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Abstract

We study square loss in a realizable time-series framework with martingale dif-
ference noise. Our main result is a fast rate excess risk bound which shows that
whenever a trajectory hypercontractivity condition holds, the risk of the least-
squares estimator on dependent data matches the iid rate order-wise after a burn-in
time. In comparison, many existing results in learning from dependent data have
rates where the effective sample size is deflated by a factor of the mixing-time of the
underlying process, even after the burn-in time. Furthermore, our results allow the
covariate process to exhibit long range correlations which are substantially weaker
than geometric ergodicity. We call this phenomenon learning with little mixing, and
present several examples for when it occurs: bounded function classes for which
the L2 and L2+ε norms are equivalent, ergodic finite state Markov chains, various
parametric models, and a broad family of infinite dimensional ℓ2(N) ellipsoids. By
instantiating our main result to system identification of nonlinear dynamics with
generalized linear model transitions, we obtain a nearly minimax optimal excess
risk bound after only a polynomial burn-in time.

1 Introduction

Consider regression in the context of the time-series model:

Yt = f⋆(Xt) +Wt, t = 0, 1, 2, . . . . (1)

Such models are ubiquitous in applications of machine learning, signal processing, econometrics,
and control theory. In our setup, the learner is given access to T ∈ N+ pairs {(Xt, Yt)}T−1

t=0 drawn
from the model (1), and is asked to output a hypothesis f̂ from a hypothesis class F which best
approximates the (realizable) regression function f⋆ ∈ F in terms of square loss.

In this work, we study the least-squares estimator (LSE). This procedure minimizes the empirical
risk associated to the square loss over the class F . When each pair of observations (Xt, Yt) is drawn
iid from some fixed distribution, this procedure is minimax optimal over a broad set of hypothesis
classes [1–4]. However, much less is known about the optimal rate of convergence for the general
time-series model (1), as correlations across time in the covariates {Xt} complicate the analysis.

With this in mind, we seek to extend our understanding of the minimax optimality of the LSE for the
time-series model (1). We show that for a broad class of function spaces and covariate processes, the
effects of data dependency across time enter the LSE excess risk only as a higher order term, whereas
the leading term in the excess risk remains order-wise identical to that in the iid setting. Hence,
after a sufficiently long, but finite burn-in time, the LSE’s excess risk scales as if all T samples are
independent. This behavior applies to processes that exhibit correlations which decay slower than
geometrically. We refer to this double phenomenon, where the mixing-time only enters as a burn-in
time, and where the mixing requirement is mild, as learning with little mixing.

Our result stands in contrast to a long line of work on learning from dependent data (see e.g., [5–14]
and the references within), where the blocking technique [5] is used to create independence amongst
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the dependent covariates, so that tools to analyze independent learning can be applied. While these
aforementioned works differ in their specific setups, the main commonality is that the resulting
dependent data rates mimic the corresponding independent rates, but with the caveat that the sample
size is replaced by an “effective” sample size that is decreased in some way by the mixing-time, even
after any necessary burn-in time. Interestingly, the results of Ziemann et al. [15] studying the LSE on
the model (1) also suffer from such sample degradation, but do not rely on the blocking technique.

The model (1) captures learning dynamical systems by setting Yt = Xt+1, so that the regression
function f⋆ describes the dynamics of the state variable Xt. Recent progress in system identification
shows that the lack of ergodicity does not necessarily degrade learning rates. Indeed, when the states
evolve as a linear dynamical system (i.e., the function f⋆ is linear), learning rates are not deflated
by any mixing times, and match existing rates for iid linear regression [16–19]. Kowshik et al.
[20], Gao and Raskutti [21] extend results of this flavor to parameter recovery of dynamics driven
by a generalized linear model. The extent to which this phenomenon—less ergodicity not impeding
learning—generalizes beyond linear and generalized linear models is a key motivation for our work.

Contributions We consider the realizable setting, where f⋆ is assumed to be contained in a known
function space F . Our results rest on two assumptions regarding both the covariate process {Xt}
and the function space F . The first assumption posits that the process {Xt} exhibits some mild form
of ergodicity (that is significantly weaker than the typical geometric ergodicity assumption). The
second assumption is a hypercontractivity condition that holds uniformly in F along the trajectory
{Xt}, extending contractivity assumptions for iid learning [3] to dependent processes.

Informally, our main result (Theorem 4.1, presented in Section 4), shows that under these two
assumptions, letting comp(F ) denote some (inverse) measure of complexity of F , the LSE f̂
satisfies:

E∥f̂ − f⋆∥2L2 ≲

(
dimensional factors × σ2

W

T

)comp(F)

+ higher order o(1/T comp(F)) terms. (2)

The first term in (2) matches existing LSE risk bounds for iid learning order-wise, and most impor-
tantly, does not include any dependence on the mixing-time of the process. Indeed, all mixing-time
dependencies enter only in the higher order term. Since this term scales as o(1/T comp(F)), it becomes
negligible after a finite burn-in time. This captures the crux of our results: on a broad class of
problems, given enough data, the LSE applied to time-series model (1) behaves as if all samples are
independent.

Section 5 provides several examples for which the trajectory hypercontractivity assumption holds.
When the covariate process {Xt} is generated by a finite-state irreducible and aperiodic Markov
chain, then any function class F satisfies the requisite condition. More broadly, the condition is
satisfied for any bounded function classes for which the L2 and L2+ε norms (along trajectories) are
equivalent. Next, we show that many infinite dimensional function spaces based on ℓ2(N) ellipsoids
satisfy our hypercontractivity condition, demonstrating that our results are not inherently limited to
finite-dimensional hypothesis classes.

To demonstrate the broad applicability of our framework, Section 6 instantiates our main result on two
system identification problems that have received recent attention in the literature: linear dynamical
systems (LDS), and systems with generalized linear model (GLM) transitions. For stable LDS, after
a polynomial burn-in time, we recover an excess risk bound that matches the iid rate. A more general
form of this result was recently established by Tu et al. [19]. For stable GLMs, also after a polynomial
burn-in time, we obtain the first excess risk bound for this problem which matches the iid rate, up to
logarithmic factors in various problem constants including the mixing-time. In both of these settings,
our excess risk bounds also yield nearly optimal rates for parameter recovery, matching known results
for LDS [16] and GLMs [20] in the stable case. In Appendix A, we show experimentally, using the
stable GLM model, that the trends predicted by our theory are indeed realized in practice.

2 Related work

While regression is a fundamental problem studied across many disciplines, our work draws its
main inspiration from Mendelson [3] and Simchowitz et al. [16]. Mendelson [3] shows that for
nonparametric iid regression, only minimal assumptions are required for one-sided isometry, and
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thus learning. Simchowitz et al. [16] build on this intuition and provide mixing-free rates for linear
regression over trajectories generated by a linear dynamical system. We continue this trend, by
leveraging one-sided isometry to show that mixing only enters as a higher order term in the rates of
the nonparametric LSE. More broadly, the technical developments we follow synthesize techniques
from two lines of work: nonparametric regression with iid data, and learning from dependent data.

