Qk+1,spd

i,G .
If |Qk+1,spd

i,G | = |Qk+1,spd
j,G |, then the connection of tk edges must belong to |Qk+1,spd

i,G | nodes from
totally sk nodes. The probability of |Qk+1,spd

i,G | = |Qk+1,spd
j,G | condition on Equation (12) is at most

the maximum of the probability that tk edges connect to l nodes from sk nodes with degree r. This
probability is bounded by:

max
l

P (|Qk+1,spd
j,G | = l) ≤ co

s
1/2
k

tk
, (13)

where we assume the r ≥ 3 and tk ≤ cs
5/8
k for some constant c and co is also a constant. The proof

of this can be found in Lemma 7 of [54]. Given Equation (13), the probability that Al,spd
i,G = Al,spd

j,G

for l ≤ l0 is at most

1− P (A) +

l0∏
l=h

c0
n1/2

(r − 1)l−3
,

where h = ⌊ 1
2

logn
log(r−1)⌋ + 3. Since (r − 1)l0 ≥ n(1+ϵ)/2, the sum above is o(n−2). Since there is

at least Ω(n−1/2) of all the graphs generated by the configuration model that are simple r-regular
graphs, there are at most o(n−2/n−1/2) = o(n−3/2) of probability that Al0,spd

i,G = Al0,spd
j,G .

Next, for any pair of n-sized r-regular graphs G(1) and G(2), we can combine these two graphs and
generate a single regular graph with 2n nodes. Denote this combined graph as Gc and Gc has two
disconnected components. It is easy to see that the above proof is still valid on Gc. This means that:
suppose we randomly pick a node v1 from the first component and node v2 from another component.
Then, given 3 ≤ r < (2log2n)1/2 and K = ⌊( 12 + ϵ) log 2n

log (r−1)⌋, we have AK,spd
v1,Gc

= AK,spd
v2,Gc

with

probability of o(n−3/2). As node v1 and v2 are in two disconnected components G(1) and G(2).
Therefore, it is easy to see AK,spd

v1,Gc
= AK,spd

v1,G(1) and AK,spd
v2,Gc

= AK,spd
v1,G(2) , which completes the proof.

Theorem 1 is easy to prove with the aid of Lemma 1. Basically, we consider a node v1 in graph
G(1) and compare the AK,spd

v1,G(1) with AK,spd
v2,G(2) for all nodes v2 ∈ V (2). The probability that

AK,spd
v2,G(2) ̸= AK,spd

v1,G(1) for all possible v2 is 1 − o(n−3/2n) = 1 − o(n−1/2). Therefore, with an
injective readout function, we can guarantee that 1 layer K-hop message passing GNN can generate
different embedding for two graphs.

C.2 Simulation experiments to verify Theorem 1

In this section, we conduct simulation experiments to verify both Lemma 1 and Theorem 1. The
results are shown in Figure 4. We randomly generate 100 n-sized 3 regular graphs with n ranging
from 20 to 1280. Then, we apply a 1-layer untrained K-GIN model on these graphs (1 as node
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Figure 4: Simulation results. The left side is the node-level result to verify Lemma 1. The right side is the
graph-level result to verify Theorem 1.

feature) with K range from 1 to 6. On the left side, we compare the final node representations for
all nodes output by K-GIN, If the difference between two node representations ||hv − hu||2 is less
than machine accuracy (1e− 10), they are regarded as indistinguishable. The colors of the scatter
plot indicate the portion of two nodes that are not distinguishable by K-GIN. The darker, the more
indistinguishable node pairs. We can see that the result matches almost perfectly with Lemma 1,
where K is larger than 1

2
log 2n

log (r−1) , almost all nodes are distinguishable by K-GIN. On the right side,
we compare the final graph representation output by K-GIN. We can see even with K = 2, almost all
graphs are distinguishable. This is because as long as there exists one single node from one graph
that has a different representation from all nodes in another graph, 1 layer K-hop message passing
with an injective readout function can distinguish two graphs.

D General K-hop color refinement and discussion on existing K-hop message
passing GNNs

In this section, we introduce a general K-hop color refinement algorithm and use this algorithm to
characterize the expressive power of existing K-hop methods further.

D.1 General K-hop color refinement algorithm

It is well-known that 1-WL test updates the label of each node in the graph by color refinement
algorithm, which iteratively aggregates the label of its neighbors. Here, we extend it and define a more
general color refinement algorithm. First, we denote [n] = {0, 1, ..., n} and introduce refinement
configuration.
Definition 6. Given L and K, the refinement configuration CL,K = (C0,K , C1,K , ..., CL,K), where
Cl,K = (Cl,K

0 , Cl,K
1 , ..., Cl,K

K ) and Cl,K
k ⊆ [l] for any l ∈ [L] and k ∈ [K].

Briefly speaking, refinement configuration defines how the color refinement algorithm aggregates
information from neighbors of each hops at each iteration l given the maximum iteration of L and
the maximum number of hop K. Given the refinement configuration CL,K , we define general color
refinement algorithm CR(CL,K):

R0
v,G = LABEL(v),

Rl+1
v,G = HASH(({{{{Rs

u,G|u ∈ Q0,t
v,G}}|s ∈C

l,K
0 }}, ..., {{{{Rs

u,G|u ∈ QK,t
v,G}}|s ∈ Cl,K

K }})),
(14)

where LABEL function assign the initial color to node. Equation (14) define the general color
refinement algorithm. Then, given different refinement configurations, we can end up with different
procedures for the algorithm. Specifically, we define the following refinement configurations:

Definition 7. The 1-WL refinement configuration is defined as CL,K
1-WL = (C0,K

1-WL, C
1,K
1-WL, ..., C

L,K
1-WL),

where Cl,K
1-WL,k = {l} for k = 0, 1, and Cl,K

1-WL,k = ∅ for others.