Nonparametric regression with iid data. Beyond the seminal work of Mendelson [3], the works
[2, 22, 23] all study iid regression with square loss under various moment equivalence conditions. In
addition to moment equivalence, we build on the notion of offset Rademacher complexity defined
by [24] in the context of iid regression. Indeed, we show that a martingale analogue of the offset
complexity (described in [15]) characterizes the LSE rate in (1).

Learning from dependent data. As discussed previously, many existing results for learning from
dependent data reduce the problem to independent learning via the blocking technique [5], at the
expense of sample complexity deflation by the mixing-time. Nagaraj et al. [25] prove a lower
bound for linear regression stating that in a worst case agnostic model, this deflation is unavoidable.
Moreover, if the linear regression problem is realizable, Nagaraj et al. [25] provide upper and lower
bounds showing that the mixing-time only affects the burn-in time, but not the final risk. We note
that their upper bound is an algorithmic result that holds only for a specific modification of SGD.
Our work can be interpreted as an upper bound in the more general nonparametric setting, where
we put forth sufficient conditions to recover the iid rate after a burn-in time. Our result is algorithm
agnostic and directly applies to the empirical risk minimizer. Ziemann et al. [15] also study the
model (1), and provide an information-theoretic analysis of the nonparametric LSE. However, their
approach fundamentally reduces to showing two-sided concentration—something our work evades—
and therefore their bounds incur worst case dependency on the mixing-time. Roy et al. [13] extend
the results from Mendelson [3] to the dependent data setting. While following Mendelson’s argument
allows their results to handle non-realizability and heavy-tailed noise, their proof ultimately still
relies on two-sided concentration for both the “version space” and the “noise interaction”. Hence,
their rates end up degrading for slower mixing processes. We note that this is actually expected in the
non-realizable setting in light of the lower bounds in Nagaraj et al. [25].

The measure of dependencies we use for the process {Xt} is due to Samson [26]. Recently, Dagan
et al. [27] use a similar measure to study learning when the covariates have no obvious sequential
ordering (e.g., a graph structure or Ising model). However, our results are not directly comparable,
other than noting that their risk bounds degrade as the measure of correlation increases.

Results in linear system identification show that lack of ergodicity does not degrade parameter
recovery rates [16–19, 28, 29]. Beyond linear system identification, Kowshik et al. [20], Gao
and Raskutti [21], Sattar and Oymak [30], Foster et al. [31] prove parameter recovery bounds for
dynamical systems driven by a generalized linear model (GLM) transition. Most relevant are Kowshik
et al. [20] and Gao and Raskutti [21], who again show that the lack of ergodicity does not hamper
rates. Indeed, Gao and Raskutti [21] even manage to do so in a semiparametric setting with an
unknown link function. As mentioned previously, our main result instantiated to these problems
in the stable case matches existing excess risk and parameter recovery bounds for linear system
identification, and actually provides the sharpest known excess risk bound for the GLM setting
(when the link function is known). A more detailed comparison to existing LDS results is given in
Appendix I.4, and to existing GLM results in Appendix J.1.

3 Problem formulation

The time-series (1) evolves on two subsets of Euclidean space, X ⊂ RdX and Y ⊂ RdY , with Xt ∈ X
and Yt,Wt ∈ Y. Expectation (resp. probability) with respect to all the randomness of the underlying
probability space is denoted by E (resp. P). The Euclidean norm on Rd is denoted ∥ · ∥2, and the unit
sphere in Rd is denoted Sd−1. For a matrix M ∈ Rd1×d2 , ∥M∥op denotes the largest singular value,
σmin(M) the smallest non-zero singular value, and cond(M) = ∥M∥op/σmin(M) the condition
number. When the matrix M is symmetric, λmin(M) will be used to denote its minimum eigenvalue.

We assume there exists a filtration {Ft} such that (a) {Wt} is a square integrable martingale difference
sequence (MDS) with respect to this filtration, and (b) {Xt} is adapted to {Ft−1}. Further tail
conditions on this MDS will be imposed as necessary later on.
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Let F be a hypothesis space of functions mapping RdX to RdY . We assume that the true regression
function is an element of F (i.e., f⋆ ∈ F ), and that F is known to the learner. Given two compatible
function spaces F1,F2, let F1 − F2 ≜ {f1 − f2 | f1 ∈ F1, f2 ∈ F2}. A key quantity in
our analysis is the shifted function class F⋆ ≜ F − {f⋆}. Our results will be stated under the
assumption that F⋆ is star-shaped,1 although we will see that this is not too restrictive. For any
function f : X → RdY , we define ∥f∥∞ ≜ supx∈X∥f∥2. A function f is B-bounded if ∥f∥∞ ≤ B.
Similarly, a hypothesis class is B-bounded if each of its elements is B-bounded. For a bounded
class F and resolution ε > 0, the quantity N∞(F , ε) denotes the size of the minimal ε-cover of F
(contained in F ) in the ∥·∥∞-norm.

We fix a T ∈ N+, indicating the number of labeled observations {(Xt, Yt)}T−1
t=0 from the time-series

(1) that are available to the learner. The joint distribution of X0:T−1 ≜ (X0, . . . , XT−1) is denoted
PX . For p ≥ 1, we endow F −F with Lp(PX) norms: ∥f−g∥pLp ≜ 1

T

∑T−1
t=0 E∥f(Xt)−g(Xt)∥p2,

where expectation is taken with respect to PX . We will mostly be interested in L2(PX), hereafter
often just referred to as L2. This is the L2 space associated to the law of the uniform mixture over
X0:T−1 and thus, for iid data, coincides with the standard L2 space often considered in iid regression.
For a radius r > 0, we let B(r) denote the closed ball of F⋆ with radius r in L2, and we let ∂B(r)

denote its boundary: B(r) ≜
{
f ∈ F⋆

∣∣ ∥f∥2L2 ≤ r2
}

and ∂B(r) ≜
{
f ∈ F⋆

∣∣ ∥f∥2L2 = r2
}

.

The learning task is to produce an estimate f̂ of f⋆, which renders the excess risk ∥f̂ −f⋆∥2L2 as small
as possible. We emphasize that ∥f̂ − f⋆∥2L2 = 1

T

∑T−1
t=0 EX̃0:T−1

∥f̂(X̃t)− f⋆(X̃t)∥22 where X̃0:T−1

is a fresh, statistically independent, sample with the same law PX as X0:T−1. Namely, ∥f̂ − f⋆∥2L2

is a random quantity, still depending on the internal randomness of the learner and that of the sample
X0:T−1 used to generate f̂ . We study the performance of the least-squares estimator (LSE) defined
as f̂ ∈ argminf∈F

{
1
T

∑T−1
t=0 ∥Yt − f(Xt)∥22

}
, and measure the excess risk E∥f̂ − f⋆∥2L2 .

4 Results

This section presents our main result. We first detail the definitions behind our main assumptions in
Section 4.1. The main result and two corollaries are then presented in Section 4.2.

4.1 Hypercontractivity and the dependency matrix

Hypercontractivity. We first state our main trajectory hypercontractivity condition, which we will
use to establish lower isometry. The following definition is heavily inspired by recent work on
learning without concentration [3, 23].

Definition 4.1 (Trajectory (C,α)-hypercontractivity). Fix constants C > 0 and α ∈ [1, 2]. We say
that the tuple (F ,PX) satisfies the trajectory (C,α)-hypercontractivity condition if

E

[
1

T

T−1∑
t=0

∥f(Xt)∥42

]
≤ C

(
E

[
1

T

T−1∑
t=0

∥f(Xt)∥22

])α
for all f ∈ F . (3)

Here, the expectation is with respect to PX , the joint law of X0:T−1.

Condition (3) interpolates between boundedness and small-ball behavior. Indeed, if the class F is
B-bounded, then it satisfies trajectory (B2, 1)-hypercontractivity trivially. On the other hand, for
α = 2, (3) asks that ∥f∥L4 ≤ C1/4∥f∥L2 for trajectory-wise Lp-norms; by the Paley-Zygmund
inequality, this implies that a small-ball condition holds. Moreover, if for some ε ∈ (0, 2), the
trajectory-wise L2 and L2+ε norms are equivalent on F , then Proposition 5.2 (Section 5) shows that
the condition holds for a nontrivial α = 1 + ε/2 ∈ (1, 2). More examples are given in Section 5.

Our main results assume that (F⋆,PX) (or a particular subset of F⋆) satisfies the trajectory (C,α)-
hypercontractivity condition with α > 1, which we refer to as the hypercontractive regime. The
condition α > 1 is required in our analysis for the lower order excess risk term to not depend on

1A function class F is star-shaped if for any α ∈ [0, 1], f ∈ F implies αf ∈ F .
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the mixing-time. Our results instantiated for the α = 1 case directly correspond to existing work by
Ziemann et al. [15], and exhibit a lower order term that depends on the mixing-time.

Ergodicity via the dependency matrix. We now state the main definition we use to measure the
stochastic dependency of a process. Recall that for two measures µ, ν on the same measurable space
with σ-algebra A, the total-variation norm is defined as ∥µ− ν∥TV ≜ supA∈A |µ(A)− ν(A)|.
Definition 4.2 (Dependency matrix, Samson [26, Section 2]). The dependency matrix of a process
{Zt}T−1

t=0 with distribution PZ is the (upper-triangular) matrix Γdep(PZ) = {Γij}T−1
i,j=0 ∈ RT×T

defined as follows. Let Z0:i denote the σ-algebra generated by {Zt}it=0. For indices i < j, let

Γij =
√
2 sup
A∈Z0:i

∥PZj:T−1
(· | A)− PZj:T−1

∥TV. (4)

For the remaining indices i ≥ j, let Γii = 1 and Γij = 0 when i > j (below the diagonal).

Given the dependency matrix from Definition 4.2, we measure the dependency of the process PX by
the quantity ∥Γdep(PX)∥op. Notice that this quantity always satisfies 1 ≤ ∥Γdep(PX)∥op ≲ T . The
lower bound indicates that the process PX is independent across time. The upper bound indicates
that the process is fully dependent, e.g., Xt+1 = Xt for all t ∈ N.

Our results apply to cases where ∥Γdep(PX)∥2op grows sub-linearly in T– the exact require-
ment depends on the specific function class F . If the process {Xt} is geometrically ϕ-mixing,
then ∥Γdep(PX)∥2op is upper bounded by a constant that depends on the mixing-time of the pro-
cess, and is independent of T [26, Section 2]. Other examples, such as processes satisfying
Doeblin’s condition [32], are given in Samson [26, Section 2]. When {Xt} is a stationary
time-homogenous Markov chain with invariant distribution π, the coefficients Γij simplify to
Γ2
ij = 2 supA∈X∞

∥PXj−i(· | A) − π∥TV for indices j > i, where X∞ is the σ-algebra gener-
ated by X∞ ∼ π (cf. Proposition F.1). Hence, the requirement ∥Γdep(PX)∥2op ≲ T β for β ∈ (0, 1)

then corresponds to supA∈X∞
∥PXt(· | A)− π∥TV ≲ 1/t1−β for t ∈ N+. Jarner and Roberts [33]

give various examples and conditions to check polynomial convergence rates for Markov chains. We
also provide further means to verify ∥Γdep(PX)∥op = O(1) in Appendix F and Appendix G.

4.2 Learning with little mixing

A key quantity appearing in our bounds is a martingale variant of the notion of Gaussian complexity.
Definition 4.3 (Martingale offset complexity, cf. Liang et al. [24], Ziemann et al. [15]). For the
regression problem (1), the martingale offset complexity of a function space F is given by:

MT (F ) ≜ sup
f∈F

{
1

T

T−1∑
t=0

4⟨Wt, f(Xt)⟩ − ∥f(Xt)∥22

}
. (5)

Recall that F⋆ = F − {f⋆} is the centered function class and ∂B(r) = {f ∈ F⋆ | ∥f∥L2 = r} is
the boundary of the L2 ball B(r). The following theorem is the main result of this paper.
Theorem 4.1. Fix B > 0, C : (0, B] → R+, α ∈ [1, 2], and r ∈ (0, B]. Suppose that F⋆

is star-shaped and B-bounded. Let Fr ⊂ F⋆ be a r/
√
8-net of ∂B(r) in the supremum norm

∥·∥∞, and suppose that (Fr,PX) satisfies the trajectory (C(r), α)-hypercontractivity condition
(cf. Definition 4.1). Then:

E∥f̂ − f⋆∥2L2
≤ 8EMT (F⋆) + r2 +B2|Fr| exp

(
−Tr4−2α

8C(r)∥Γdep(PX)∥2op

)
. (6)

The assumption that F⋆ is star-shaped in Theorem 4.1 is not particularly restrictive. Indeed, The-
orem 4.1 still holds if we replace F⋆ by its star-hull star(F⋆) ≜ {γf | γ ∈ [0, 1], f ∈ F⋆}, and
∂B(r) with the boundary of the r-sphere of star(F⋆). In this case, we note that (a) the metric entropy
of star(F⋆) is well controlled by the metric entropy of F⋆,2 and (b) the trajectory hypercontractivity
conditions over a class F⋆ and its star-hull star(F⋆) are equivalent. Hence, at least whenever we are

2Specifically, logN∞(star(F⋆), ε) ≤ log(2B/ε) + logN∞(F⋆, ε/2) [34, Lemma 4.5].
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able to verify hypercontractivity over the entire class F⋆, little generality is lost. While most of our
examples are star-shaped, we will need the observations above when we work with generalized linear
model dynamics in Section 6.2.

To understand Theorem 4.1, we will proceed in a series of steps. We first need to understand the
martingale complexity term EMT (F⋆). Since F⋆ is B-bounded, if one further imposes the tail
conditions that the noise process {Wt} is a σ2

W -sub-Gaussian MDS,3 a chaining argument detailed in
Ziemann et al. [15, Lemma 4] shows that:

EMT (F⋆) ≲ inf
γ>0,δ∈[0,γ]

{
σ2
W logN∞(F⋆, γ)

T
+ σW

√
dYδ +

σW√
T

∫ γ

δ

√
logN∞(F⋆, s)ds+ γ2

}
.

(7)
In particular, this bound only depends on F⋆ and is independent of ∥Γdep(PX)∥2op. Furthermore, (7)
coincides with the corresponding risk bound for the LSE with iid covariates [24].