Definition 8. The K-hop refinement configuration is defined as CL,K
K-hop = (C0,K

K-hop, C
1,K
K-hop, ..., C

L,K
K-hop),

where Cl,K
K-hop,k = {l} for all k ∈ [K].
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Definition 9. The GINE+ refinement configuration is defined as CL,K
GINE+ =

(C0,K
GINE+, C

1,K
GINE+, ..., C

L,K
GINE+), where Cl,K

GINE+,k = {l} for k = 0, and Cl,K
GINE+,k = {l − k + 1} for

k = 1, 2, ..., l + 1, Cl,K
GINE+,k = ∅ if k > l + 1.

It is easy to see that CR(CL,K
1-WL) is exactly the same as the color refinement algorithm in 1-WL test.

Next, we can analyze the expressive power of the general color refinement algorithm given different
refinement configurations. We say CL,K

1 ⪰ CL,K
2 if CR(CL,K

1 ) is at least equally powerful as
CR(CL,K

2 ) in terms of expressive power. Then, we have the following properties for the general
refinement algorithm.
Property 1. CL+1,K ⪰ CL,K .

Property 2. If Cl,K
1,k ⊆ Cl,K

2,k for any k ∈ [K] and l ∈ [L], then CL,K
1 ⪰ CL,K

2 .

These two properties are easy to validate, as given the injective HASH function, an algorithm with
more information is always at least equally powerful as an algorithm with less information. Moreover,
we have the following proposition.

Proposition 4. If for any l ∈ [L] and any k ∈ [K], Cl,K
1 and Cl,K

2 satisfy i ∈ Cl,K
1,k and j ∈ Cl,K

2,k if

and only if i ≥ j, then CL,K
1 ⪰ CL,K

2 .

Proof. Let Rl,i
v,G denote the color refinement result after iteration l for node v in graph G = (V,E)

using refinement configuration CL,K
i .

1. At iteration 1, if a node aggregates its neighbor’s label from some hop, it can only aggregate
the initial label of nodes, or namely R0,i

v,G. Then, if C1,K
1,k = {{0}}, C1,K

2,k can be either {{0}}
or ∅. If C1,K

1,k = ∅, then C1,K
2,k = ∅ It is trivial to see that if R1,1

v1,G
= R1,1

v2,G
for any pair of

nodes v1, v2 ∈ G, then R1,2
v1,G

= R1,2
v2,G

, which means C0,K
1 ⪰ C0,K

2 holds.

2. At iteration l Assume Cl−1,K
1 ⪰ Cl−1,K

2 holds.

3. At iteration l + 1, the condition in the proposition means color refinement algorithm with
Cl,K

2 can only aggregate results from earlier iteration than Cl,K
1 at any hops. Meanwhile,

as Cl−1,K
1 ⪰ Cl−1,K

2 holds, as long as Rl,1
v1,G

= Rl,1
v2,G

, we have Rt,i
v1,G

= Rt,i
v2,G

holds
for any t ∈ [l] and i = 1, 2 given the injectiveness of HASH function. This means that
if Rl+1,1

v1,G
= Rl+1,1

v2,G
, then Rl+1,2

v1,G
= Rl+1,2

v2,G
. Therefore, Cl,K

1 ⪰ Cl,K
2 also holds. this

completes the proof.

Given two properties and Proposition 4, we have the following results.

Theorem 3. CL,K
K-hop ⪰ CL,K

GINE+ ⪰ CL,K
1-WL ⪰ C0,K

GINE+ ⪰ C0,K
1-WL.

Proof. Using the Property 1 and Property 2 of general color refinement algorithm, it is easy to
prove that CL,K

K-hop ⪰ CL,K
1-WL ⪰ C0,K

GINE+ ⪰ C0,K
1-WL and CL,K

GINE+ ⪰ CL,K
1-WL. The only thing left is the

comparison between CL,K
K-hop and CL,K

GINE+. For any l ∈ [L], Cl,K
K-hop,k = {{l}} for all k ∈ [K]. Instead,

Cl,K
GINE+,k = {{l − k + 1}} for k = 1, 2, ..., l + 1 and Cl,K

GINE+,0 = {{l}}. Then it is easy to see that
Cl,K

K-hop,k and Cl,K
GINE+,k satisfy the condition of Proposition 4 and thus CL,K

K-hop ⪰ CL,K
GINE+ holds.

Theorem 3 provide a general comparison between different color refinement configurations. Based
on Theorem 3, we can actually extend the Proposition 1 in the main paper as
Corollary 1. L layer K-hop message passing GNNs defined in Equation (3) with the shortest path
distance kernel is at least equally powerful as L layer GINE+ [16]. L layer GINE+ is strictly more
powerful than L layer 1-hop message passing GNNs.

21



The above Corollary is trivial to prove as corresponding models with injective message and update
functions have at most the same expressive power as general color refinement algorithm with
corresponding refinement configurations and permutation invariant readout function. However, one
remaining question given the general color refinement algorithm is the comparison of the expressive
power between K layer 1-hop GNNs and 1 layer K-hop GNNs. Here we show that:
Proposition 5. Assume we use the shortest path distance kernel for K-hop message passing GNNs.
There exists pair of graphs that can be distinguished by 1 layer K-hop message passing GNNs but
not K layer 1-hop message passing GNNs and vice versa.

𝐺(") 𝐺($)

[𝟑, 𝟏] [𝟑, 𝟏]

[𝟐, 𝟐] [𝟐, 𝟐]

[𝟐, 𝟐]

[𝟑, 𝟏]

[𝟑, 𝟏][𝟐, 𝟐]

[𝟐, 𝟐]

[𝟐, 𝟐]

Figure 5: A pair of non-isomorphic graphs that can be
distinguished by 2-layer 1-hop GNNs but not 1-layer
2-hop GNNs.

To prove Proposition 5, we provide two exam-
ples. The first example is exactly example 2 in
Figure 1. we know that a 1-hop GNN with 2
layers cannot distinguish two graphs as they are
all regular graphs. Instead, a 1-layer 2-hop GNN
is able to achieve that. From another direction,
we show two graphs in Figure 5. We know that
1 layer 2-hop message passing GNN is equiva-
lent to inject node configuration up to 2-hop into
nodes. As we show in Figure 5, two graphs have
the same node configuration set, which means
an injective readout function will produce the
same representation. Therefore, two graphs can-
not be distinguished by 1 layer 2-hop message
passing GNNs. Instead, it is easy to validate that these two graphs can be distinguished by 2 layer
1-hop message passing GNNs.

D.2 Discussion on existing K-hop models

GINE+ [16]: GINE+ tries to increase the representation power of graph convolution by increasing the
kernel size of convolution. However, at l-th layer of GINE+, it only aggregates information from the
neighbors of hop 1, 2, ..., l after l− 1, l− 2, ..., 0 layer, which means that after L layer of convolution,
the GINE+ still has a receptive field of size L. As we discussed in the previous section, L layer
K-hop message passing GNNs with the shortest path distance kernel is at least equally powerful as L
layer GINE+.

Graphormer [17]: Graphormer introduce a new way to apply transformer architecture [55] on graph
data. In each layer of Graphormer, the shortest path distance is used as spatial encoding to adjust
the attention score between each node pair. Although the Graphormer does not apply the K-hop
message passing directly, the attention mechanism (each node can see all the nodes) with the shortest
path distance feature implicitly encodes a rooted subtree similar to the K-hop message passing with
the shortest path distance kernel. To see it clearly, suppose we have K-hop message passing with
K = ∞ and graphs only have one connected component. It will aggregate all the nodes at each layer,
which is similar to Graphormer. Meanwhile, the injective message and update function implicitly
encode the shortest path distance to each node in aggregation. Then it is trivial to see that Graphormer
is actually a special case of K-hop message passing with the shortest path distance kernel.

Spectral GNNs: spectral-based GNNs serve as an important type of graph neural network and gain
lots of interest in recent years. Here we only consider one layer as spectral-based GNNs usually only
use 1 layer. the general spectral GNNs can be written as:

Z = ϕ

(
K∑

k=0

αkρ(L̂
k)φ(x)

)
, (15)

where ϕ and φ are typically multi-layer perceptrons (MLPs), L̂ is normalized Laplacian matrix, αk is
weight for each spectral basis, and ρ is an element-wise function of matrix. In normal spectral GNNs,
ρ is always an identity mapping function. We can see spectral GNNs have a close relationship to
K-hop message passing with graph diffusion kernel as L̂k actually compute the Qk,gd

v,G for each node
by only keeping element in the matrix that is larger than 0. As K in Equation (15) can be greater than
1, it looks like spectral GNNs fit Proposition 1 as well. However, according to Proposition 4.3 in [21],
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Figure 6: The upper part: graph with node configuration as the injected label and DE-1 as the injected label on
the center node. The bottom part: two pairs of non-isomorphic graphs where the node pair in example 1 can be
distinguished by DE-1 and the node pair in example 2 can be distinguished by K-hop message passing.

all such spectral-based methods have expressive power no more than the 1-WL test. This seems like
a discrepancy. The reason lies in the ρ function in Equation (15). K-hop message passing with graph
diffusion kernel can be regarded as using a non-linear ρ function shown in the following:

ρ(x) =

{
1 x > 0
0 others

(16)

This non-linear function is the key difference between the normal spectral GNNs and K-hop message
passing and it endows normal spectral GNNs with extra expressive power than the 1-WL test.

MixHop [12], GPR-GNN [15], and MAGNA [14]: All three methods extend the scope of 1-hop
message passing by considering multiple graph diffusion step simultaneously. However, all these
methods use normal spectral GNNs as the base encoder and thus they obey Proposition 4.3 in [21]
instead of Proposition 1. It can be seen as a "weak" version of K-hop message passing with graph
diffusion kernel.

E Comparison between K-hop message passing and Distance Encoding

In this section, we further discuss the connection and difference between K-hop message passing and
Distance Encoding [22]. Here we assume that the kernel of K-hop message passing is the shortest
path distance kernel and Distance Encoding with the shortest path distance as distance feature.

To simplify the discussion, suppose there are two graphs G(1) = (V (1), E(1)) and G(2) =
(V (2), E(2)). We pick two nodes v1 and v2 from each graph respectively and learn the representation
for these two nodes. First, let us consider what 1 layer K-hop message passing and DE-1 without
message passing. As we stated in the main paper, 1 layer of K-hop message passing actually injects
each node with the label of node configuration. Instead, DE-1 injects each node with the distance to
the center node (v1 and v2 here). Then we can see there is a clear difference between the two methods
even if they all implicitly or explicitly use the distance feature as shown in the upper part of Figure 6.
Next, it is easy to see that applying L+ 1 layer K-hop message passing is equivalent to applying L
layer K-hop message passing on a graph with node configuration as the initial label. Applying L
layer DE-1 is equivalent to applying L layer 1-hop message passing on a graph with the distance to
the center node as the initial label. In the following, we show that the two methods cannot cover each
other in terms of distinguishing different nodes:

Proposition 6. For two non-isomorphic graphs G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)), we
pick two nodes v1 and v2 from each graph respectively. Then there exist pairs of graphs that nodes
v1 and v2 can be distinguished by K-hop message passing with the shortest path distance kernel but
not DE-1, and vice versa.
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To prove the Proposition 6, we provide two examples in the lower part of Figure 6. Example 1 in
the figure is exactly the same pair of regular graphs in example 1 of Figure 1. As discussed before,
K-hop message passing with the shortest path distance kernel cannot distinguish node v1 and v2.
However, after injecting the distance feature to the center node in two graphs and performing 2 layers
of message passing, DE-1 is able to assign different representations for two nodes. In example 2, DE-1
cannot distinguish nodes v1 and v2 in the two graphs, even if they are not regular graphs. Instead,
using K-hop message passing with only K = 2, the two nodes will get different representations.
We omit the detailed procedure here as it is easy to validate. Using these two examples, we have
shown that K-hop message passing and DE-1 are not equivalent to each other even if they all use the
shortest path distance feature. The root reason is that although DE-1 uses the distance feature, it still
aggregates information only from 1-hop neighbors in each iteration, while K-hop message passing
directly aggregates information from all K-hop neighbors. That is, their ways of using distance
information are different. However, we also notice that in example 2, if we label the graph with DE-1
on another pair of nodes, two nodes can be distinguished, which means DE-1 is able to distinguish
these two graphs. However, to achieve that, DE-1 need to label the graph n times and run the
message passing on all n labeled graphs. Instead, K-hop message passing only needs to run the
message passing once, which is both space and time efficient.

Besides DE-1, Li et al. [22] also proposed the DEA-GNN which is at least no less powerful than
DE-1. The DEA-GNN extends DE-1 by simultaneously aggregating all other nodes in the graph but
the message is encoded with the distance to the center node. This can be seen as exactly performing
K-hop message passing. In other words, DEA-GNN is the combination of K-hop message passing
and DE-1. Therefore it is easy to see:

Proposition 7. The DEA-GNN [22] is at least equally powerful as K-hop message passing with the
shortest path distance kernel.

F Proof of Theorem 2

In this section, we prove Theorem 2. We first restate Theorem 2: The expressive power of a proper
K-hop message passing GNN of any kernel is bounded by 3-WL test. Our proof is inspired by the
recent results in SUN [23], which bound all subgraph-based GNN with the 3-WL test by proving
that all such methods can be implemented by 3-IGN. Here we prove that K-hop message passing
can also be implemented by 3-IGN. We will not discuss the detail of 3-IGN and all its operations.
Instead, we directly follow all the definitions and notations and refer readers to Appendix B of [23]
for more details.

K-hop neighbor extraction: To implement the K-hop message passing, we first implement the
extraction of K-hop neighbors. The key insight is that we can use the l-th channel in Xiij to store
whether node j is the neighbor of node i at l-th hop, which is similar to the extraction of ego-network.
Here we suppose d ≥ K. Same as all node selection policies, we first lift the adjacency A to a
three-way tensor Y ∈ Rn3×d using broadcasting operations:

X
(0)
iii = βi,i,iAii. (17)

X
(0)
jii = β∗,i,iAii. (18)

X
(0)
iij = βi,i,jAij . (19)

X
(0)
iji = βi,j,iAij . (20)

X
(0)
kij = β∗,i,jAij . (21)

Now, X(0),1
iij store the 1-hop neighbors of node i. Next, l-th hop neighbor of node i is computed and

stored in X ,l
iij . To get neighbor of l-th hop for l = 2, 3, ...,K, we first copy it into d+ 1 channels:

X
(1)
ijj = κ:d

:d/(d+1)X
(0)
ijj + κl:l

d+1:d+1βi,j,jX
(0)
iij . (22)
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The d+ 1-th channel is used to compute high-order neighbors. Next, we extract all K hop neighbors
by iteratively following steps K − 1 times and describe the generic l-th step. We first broadcast the
current reachability pattern into Xijk, writing it into the l-th channel:

X
(l,1)
ijk = X

(l−1)
ijk + κd+1:d+1

l:l βi,∗,jX
(l−1)
ijj . (23)

Then, a logical AND is performed to get the new reachability. Then write back the results into the
l-th channel:

X
(l,2)
ijk = φ

(∧)1,l
l:l/(d+1)X

(l,1)
ijk . (24)

Next, we get all nodes that can be reached within l hops by performing pooling, clipping, and copying
back to d+ 1 channel:

X
(l,3)
ijj = κ:d

:d/(d+1)X
(l,2)
ijj + κl:l

d+1:βi,j,jπi,jX
(l,2)
ijk . (25)

X
(l,4)
ijj =

[
κ:d
:d/(d+1) φ

(↓)d+1:d+1
d+1:d+1

]
X

(l,3)
ijj . (26)

Now X
(l,4),d+1
ijj save all the nodes that can be reached at l-th hop. Finally, we extract the l-th hop

neighbor and copy it into l-th channel. For graph diffusion kernel, the current result is itself result for
graph diffusion kernel, which means we only need to copy it:

X
(l)
iij = X

(l,4)
iij + κd+1:d+1

l:l βi,i,jX
(l,4)
ijj . (27)

For the shortest path distance kernel, we need to nullify all the nodes that already existed in the
previous hops. To achieve this, we need to first compute if a node exists in the previous hops and
then nullify it:

X
(l,5)
iij = X

(l,4)
iij + κd+1:d+1

l:l βi,i,jX
(l,4)
ijj . (28)

X
(l,6)
iij =

l−1∑
i=1

κi:i
d+1:d+1X

(l,5)
iij . (29)

X
(l)
iij = X

(l,4)
iij +φ

(∧)l,d+1
l:l φ

(!)d+1
d+1 X

(l,6)
iij . (30)

Where φ
(!)a
b is logical not function that output 0 if input is not 0 and vice versa for channel a and

write result into channel b. Here we omit the detailed implementation as it is easy to implement using
ReLu function. Finally, we bring all other orbits tensors to the original dimensions:

Xiii = κ:d
:dX

(l)
iii . (31)

Xijj = κ:d
:dX

(l)
ijj . (32)

Xiij = κ:d
:dX

(l)
iij . (33)

Xiji = κ:d
:dX

(l)
iji. (34)

Xijk = κ:1
:1/(d)X

(l)
ijk. (35)

Now, we have successfully implemented K-hop neighbor extraction algorithm using 3-IGN.