Given that EMT (F⋆) corresponds to the rate of learning from T iid covariates, the form of (6)
suggests that we choose r2 ≲ EMT (F⋆), so that the dominant term in (6) is equal to EMT (F⋆) in
scale. Given that r has been set, the only remaining degree of freedom in (6) is to set T large enough
(the burn-in time) so that the third term is dominated by r2. Thus, it is this third term in (6) that
captures the interplay between the function class F⋆ and the dependency measure ∥Γdep(PX)∥op.
We will now consider specific examples to illustrate how the burn-in time can be set.

Our first example supposes that (a) F⋆ satisfies the trajectory (C, 2)-hypercontractivity condition,
and that (b) F⋆ is nonparametric, but not too large:

∃ p > 0, q ∈ (0, 2) s.t. logN∞(F⋆, ε) ≤ p

(
1

ε

)q
for all ε ∈ (0, 1). (8)

Covering numbers of the form (8) are typical for sufficiently smooth function classes, e.g. the
space of k-times continuously differentiable functions mapping X → Y for any k ≥ ⌈dX/2⌉ [35].
If condition (8) holds and the noise process {Wt} is a sub-Gaussian MDS, inequality (7) yields
EMT (F⋆) ≲ T− 2

2+q , and hence we want to set r2 = o(T− 2
2+q ). Carrying out this program yields

the following corollary.

Corollary 4.1. Fix B ≥ 1, C > 0, p > 0, q ∈ (0, 2), and γ ∈ (0, q
2+q ). Suppose that F⋆ is

star-shaped, B-bounded, satisfies (8), and (F⋆,PX) satisfies the trajectory (C, 2)-hypercontractivity
condition. Suppose that T satisfies:

T ≥ max

{[
8(32p+ 1)C∥Γdep(PX)∥2op

] 1

1− q
2 ( 2

2+q
+γ) ,

[
4 logB ∨ 8

q
log

(
16

q

)] 1
q
2 ( 2

2+q
+γ)
}
.

(9)

Then, we have that:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆) + 2T−( 2
2+q+γ). (10)

The rate (10) of Corollary 4.1 highlights the fact that the first order term of the excess risk is
bounded by the martingale offset complexity EMT (F⋆). This behavior arises since the dependency
matrix Γdep(PX) only appears as the burn-in requirement (9). Here, the value of q constrains how
fast ∥Γdep(PX)∥2op is allowed to grow. In particular, condition (9) requires that ∥Γdep(PX)∥2op =

o(T 1− q
2+q ), otherwise the burn-in condition cannot be satisfied for any γ ∈ (0, q

2+q ).

In our next example, we consider both a variable hypercontractivity parameter C(r) that varies with
the covering radius r, and also allow α ∈ (1, 2] to vary. Since our focus is on the interaction of
the parameters in the hypercontractivity definition, we will consider smaller function classes with
logarithmic metric entropy. This includes parametric classes but also bounded subsets of certain
reproducing kernel Hilbert spaces. For such function spaces, one expects EMT (F⋆) ≤ Õ(T−1), and
hence we set r2 = o(T−1).

3That is, for any u ∈ SdY−1, λ ∈ R, and t ∈ N, we have E[exp(λ⟨Wt, u⟩) | Ft−1] ≤ exp(λ2σ2
W /2).
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Corollary 4.2. Fix B ≥ 1, C : (0, 1] → R+, α ∈ (1, 2], b1 ∈ [0, 1), b2 ∈ [0, 2), γ ∈ (0, 1), and
p, q ≥ 1. Suppose that F⋆ is star-shaped and B-bounded, and that for every r ∈ (0, 1), there exists a
r-net Fr of ∂B(r) in the ∥·∥∞-norm such that (a) log |Fr| ≤ p logq

(
1
r

)
and (b) (Fr,PX) satisfies

the trajectory (C(r), α)-hypercontractivity condition. Next, suppose the growth conditions hold:

∥Γdep(PX)∥2op ≤ T b1 , C(r) ≤ (1/r)b2 ∀r ∈ (0, 1).

As long as the constants α, b1, b2, and γ satisfy ψ := 1 − b1 − (1+γ)(4−2α+b2)
2 > 0, then for any

T ≥ poly q
ψ

(
p, logB, qψ

)
, we have:

E∥f̂ − f⋆∥2L2
≤ 8EMT (F⋆) + 2

(
1

T

)1+γ

.

Here polyq/ψ denotes a polynomial of degree O(q/ψ) in its arguments– the exact expression is given
in the proof. Proposition 5.4 in Section 5 gives an example of an ℓ2(N) ellipsoid which satisfies the
assumptions in Corollary 4.2. Corollary 4.2 illustrates the interplay between the function class F⋆,
the data dependence of the covariate process {Xt}, and the hypercontractivity constant α. Let us
consider a few cases. First, let us suppose that the process {Xt} is geometrically ergodic and that
C(r) is a constant, so that we can set b1 and b2 arbitrarily close to zero (at the expense of a longer
burn-in time). Then, the ψ > 0 condition simplifies to α > 2 − 1

1+γ . This illustrates that in the
hypercontractivity regime (α > 1), there exists a valid setting of (b1, b2, γ) that satisfies ψ > 0. Next,
let us consider the case where C(r) is again a constant, but {Xt} is not geometrically ergodic. Setting
b2 and γ arbitrarily close to zero, we have ψ > 0 simplifies to b1 < α−1. Compared to Corollary 4.1,
we see that in the case when α = 2, the parametric nature of F⋆ allows the dependency requirement
to be less strict: o(T ) in the parametric case versus o(T 1− q

2+q ) in the nonparametric case.

We conclude with noting that when α = 1, it is not possible to remove the dependence on
∥Γdep(PX)∥2op in the lowest order term. In this situation, our results recover existing risk bounds
from Ziemann et al. [15]– see Appendix H for a discussion.

5 Examples of trajectory hypercontractivity

In this section, we detail a few examples of trajectory hypercontractivity. Let us begin by considering
the simplest possible example: a finite hypothesis class. Let |F | <∞. Define for any fixed f ∈ F⋆

the constant cf ≜ E
[
1
T

∑T−1
t=0 ∥f(Xt)∥42

]
/
(
E
[
1
T

∑T−1
t=0 ∥f(Xt)∥22

])2
, where the ratio 0/0 is

taken to be 1. Then the class F⋆ is trajectory (maxf∈F⋆
cf , 2)-hypercontractive.

Similarly, processes evolving on a finite state space can also be verified to be hypercontractive.

Proposition 5.1. Fix a µ > 0. Let {µt}T−1
t=0 denote the marginal distributions of PX . Suppose

that the µt’s all share a common support of a finite set of atoms {ψ1, . . . , ψK} ⊂ RdX , and that
min0≤t≤T−1 min1≤k≤K µt(ψk) ≥ µ. For any class of functions F mapping {ψ1, . . . , ψK} → RdY ,
we have that F satisfies the trajectory (1/µ, 2)-hypercontractivity condition.

We remark that when PX is an aperiodic and irreducible Markov chain over a finite state space, the
condition µ > 0 is always valid even as T → ∞ [36]. In this case, our findings are related to Wolfer
and Kontorovich [37, Theorem 3.1], who show that in the high accuracy regime (i.e., after a burn-in
time), the minimax rate of estimating the transition probabilities of such a chain is not affected by the
mixing time (in their case the pseudo-spectral gap).