K-hop message passing: To implement the message and update function for each layer, we use the
same base encoder as [11]. Other types of base encoders and combine functions can be implemented
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in a similar way. We follow the same procedure of implementing the base encoder of DSS-GNN as
stated in [23]. Note here for each hop the procedure is similar therefore we state the generic l-th hop.
The key insight is that, in K-hop message passing, we are actually not working on each subgraph but
the original graph, which means all the operations can be implemented in the orbit tensor Xiii and
Xiij .

Message broadcasting: This procedure is similar to the base encoder of DSS-GNN but here we only
need to broadcast Xiij . However, since we need to perform message passing for K times, we need to
broadcast it K times:

X
(t,1)
iij = κ:d

:d/((K+1)d)X
(t)
iij +

K∑
i=1

κ:
id+1:(i+1)d/(K+1)dβiijX

(t)
ijj . (36)

Message sparsification and aggregation: Similar to DSS-GNN, here we need to nullify the message
from nodes that are not l-th hop neighbors. Here we define the following function:

f⊙iij

(
X

(t,1)
aab

)
l
=

{
0d if X(t,1),l

aab = 0,

X
(t,1),l(d+1):(l+1)d
aab otherwise.

(37)

The function is used to nullify the message for l-th hop. It is easy to validate the existence of such
function following the same procedure in [23] therefore we omit the detail. Next, the message
sparsification can be implemented by:

X
(t,3)
iij =

[
κ:d
:d φ

(⊙ijj):
1 ... φ

(⊙ijj):
K

]
X

(t,2)
iij . (38)

Then, the message function for K-hop message passing is:

X
(t,4)
iii = κ:d

:dX
(t,3)
iii + κd+1:

d+1:βiiiπiX
(t,3)
ijj . (39)

Update Then, the update function is implemented using linear transformation. In K-hop message
passing, each hop needs an independent parameter set. Here in order to operate on constructed tensor,
we define W l

t =
[
W l

t,1||W l
t,2||...||W l

t,K

]
, where W l

t,i = 0d if i ̸= l. Then, the update function is:

X
(t,5)
iii =

K∑
l=1

σ
(
W l

tX
(t,4)
iii

)
. (40)

Combine: Finally, we implement the sum combine function. The combine function is can be
implemented by a simple MLP:

X
(t+1)
iii = φf

d (X
(t,4)
iii ). (41)

X
(t+1)
jii = βjiiX

t+1
iii . (42)

Now, we successfully implement both K-hop neighbor extraction and K-hop message passing layer.
Note that other parts like the readout function can be easily implemented and we omit the detail.
This means the expressive power of K-hop message passing with either graph diffusion kernel or
shortest path distance kernel is bounded by 3-IGN. Based on the Theorem 2 in [56], we conclude the
Theorem 2. Further, it is intuitive that all methods that use the node pair distance feature are also
bounded by 3-WL as this feature can be computed by 3-IGN. We leave the formal proof in our future
work.
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G Proof and discussion of Proposition 2

Proposition 2 seems intuitive and easy to prove. However, it also unclear how powerful are KP-GNN.
So here we still give a more detailed discussion on it. we first give the definition of distance regular
graph.

Definition 10. A distance regular graph is a regular graph such that for any two nodes v and u, the
number of nodes with the distance of i from v and distance of j from u depends only on i, j and the
distance between v and u.

Furthermore, we only consider the connected distance regular graphs with no multi-edge or self-loop.
Such graphs can be characterized by intersection array.

Definition 11. The intersection array of a distance regular graph with diameter d is an array of
integers (b0, b1, ..., bd−1; c1, c2, ..., cd), where for all 1 ≤ j ≤ d, bj gives the number of neighbors of
u with distance j + 1 from v and cj gives the number of neighbors of u with distance j − 1 from v
for any pair of (v, u) in graph with distance j.

Given the definition of distance regular graph and intersection array, we can propose the first lemma.

Lemma 2. Given a distance regular graph G with intersection array (b0, b1, ..., bd−1; c1, c2, ..., cd).
Pick a node v from G, the peripheral subgraph Gj,spd

v,G is a n-sized r-regular graph with n = |Qj,spd
v,G |

and r = b0 − bj − cj

Proof. Given a distance regular graph G with intersection array (b0, b1, ..., bd−1; c1, c2, ..., cd), from
the definition of intersection array, for node v in G, Qj,spd

v,G is the node set that have distance j from
node v. Then, bj is the number of neighbors for each node in Qj,spd

v,G that have distance j + 1 to node
v. It is easy to see that these neighbors must belong to Qj+1,spd

v,G , which means that bj is also the
number of edge for a node in Qj,spd

v,G that connect to nodes in Qj+1,spd
v,G . Similarly, cj is the number

of edge for a node in Qj,spd
v,G that connect to nodes in Qj−1,spd

v,G . For node u ∈ Qj,spd
v,G , we know that

the edges of u must connect to either Qj+1,spd
v,G , Qj,spd

v,G , or Qj−1,spd
v,G . Since the degree of node u

is b0, then the number of edge that connect node u to nodes in Qj,spd
v,G is b0 − bj − cj . The above

statement holds for each u ∈ Qj,spd
v,G , which means all nodes u ∈ Qj,spd

v,G have same node degree.
Meanwhile, the node set of peripheral subgraph Gj,spd

v,G is exactly Qj,spd
v,G . Combine two statements,

we can conclude that Gj,spd
v,G is a n-sized r-regular graph with n = |Qj,spd

v,G | and r = b0− bj − cj .