The examples considered thus far rely on the fact that under a certain degree of finiteness, the fourth
and second moment can be made uniformly equivalent. The next proposition relaxes this assumption.
Namely, if for some ε ∈ (0, 2] the L2 and L2+ε norms are equivalent on a bounded class F , this
class then satisfies a nontrivial hypercontractivity constant, α > 1 (cf. Mendelson [23]).
Proposition 5.2. Fix ε ∈ (0, 2] and c > 0. Suppose that F is B-bounded and that ∥f∥L2+ε ≤
c∥f∥L2 for all f ∈ F . Then F is trajectory (B2−εc2+ε, 1 + ε/2)-hypercontractive.

Next, we show that for processes {Xt} which converge fast enough to a stationary distribution, it
suffices to verify the hypercontractivity condition only over the stationary distribution. This mimics
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existing results in iid learning, where hypercontractivity is assumed over the covariate distribution
[3, 24]. We first recall the definition of the χ2 divergence between two measures. Let µ and ν be two
measures over the same probability space, and suppose that µ is absolutely continuous w.r.t. ν. The

χ2(µ, ν) divergence is defined as χ2(µ, ν) ≜ Eν

[(
dµ
dν − 1

)2]
.

Proposition 5.3. Fix positive r,Cχ2 ,CTV, andC8→2. Suppose that the process {Xt} has a stationary
distribution π. Let {µt} denote the marginal distributions of {Xt}, and suppose that the marginals
{µt} are absolutely continuous w.r.t. π. Assume the process is ergodic in the sense that:

sup
t∈N

χ2(µt, π) ≤ Cχ2 ,
1

T

T−1∑
t=0

∥µt − π∥TV ≤ CTVr
2. (11)

Suppose also that for all f ∈ F⋆: Eπ∥f(X)∥82 ≤ C8→2(Eπ∥f(X)∥22)4. Then the set ∂B(r) satisfies
(C, 2)-trajectory hypercontractivity with C = (1 +

√
Cχ2)

√
C8→2(1 + CTVB

2)2.

We further discuss the ergodicity condition (11) in Appendix E.3.1.

Ellipsoids in ℓ2(N). Given that equivalence of norms is typically a finite-dimensional phenomenon,
one may wonder whether examples of hypercontractivity exist in an infinite-dimensional setting.
Here we show that such examples are actually rather abundant. The key is that hypercontractivity
need only be satisfied on an ε-cover of F⋆. As discussed above, every finite hypothesis class (and
thus every finite cover) is automatically (C, 2)-hypercontractive for some C > 0. The issue is to
ensure that this constant does not grow too fast as one refines the cover. The next result shows that
the growth can be controlled for ℓ2(N) ellipsoids of orthogonal expansions. By Mercer’s theorem,
these ellipsoids correspond to unit balls in reproducing kernel Hilbert spaces [4, Corollary 12.26].
Proposition 5.4. Fix positive constants β, B, K, and q. Fix a base measure λ on X and suppose
that {ϕn}n∈N+

is an orthonormal system in L2(λ) satisfying ∥ϕn∥∞ ≤ Bnq, ∀n ∈ N. Suppose

µj ≤ e−2βj and define the ellipsoid: P ≜
{
f =

∑∞
j=1 θjϕj

∣∣∣∑∞
j=1

θ2j
µj

≤ 1
}
. Fix ε > 0, and

let mε denote the smallest positive integer solution to m ≥ 2
β

∣∣∣log ( 8B
βε

)∣∣∣ subject to m
logm ≥ q

β .

Let P ⊂ P be an arbitrary subset. There exists an ε-cover Pε of P in the ∥·∥∞-norm satisfying

log |Pε| ≤ mε log
(
1 +

8Bmqε
ε

)
. Further, let {µt}T−1

t=0 be the marginal distributions of PX and

suppose that max0≤t≤T−1 max
{
dµt
dλ ,

dλ
dµt

}
≤ K. Then, as long as ε ≤ inff∈P ∥f∥L2(PX), (Pε,PX)

is trajectory (Cε, 2)-hypercontractive with Cε = (1 + 7K3B4m4q+2
ε ).

Proposition 5.4 states that when F⋆ ⊆ P , then (∂B(r),PX) is (C(r), 2)-hypercontractive where
C(r) = Cr only grows poly-logarithmically in 1/r and thus verifies the assumptions of Corollary 4.2.

6 System identification in parametric classes

To demonstrate the sharpness of our main result, we instantiate Theorem 4.1 on two parametric
system identification problems which have received recent attention in the literature: linear dynamical
systems (LDS) and generalized linear model (GLM) dynamics.

6.1 Linear dynamical systems

Consider the setting where the process {Xt}t≥0 is described by a linear dynamical system:

Xt+1 = A⋆Xt +HVt, X0 = HV0, Vt ∈ RdV , Vt ∼ N(0, I), Vt ⊥ Vt′ ∀ t ̸= t′. (12)

In this setting, the system identification problem is to recover the dynamics matrix A⋆ from {Xt}T−1
t=0

evolving according to (12). We derive rates for recovering A⋆ by first deriving an excess risk bound
on the least-squares estimator via Theorem 4.1, and then converting the risk bound to a parameter
error bound. Since Theorem 4.1 relies on the process being ergodic, we consider the case when A⋆ is
stable. We start by stating a few standard definitions.
Definition 6.1. Fix a k ∈ {1, . . . , dX}. The pair (A,H) is k-step controllable if
rank

([
H AH A2H . . . Ak−1H

])
= dX.
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For t ∈ N, let the t-step controllability gramian be defined as Γt ≜
∑t
k=0A

kHHT(Ak)T. Since the
noise in (12) serves as the “control” in this setting, the controllability gramian also coincides with the
covariance at time t, i.e., E[XtX

T
t ] = Γt.

Definition 6.2. Fix a τ ≥ 1 and ρ ∈ (0, 1). A matrix A is called (τ, ρ)-stable if for all k ∈ N we
have ∥Ak∥op ≤ τρk.

With these definitions in place, we now state our result for linear dynamical system.
Theorem 6.1. Suppose that the matrix A⋆ in (12) is (τ, ρ)-stable (cf. Definition 6.2), and that the
pair (A⋆, H) is κ-step controllable (cf. Definition 6.1). Suppose also that ∥A⋆∥F ≤ B for some
B ≥ 1. Consider the linear hypothesis class and true regression function:

F ≜ {f(x) = Ax | A ∈ RdX×dX , ∥A∥F ≤ B}, f⋆(x) = A⋆x. (13)

Suppose that model (1) follows the process described in (12) with Yt = Xt+1. There exists T0 such
that the LSE with hypothesis class F achieves for all T ≥ T0:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆) +
4∥H∥2opd2X

T
. (14)

Furthermore, T0 satisfies for a universal positive constant c0:

T0 = c0
τ4∥H∥4opd2X

(1− ρ)2λmin(Γκ−1)2

[
κ2 ∨ 1

(1− ρ)2

]
polylog

(
B, dX, τ, ∥H∥op,

1

λmin(Γκ−1)
,

1

1− ρ
,

)
.

(15)

Appendix I.4 contains a more detailed discussion about the results in Theorem 6.1. There, we
argue that the term EMT (F⋆) in (14) is proportional to ∥H∥2opd2X/T implying that the final rate is
proportional to the minimax rate, i.e., E∥f̂ − f⋆∥2L2 ≲ ∥H∥2opd2X/T .

6.2 Generalized linear models

We next consider the following non-linear dynamical system:

Xt+1 = σ(A⋆Xt) +HVt, X0 = HV0, Vt ∈ RdX , Vt ∼ N(0, I), Vt ⊥ Vt′ ∀ t ̸= t′. (16)

Here, A⋆ ∈ RdX×dX is the dynamics matrix and σ : RdX → RdX is a coordinate wise link function.
The notation σ will also be overloaded to refer to the individual coordinate function mapping R → R.
We study the system identification problem where the link function σ is assumed to be known, but
the dynamics matrix A⋆ is unknown and to be recovered from {Xt}T−1

t=0 . We will apply Theorem 4.1
to derive a nearly optimal excess risk bound for the LSE on this problem in the stable case.

We start by stating a few assumptions that are again standard in the literature [20, 31].
Assumption 6.1. Suppose that A⋆, H , and σ from the GLM process (16) satisfy:

1. (One-step controllability). The matrix H ∈ RdX×dX is full rank.

2. (Link function regularity). The link function σ : R → R is 1-Lipschitz, satisfies ϕ(0) = 0,
and there exists a ζ ∈ (0, 1] such that |σ(x)− σ(y)| ≥ ζ|x− y| for all x, y ∈ R.

3. (Lyapunov stability). There exists a positive definite diagonal matrix P⋆ ∈ RdX×dX satisfying
P⋆ ≽ I and a ρ ∈ (0, 1) such that AT

⋆P⋆A⋆ ≼ ρP⋆.

With our assumptions in place, we are ready to instantiate our main result on the process (16).
Theorem 6.2. Suppose the model (1) follows the process described in (16) with Yt = Xt+1. Assume
that the process (16) satisfies Assumption 6.1. Fix a B ≥ 1, and suppose that ∥A⋆∥F ≤ B. Consider
the hypothesis class and true regression function:

F ≜ {f(x) = σ(Ax) | A ∈ RdX×dX , ∥A∥F ≤ B}, f⋆(x) = σ(A⋆x). (17)

There exists a T0 and a universal positive constant c0 such that the LSE with hypothesis class F
achieves for all T ≥ T0:

E∥f̂ − f⋆∥2L2 ≤ c0
∥H∥2opd2X

T
log

(
max

{
T,B, dX, ∥P⋆∥op, ∥H∥op,

1

1− ρ

})
. (18)
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Furthermore, for a universal constant c1 > 0, we may choose T0 that satisfies:

T0 = c1 max

(
∥P⋆∥2opcond(H)4d4X

ζ4(1− ρ)6
,

1

∥H∥1/3op

)
polylog

(
B, dX, ∥P⋆∥op, cond(H),

1

ζ
,

1

1− ρ

)
.

(19)

Further discussion regarding Assumption 6.1 and Theorem 6.2, including a more detailed comparison
with existing results, can be found in Appendix J.3.

7 Conclusion

We developed a framework for showing when the mixing-time of the covariates plays a relatively
small role in the rate of convergence of the least-squares estimator. In many situations, after a finite
burn-in time, this learning procedure exhibits an excess risk that scales as if all the samples were
independent (Theorem 4.1). As a byproduct of our framework, by instantiating our results to system
identification for dynamics with generalized linear model transitions (Section 6.2), we derived the
sharpest known excess risk rate for this problem; our rates are nearly minimax optimal after only a
polynomial burn-in time.

To arrive at Theorem 4.1, we leveraged insights from Mendelson [3] via a one-sided concentration
inequality (Theorem B.2). As mentioned in Section 4.1, hypercontractivity is closely related to the
small-ball condition [3]. Such conditions can be understood as quantitative identifiability conditions
by providing control of the “version space” (cf. Mendelson [3]). Given that identifiability conditions
also play a key role in linear system identification—a setting in which a similar phenomenon as
studied here had already been reported—this suggests an interesting direction for future work: are
such conditions actually necessary for learning with little mixing?
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A Numerical experiments

We conduct a simple numerical simulation to illustrate the phenomenon of learning with little mixing
empirically. We consider system identification of the GLM dynamics described in Section 6.2.

We first describe how the covariate process {Xt} is generated. We set dX = 25. The true dynamic
matrix A⋆ is randomly sampled from the distribution described in Section 7 of Kowshik et al.
[20]. Specifically, A⋆ = UΣUT, where U is uniform from the Haar measure on the space of
orthonormal dX × dX matrices, and Σ = diag( ρ, . . . , ρ︸ ︷︷ ︸

⌊dX/2⌋ times

, ρ/3, . . . , ρ/3). We vary ρ ∈ {0.9, 0.99}

for this experiment. Next, we set the activation function σ to be the LeakyReLU with slope 0.5, i.e.,
σ(x) = 0.5x1{x < 0} + x1{x ≥ 0}. Observe that these dynamics satisfy Assumption 6.1 with
ζ = 0.5, and where the Lyapunov matrix P can be taken to be identity, since ∥A⋆∥op = ρ < 1. Next,
we generateX0 ∼ N(0, IdX), andXt+1 = σ(A⋆Xt)+Wt withWt ∼ N(0, 0.01IdX) andWt ⊥Wt′

for t ̸= t′. From this trajectory, the labelled dataset is {(Xt, Yt)}T−1
t=0 with Yt = Xt+1.

To study the effects of the correlation from a single trajectory {Xt} for learning, we consider the
following independent baseline motivated by the Ind-Seq-LS baseline described in Tu et al. [19].
Let µt denote the marginal distribution of Xt. We sample X̄t ∼ µt independently across time,
and sample Ȳt | X̄t from the conditional distribution N(σ(A⋆X̄t), 0.01IdX); the labelled dataset is
{(X̄t, Ȳt)}T−1

t=0 . This ensures that the L2 risk of a fixed hypothesis f(x) = σ(Ax) is the same under
both the independent baseline and the single trajectory distribution, so that our experiment singles out
the effect of learning from correlated data. In practice, each X̄t is sampled from a new independent
rollout up to time t.

Given a dataset {(Xt, Yt)}T−1
t=0 , we search for the empirical risk minimizer (ERM) of the loss

Â = argminA∈RdX×dX

{
1

T

T−1∑
t=0

∥σ(AXt)− Yt∥22

}
(20)

by running scipy.optimize.minimize with the L-BFGS-B method, using the default linesearch
and termination criteria options. To calculate the L2 excess risk 1

T

∑T−1
t=0 E∥σ(ÂXt)− σ(A⋆Xt)∥22

of a hypothesis Â, we draw 1000 new trajectories and average the excess risk over these trajectories.
The experimental code is implemented with jax [38], and run using the CPU backend with float64
precision on a single machine.4
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Figure 1: L2 excess risk as a function of dataset length T of the empirical risk minimizer on the
single trajectory (Trajectory) dataset versus the independent baseline (Ind Baseline) dataset.