Given the Lemma 2, we know that the peripheral subgraph of a node in any distance regular graph is
itself a regular graph. Next, given two non-isomorphic distance regular graphs G(1) and G(2) with the
same intersection array, there are total d pairs of regular peripheral subgraphs for any pair of nodes v1
and v2. If the KP-GNN can distinguish two regular graphs at some hop j ≤ d, then the KP-GNN
can distinguish v1 and v2 in graph G(1) and G(2). Meanwhile, it is easy to see that each node in a
distance regular graph has the same local structure. Therefore, as long as v1 can be distinguished
from v2, KP-GNN can distinguish two graphs.

Now given the implementation of KP-GNN in Equation 5, if either the peripheral set E(Qk,t
v1,G(1)) is

different from E(Qk,t
v2,G(2)) or peripheral configuration Ck′

j,G(1) is different from Ck′

j,G(2) . However,

as peripheral subgraph is itself regular graphs, E(Qk,t
v1,G(1)) must equal to E(Qk,t

v2,G(2)). Therefore,

KP-GNN can only distinguish two peripheral subgraph by Ck′

j,G(1) and Ck′

j,G(2) .

It looks like we can use the result from Theorem 1 to prove that Equation 5 can distinguish almost all
distance regular graphs. However, although the peripheral subgraphs of v1 and v2 are regular graphs
with the same size and r, they are not randomly generated by the configuration model and do not
satisfy Theorem 1. We leave the quantitative expressive power analysis of KP-GNN in our future
works.
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H Time, space complexity and limitation of K-hop message passing and
KP-GNN

H.1 Time and space complexity

In this section, we analyze the time and space complexity. To simplify the analysis, we first consider
the shortest path distance kernel, as the graph diffusion kernel has both time and space complexity no
less than the shortest path distance kernel. Denote graph G with n node and m edges.

Space complexity: For both K-hop message passing and KP-GNN, as we only need to maintain one
representation for each node, the space complexity is O(n) like in vanilla 1-hop message passing.

Time complexity: First, we analyze the time complexity of K-hop message passing GNNs. For each
node, suppose in the worst case we extract neighbors from all nodes from all hops, the number of
neighbors we need to aggregate from all hops is n (all nodes in the graph). Then, n nodes need at
most O(n2) time complexity. Next, we analyze the time complexity of KP-GNN. The additional
time complexity comes from counting the peripheral edges and k′-configuration. Since the counting
can be done in a preprocessing step and reused at each message passing iteration, it will be amortized
to zero finally. So the practical time complexity is still O(n2).

H.2 Discussion on the complexity

From the above analysis, we know thatK-hop GNNs and KP-GNN only needO(n) space complexity,
which is equal to vanilla message passing GNNs and much less than subgraph-based GNNs which
require O(n2) space (due to maintaining a different representation for each node when appearing
in different subgraphs). Thus, KP-GNN has a much better space complexity than subgraph-based
GNNs, PPGN [24] (also O(n2)) and 3-WL-GNNs [25] (O(n3)).

The worst-case time complexity of K-hop GNNs and KP-GNN is much higher than that of normal
GNNs due to aggregating information from more than 1-hop nodes in each iteration. However,
we also note that the larger receptive field could reduce the number of message passing iterations
because 1-layer of K-hop message passing can cover the receptive field of K-layer 1-hop message
passing. Furthermore, K-hop GNN and KP-GNN have better time complexity O(n2) than that
of subgraph-based GNNs (which require O(nm) for doing 1-hop message passing O(m) in all n
subgraphs). For sparse graphs, we can already save a factor of davg = m/n complexity. For dense
graphs, the worst-case time complexity of subgraph-based GNNs becomes O(n · n2) = O(n3), and
our time complexity advantage becomes even more significant.

H.3 Limitations

We discuss the limitation of the proposed KP-GNN from two aspects.

Stability: Using K-hop instead of 1-hop can make the receptive field of a node increase with respect
to K. For example, to compute the representation of a node with L layer K-hop, GNN, the node
will get information from all LK-hop neighbors. The increased receptive field can hurt learning, as
mentioned in GINE+ [16]. It is an intrinsic limitation that exists in all K-hop GNNs. GINE+ [16]
proposed a new way to fix the receptive field as L by only considering L − i layer representation
of neighbor in i hop during the aggregation. We also apply this approach and it helps mitigate the
issue and shows great practical performance gain. Further, we propose a variant of KP-GNN named
KP-GNN′, which only run KP-GNN at the first layer but 1-hop message passing at the rest of the
layers. KP-GNN′ help mitigates stability issue and can be applied to large K without causing the
training of the model to fail. It achieves great results in various real-world datasets.

Time complexity: As we show above, we need O(n2) time complexity for KP-GNN, which is much
higher than O(m) of MPNN. However, this limitation exists for all subgraph-based methods like
NGNN [26], GNN-AK [27], and ESAN [28] as they all require O(nm) time complexity [23]. This is
the sacrifice for better expressive power.

I Implementation detail of KP-GNN

In this section, we discuss the implementation detail of KP-GNN.
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Combine function: 1-hop message passing GNNs do not have COMBINEl function. Here we
introduce two different COMBINEl functions. The first one is the attention [57] based combination
mechanism, which automatically learns the importance of representation for each node at each hop.
The second one uses the well-known geometric distribution [14]. The weight of hop i is computed
based on θi = α(1 − α)i, where α ∈ (0, 1]. The final representation is calculated by weighted
summation of the representation of all the hops. In our implementation, the α is learnable and
different for each feature channel and each hop.

Peripheral subgraph information: In the current implementation, KP-GNN will compute two
pieces of information. The first one is the peripheral edge set E(Qk,t

v,G). In our implementation, we
compute the number of edges for each distinct edge type. The second one is k′ configuration Ck′

k ,
which contains node configuration and peripheral edges for all nodes in the peripheral subgraph.
this is equivalent to running 1 layer of KP-GNN on each peripheral subgraph. Specifically, for
node configuration, we compute the node configuration for each node and sum them up. For the
peripheral edge set, we compute the total number of edges across all hops (do not consider edge type
here). Finally, these two pieces of information are combined as Ck′

k . All these steps are down in the
preprocessing stage.