The results of this experiment are shown in Figure 1 and Figure 2. In Figure 1, we plot the L2 excess
risk of the ERM Â from (20) on both the trajectory dataset {(Xt, Yt)} and the independent baseline
dataset {(X̄t, Ȳt)}, varying ρ ∈ {0.9, 0.99}. The shaded region indicates ± one standard deviation
from the mean over 20 training datasets. In Figure 2, we plot the L2 excess risk ratio of the estimator

4Code available at: https://github.com/google-research/google-research/tree/master/learning_with_little_mixing

17

https://github.com/google-research/google-research/tree/master/learning_with_little_mixing


200 400 600 800 1000
T

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L2  E
xc

es
s R

isk
 R

at
io

= 0.9
= 0.99

Ideal

1000 2000 3000 4000 5000
T

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2: Ratio of the L2 excess risk as a function of dataset length T of the empirical risk minimizer
(ERM) on the single trajectory dataset over the ERM on the independent baseline dataset. The dashed
green curve (Ideal) marks a ratio of exactly one.

Â from the single trajectory dataset over the estimator Â from the independent baseline trajectory,
again varying ρ ∈ {0.9, 0.99}. Here, the shaded region is constructed using ± one standard deviation
of the numerator and denominator taken over 20 training datasets.

Figure 1 and Figure 2 illustrate two different trends, which are both predicted by our theory. First, for
a fixed ρ, as T increases, the L2 excess risk of the ERM on the trajectory dataset approaches that of
the ERM on the independent dataset. This illustrates the learning with little mixing phenomenon,
where despite correlations in the covariates {Xt} of the trajectory dataset across time, the statistical
behavior of the ERM approaches that of the ERM on the independent dataset where the covariates
{X̄t} are independent across time. Next, for a fixed T , the burn-in time increases as ρ approaches
one. That is, systems that mix slower have longer burn-in times.

B Proof techniques

In this section, we highlight the main ideas behind the proof of Theorem 4.1. The full details can be
found in the appendix. We start with a key insight from Mendelson [3]: establishing a one-sided in-
equality between the empirical versus true risk is substantially easier than the corresponding two-sided
inequality. Recall that the closed ball of radius r is B(r) =

{
f ∈ F⋆

∣∣∣ 1
T

∑T−1
t=0 E∥f(Xt)∥22 ≤ r2

}
.

We identify conditions which depend mildly on ∥Γdep(PX)∥op, so that with high probability we have:

∀f ∈ F⋆ \B(r), E

[
1

T

T−1∑
t=0

∥f(Xt)∥22

]
≲

1

T

T−1∑
t=0

∥f(Xt)∥22. (21)

Once this lower isometry condition (21) holds, we bound the empirical excess risk, the RHS of
inequality (21), by a version of the basic inequality of least squares [15, 24]. This leads to an upper
bound of the empirical excess risk by the martingale complexity term (Definition 4.3). As our
innovation mainly lies in establishing the lower isometry condition (21), we focus on this component
for the remainder of the proof outline.

Lower isometry The key tool we use is the following exponential inequality, which controls the
lower tail of sums of non-negative dependent random variables via the dependency matrix Γdep(PX).
Theorem B.1 (Samson [26, Theorem 2]). Let g : X → R be non-negative. Then for any λ > 0:

E exp

(
−λ

T−1∑
t=0

g(Xt)

)
≤ exp

(
−λ

T−1∑
t=0

Eg(Xt) +
λ2∥Γdep(PX)∥2op

∑T−1
t=0 Eg2(Xt)

2

)
. (22)

We note that Samson [26, Theorem 2] actually proves a much stronger statement than Theorem B.1
(a Talagrand-style uniform concentration inequality), from which Theorem B.1 is a byproduct. With
Theorem B.1 in hand, the following proposition allows us to relate hypercontractivity to lower
isometry.
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Proposition B.1. Fix C > 0 and α ∈ [1, 2]. Let g : X → R be a non-negative function satisfying

E

[
1

T

T−1∑
t=0

g2(Xt)

]
≤ C

(
E

[
1

T

T−1∑
t=0

g(Xt)

])α
. (23)

Then we have:

P

(
T−1∑
t=0

g(Xt) ≤
1

2

T−1∑
t=0

Eg(Xt)

)
≤ exp

− T

8C∥Γdep(PX)∥2op

(
1

T

T−1∑
t=0

Eg(Xt)

)2−α .

Now fix an f ∈ F⋆ \B(r), and put g(x) = ∥f(x)∥22. Substituting g into (23) yields the trajectory
hypercontractivity condition (3) in Definition 4.1. Thus, Proposition B.1 establishes the lower
isometry condition (21) for any fixed function. Hence, it remains to take a union bound over a
supremum norm cover of F⋆ \B(r) at resolution r. It turns out that it suffices to instead cover the
boundary ∂B(r) since F⋆ is star-shaped. Carrying out these details leads to the main lower isometry
result.

Theorem B.2. Fix constants α ∈ [1, 2] and C, r > 0. Let F⋆ be star-shaped, and suppose that
there exists a r/

√
8-net Fr of ∂B(r) in the ∥·∥∞-norm such that (Fr,PX) satisfies the trajectory

(C,α)-hypercontractivity condition. Then the following lower isometry holds:

P

(
sup

f∈F⋆\B(r)

{
1

T

T−1∑
t=0

∥f(Xt)∥22 −E
1

8T

T−1∑
t=0

∥f(Xt)∥22

}
≤ 0

)
≤ |Fr| exp

(
−Tr4−2α

8C∥Γdep(PX)∥2op

)
.

B.1 Handling unbounded trajectories

Our main result Theorem 4.1 requires boundedness of both the hypothesis class F and the covariate
process {Xt} to hold. However, when this does not hold, Theorem 4.1 can often still be applied via a
careful truncation argument. In this section, we outline the key ideas of this argument, with the full
details given in Appendix G.

For concreteness, let us consider a Markovian process driven by Gaussian noise. Let {Wt}t≥0 and
{W ′

t}t≥0 be sequences of iid N(0, I) vectors in RdX . Fix a dynamics function f : RdX → RdX and
truncation radius R > 0. Define the truncated noise process {W̄t}t≥0 as W̄t ≜W ′

t1{∥W ′
t∥2 ≤ R},

and denote the original process and its truncated process by:

Xt+1 = f(Xt) +HWt, X0 = HW0, (original process) (24a)

X̄t+1 = f(X̄t) +HW̄t, X̄0 = HW̄0. (truncated process) (24b)

Setting R appropriately, it is clear that the original process (24a) coincides with the truncated process
(24b) with high probability by standard Gaussian concentration inequalities. Furthermore, the
truncated noise process {HW̄t} remains a martingale difference sequence due to the symmetry of
the truncation. Additionally, since {HW̄t} is bounded, if f is appropriately Lypaunov stable then the
process {X̄t} becomes bounded. In turn any class F containing continuous functions is bounded as
well on (24b). Hence, the LSE f̂ on (24a) can be controlled by the LSE f̄ on (24b).