KP-GCN, KP-GIN, and KP-GraphSAGE: We implement KP-GCN, KP-GIN, and KP-GraphSAGE
using the message and update function defined in GCN [1], GIN [7], and GraphSAGE [3] respec-
tively. In each hop, independent parameter sets are used and the computation strictly follows the
corresponding model. However, increasing the number of K will also increase the total number of
parameters, which is not scalable to K. To avoid this issue, we design the K-hop message passing in
the following way. Suppose the total hidden size of the model is H , the hidden size of each hop is
H/K. In this way, the model size is still on the same scale even with large K.

KP-GIN+: In a normal K-hop message passing framework, all K-hop neighbors will be aggregated
for each node. It means that, after L layers, the receptive field of GNN is LK. This may cause
the unstable of the training as unrelated information may be aggregated. To alleviate this issue, we
adapted the idea from GINE+ [16]. Specifically, we implement KP-GIN+, which applies exactly the
same architecture as GINE+ except here we add peripheral subgraph information. At layer l, GINE+
only aggregates information from neighbors within l-hop, which makes a L layer GINE+ still have a
receptive field of L. Note that in KP-GIN+, we use a shared parameter set for each hop.

KP-GIN′: In KP-GIN′, we run a simple version of KP-GIN, which only uses KP-GIN at the
first layer, but normal GIN for the rest of the layer. Although KP-GIN′ is weaker than KP-GIN
from the expressiveness perspective. However, it is much more stable than KP-GIN in real-world
datasets. Further, as we only have KP-GIN at the first layer, we can go larger K without the cost of
time complexity during training and inference. We observe great empirical results of KP-GIN′ on
real-world datasets with less time complexity than normal KP-GNN.

Path encoding: To further utilize the graph structure information on each hop, we introduce the path
encoding to KP-GNN. Specifically, we not only count whether two nodes are neighbors at hop k, but
also count the number of walks with length k between two nodes. Such information can be obtained
with no additional cost as the Ak of a graph G with adjacency A is a walk-counter with length k.
Then the information is added to the AGGl,normal

k function as additional features.

Other implementation: For all GNNs, we apply the Jumping Knowledge method [58] to get the
final node representation. The possible methods include sum, mean, concatenation, last, and attention.
Batch normalization is used after each layer. For the pooling function, we implement mean, max,
sum, and attention and different tasks may use different readout function.

J Experiential setting details

EXP dataset: For both K-GIN and KP-GIN, we use a hidden size of 48. The final node representation
is output from the last layer and the pooling method is the summation. In the experiment, we use
10-fold cross-validation. For each fold, we use 8 folds for training, 1 fold for validation, and 1 fold
for testing. We select the model with the best validation accuracy and report the mean results across
all folds. The training epoch is set to 40. In this experiment, we do not use path encoding for a fair
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comparison. The learning rate is set to 0.001 and we use ReduceLROnPlateau learning rate scheduler
with patience of 5 and a reduction factor of 0.5.

SR25 dataset: For both K-GIN and KP-GIN we use a hidden size of 64. The final node representation
is output from the last layer and the pooling method is the summation. For SR25 dataset, we directly
train the validate the model on the whole dataset and report the best performance across 200 epochs.
For each fold, we use 8 folds for training, 1 fold for validation, and 1 fold for testing. We select the
model with the best validation accuracy and report the mean results across all folds. The training
epoch is set to 200. In this experiment, we do not use path encoding for a fair comparison. The
learning rate is set to 0.001.

CSL dataset: For both K-GIN and KP-GIN we use a hidden size of 48. The final node representation
is output from the last layer and the pooling method is the summation. In the experiment, we use
10-fold cross-validation.

Graph&Node property dataset: For graph and node property prediction tasks, we train models
with independent 4 runs and report the mean results. For both K-GIN+ and KP-GIN+, the hidden size
of models is set as 96. The final node representation is the concatenation of each layer. The pooling
method is attention for graph property prediction tasks and sum for node property prediction tasks.
The learning rate is 0.01 and we use ReduceLROnPlateau learning rate scheduler with patience of 10
and a reduction factor of 0.5. We use the shortest path distance kernel. The maximum number of
epochs for each run is 250. For KP-GIN+, we search K from 3 to 6 with/without path encoding and
report the best result. For K-GIN+, we search K from 3 to 6 without path encoding and report the
best result.

Graph substructure counting dataset: For graph substructure counting tasks, we train models
with independent 4 runs and report the mean results. For both K-GIN+ and KP-GIN+, the hidden
size of models is set as 96. The final node representation is the concatenation of each layer. The
pooling method is the summation. The learning rate is 0.01 and we use ReduceLROnPlateau learning
rate scheduler with patience of 10 and a reduction factor of 0.5. We use the shortest path distance
kernel. The maximum number of epochs for each run is 250. For KP-GIN+, we search K from 1 to 4
with/without path encoding and report the best result. For K-GIN+, we search K from 1 to 4 without
path encoding and report the best result.

TU datasets: For TU datasets, we use 10-fold cross-validation. We report results for both settings
in [7] and [36]. For the first setting, we use 9 folds for training and 1 fold for testing in each fold.
After training, we average the test accuracy across all the folds. Then a single epoch with the best
mean accuracy and the standard deviation is reported. For the second setting, we still use 9 folds
for training and 1 fold for testing in each fold but we directly report the mean best test results. For
KP-GNN, we implement GCN [1], GraphSAGE [3] and GIN [7] version. we search (1) the number
of layer {2, 3, 4}, (2) the number of hop {2, 3, 4}, (3) the kernel of K-hop {spd, gd} , and (4) the
COMBINE function {attention, geometric}. The hidden size is 33 when K = 3 and 32 for the
rest of the experiments. The final node representation is the last layer and the pooling method is the
summation. The dropout rate is set as 0.5, the number of training epochs for each fold is 350 and the
batch size is 32. The initial learning rate is set as 1e− 3 and decays with a factor of 0.5 after every
50 epochs.

QM9 dataset: For QM9 dataset, we implement KP-GIN+ and KP-GIN′. For both two models, the
hidden size of the model is 128. The final node representation is the concatenation of each layer
and the pooling method is attention. The dropout rate is 0. For KP-GIN+, we use the shortest path
distance kernel with K = 8 and 8 layers. Meanwhile, we add the virtual node to the model. For
KP-GIN′, we use the shortest path distance kernel with K = 16 and 16 layers. Meanwhile, we add
the residual connection. The maximum number of the peripheral edge is 6 and the maximum number
of the component is 3. We also use additional path encoding in each layer. The learning rate is 0.001
and we use ReduceLROnPlateau learning rate scheduler with patience of 5 and a reduction factor of
0.7. If the learning rate is less than 1e− 6, the training is stopped.

ZINC datraset: For ZINC dataset, we run the experiment 4 times independently and report the mean
results. For each run, the maximum number of epochs is 500 and the batch size is 64. We implement
the KP-GIN+ and KP-GIN′ for the ZINC dataset. For KP-GIN+, the hidden size is 104. The number
of hops and the number of layers are both 8. For KP-GIN′, the hidden size is 96. The number of
hops and the number of layers are 16 and 17 respectively. For both two models, we add the residual
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Table 7: Ablation study on counting substructure dataset. (* means add path encoding.)

Counting substructures (MAE)

model K Triangle Tailed Tri. Star 4-Cycle

K-GIN+

1 0.4546 ± 0.0107 0.3665 ± 0.0004 0.0412 ± 0.0468 0.3317 ± 0.0121
2 0.2938 ± 0.0030 0.2283 ± 0.0012 0.0206 ± 0.0095 0.2330 ± 0.0020
3 0.2663 ± 0.0088 0.1998 ± 0.0022 0.0174 ± 0.0030 0.2202 ± 0.0061
4 0.2593 ± 0.0055 0.1930 ± 0.0033 0.0165 ± 0.0041 0.2079 ± 0.0024

K-GIN+*

1 0.4546 ± 0.0107 0.3665 ± 0.0004 0.0412 ± 0.0468 0.3317 ± 0.0121
2 0.0132 ± 0.0025 0.0189 ± 0.0049 0.0219 ± 0.0045 0.0401 ± 0.0027
3 0.0134 ± 0.0020 0.0147 ± 0.0017 0.0288 ± 0.0062 0.0471 ± 0.0033
4 0.0253 ± 0.0085 0.0244 ± 0.0028 0.0171 ± 0.0035 0.0474 ± 0.0025

KP-GIN+

1 0.0060 ± 0.0008 0.0073 ± 0.0020 0.0151 ± 0.0022 0.2964 ± 0.0080
2 0.0106 ± 0.0015 0.0115 ± 0.0017 0.0264 ± 0.0064 0.0657 ± 0.0034
3 0.0134 ± 0.0020 0.0147 ± 0.0017 0.0288 ± 0.0062 0.0471 ± 0.0033
4 0.0125 ± 0.0012 0.0169 ± 0.0028 0.0362 ± 0.0113 0.0761 ± 0.0135

KP-GIN+*

1 0.0068 ± 0.0019 0.0083 ± 0.0019 0.0166 ± 0.0041 0.3063 ± 0.0251
2 0.0110 ± 0.0016 0.0110 ± 0.0016 0.0255 ± 0.0056 0.0395 ± 0.0018
3 0.0117 ± 0.0024 0.0111 ± 0.0025 0.0338 ± 0.0077 0.0813 ± 0.0136
4 0.0155 ± 0.0037 0.0168 ± 0.0018 0.0422 ± 0.0121 0.0538 ± 0.0052

connection. The final node representation is the concatenation of each layer and the pooling method
is the summation. We use the shortest path distance kernel. The initial learning rate is 0.001 and we
use ReduceLROnPlateau learning rate scheduler with patience of 10 and a reduction factor of 0.5. If
the learning rate is less than 1e− 6, the training is stopped.

K Additional results

In this section, we provide additional experimental results and discussion. The additional results
on the counting substructure dataset are shown in Table 7. First, for K-GIN+, we observe a steady
improvement for all tasks when we increase the K, which aligns with the theoretical results. Second,
path encoding can hugely boost the performance of the counting substructure, which demonstrates
the effectiveness of path encoding. Third, for KP-GIN+, most of the tasks achieve the best result
with only K=1. This means we only need local peripheral subgraph information to count through
substructures. Even though increasing the K would increase the expressive power monotonically
from a theoretical point of view, it may add noise to the training process. Finally, path encoding does
not show much effect on the KP-GNN model, which means information on path encoding is already
encoded in the peripheral subgraph.
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L Datasets Description and Statistics

Table 8: Dataset statistics.
Dataset #Tasks # Graphs Ave. # Nodes Ave. # Edges

EXP 2 1200 44.4 110.2
SR25 15 15 25 300
CSL 10 150 41.0 164.0
Graph&Node property 3 5120/640/1280 19.5 101.1
Substructure counting 4 1500/1000/2500 18.8 62.6

MUTAG 2 188 17.93 19.79
D&D 2 1178 284.32 715.66
PTC-MR 2 344 14.29 14.69
PROTEINS 2 1113 39.06 72.82
IMDB-B 2 1000 19.77 96.53

QM9 12 129433 18.0 18.6
ZINC 1 10000 / 1000 / 1000 23.1 49.8
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