So far, this is a straightforward reduction. However, a subtle point arises in applying Theorem 4.1 to
the LSE f̄ on (24b): the dependency matrix Γdep now involves the truncated process (24b) instead
of the original process (24a). This is actually necessary for this strategy to work, as the supremum
in the dependency matrix coefficients (4) is now over the truncated process {X̄t}, instead of the
original process {Xt} which is unbounded. However, there is a trade-off, as bounding the coefficients
for {X̄t} is generally more complex than for {Xt}.5 Nevertheless, a coupling argument allows us
to switch back to bounding the dependency matrix coefficients for {Xt}, but crucially keep the
supremum over the truncated {X̄t}. This reduction substantially broadens the scope of Theorem 4.1
without any modification to the proof.

5The clearest example of this is when the dynamics function f is linear: in this case, {Xt} is jointly Gaussian
(and hence (4) can be bounded by closed-form expressions), whereas {X̄t} is not due to the truncation operator.
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C Proof of Theorem 4.1

C.1 Proof of Lemma B.1

Let us abbreviate Γ = Γdep(PX). A Chernoff argument yields

P

(
T−1∑
t=0

g(Xt) ≤
1

2

T−1∑
t=0

Eg(Xt)

)

≤ inf
λ≥0

E exp

(
λ

2

T−1∑
t=0

Eg(Xt)− λ

T−1∑
t=0

g(Xt)

)
(Chernoff)

≤ inf
λ≥0

exp

(
−λ
2

T−1∑
t=0

Eg(Xt) +
λ2∥Γ∥2op

∑T−1
t=0 Eg2(Xt)

2

)
(Proposition B.1)

= exp

−

(∑T−1
t=0 Eg(Xt)

)2
8∥Γ∥2op

∑T−1
t=0 Eg2(Xt)

 (
λ =

∑T−1
t=0 Eg(Xt)

2∥Γ∥2op
∑T−1
t=0 Eg2(Xt)

)

≤ exp

− T

8C∥Γ∥2op
×

(
1

T

T−1∑
t=0

Eg(Xt)

)2−α , (Using (23))

as per requirement. ■

C.2 Proof of Theorem B.2

The hypothesis that F⋆ is star-shaped allows us to rescale, so it suffices to prove the result for
f ∈ ∂B(r). Namely, if f ∈ F⋆ \ B(r) then r

∥f∥L2
< 1 and so rf/∥f∥L2 ∈ ∂B(r) by the star-

shaped hypothesis. Recall that Fr ⊂ ∂B(r) is a r/
√
8-net of ∂B(r) in the supremum norm. Hence,

by construction and parallellogram, for every f ∈ ∂B(r), there exists fi ∈ Fr such that:

1

T

T−1∑
t=0

∥f(Xt)∥22 ≥ 1

2T

T−1∑
t=0

∥fi(Xt)∥22 −
r2

8
. (25)

Define the event:

E ≜
⋃
f∈Fr

{
1

T

T−1∑
t=0

∥f(Xt)∥22 ≤ E
1

2T

T−1∑
t=0

∥f(Xt)∥22

}
.

Invoking Lemma B.1 with g(x) = ∥f(x)∥22 for f ∈ Fr, by a union bound it clear that

P(E) ≤ |Fr| exp
(

−Tr4−2α

8C∥Γdep(PX)∥2op

)
. (26)

Fix now arbitrary f ∈ ∂B(r). On the complement Ec it is true that

1

T

T−1∑
t=0

∥f(Xt)∥22 ≥ 1

2T

T−1∑
t=0

∥fi(xt)∥22 −
r2

8
(we may find such an fi by observation (25))

≥ E
1

4T

T−1∑
t=0

∥fi(Xt)∥22 −
r2

8
(by definition of E)

=
r2

4
− r2

8
(fi ∈ ∂B(r))

≥ r2

8
.
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Since f ∈ ∂B(r) was arbitrary, by virtue of the estimate (26) we have that:

P

(
sup

f∈∂B(r)

{
1

T

T−1∑
t=0

∥f(Xt)∥22 −
r2

8

}
≤ 0

)
≤ |Fr| exp

(
−Tr4−2α

8C∥Γdep(PX)∥2op

)
.

The result follows by rescaling. ■

C.3 Proof of Theorem 4.1

Define the event:

Br ≜

(
sup

f∈F⋆\B(r)

{
1

T

T−1∑
t=0

∥f(Xt)∥22 −E
1

8T

T−1∑
t=0

∥f(Xt)∥22

}
≤ 0

)
.

By definition, on the complement of Br we have that:

∥f̂ − f⋆∥2L2 ≤ r2 ∨ 8

T

T−1∑
t=0

∥f̂(Xt)− f⋆(Xt)∥22 ≤ r2 +
8

T

T−1∑
t=0

∥f̂(Xt)− f⋆(Xt)∥22. (27)

Therefore, we can decompose E∥f̂ − f⋆∥2L2 as follows:

E∥f̂ − f⋆∥2L2 = E1Br∥f̂ − f⋆∥2L2 +E1Bcr∥f̂ − f⋆∥2L2

≤ B2P(Br) + r2 + 8E

[
1

T

T−1∑
t=0

∥f̂(Xt)− f⋆(Xt)∥22

]
. (B-bdd & ineq. (27))

(28)
Theorem B.2 informs us that:

P(Br) ≤ |Fr| exp
(

−Tr4−2α

8C∥Γdep(PX)∥2op

)
. (29)

On the other hand, we have by the basic inequality (as in [24]):

1

T

T−1∑
t=0

∥f̂(Xt)− f⋆(Xt)∥22 ≤ 1

T
sup
f∈F⋆

T−1∑
t=0

4⟨Wt, f(Xt)⟩ − ∥f(Xt)∥22 (30)

Combining inequalities (28), (29) and (30) we conclude:

E∥f̂ − f⋆∥2L2 ≤ 8E

[
sup
f∈F⋆

1

T

T−1∑
t=0

4⟨Wt, f(Xt)⟩ − ∥f(Xt)∥22

]

+ r2 +B2|Fr| exp
(

−Tr4−2α

8C∥Γdep(PX)∥2op

)
,

as per requirement. ■

D Proofs for corollaries in Section 4

D.1 Proof of Corollary 4.1

We set r2 = 1

T
2

2+q
+γ

. We first use Vershynin [39, Exercise 4.2.10] followed by (8) to bound:

logN∞(∂B(r), r/
√
8) ≤ logN∞(F⋆, r/(2

√
8)) ≤ p

(
2
√
8

r

)q
.

Therefore:

B2N∞(∂B(r), r/
√
8) exp

(
−T

8C∥Γdep(PX)∥2op

)
≤ B2 exp

(
32pT

q
2+q+

qγ
2 − T

8C∥Γdep(PX)∥2op

)
.
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We want to solve for T such that:

B2 exp

(
32pT

q
2+q+

qγ
2 − T

8C∥Γdep(PX)∥2op

)
≤ 1

T
2

2+q+γ
.

To do this, we first require that:

32pT
q

2+q+
qγ
2 − T

8C∥Γdep(PX)∥2op
≤ −T

q
2+q+

qγ
2 ⇐⇒ T 1−( q

2+q+
qγ
2 ) ≥ 8(32p+ 1)C∥Γdep(PX)∥2op

⇐⇒ T ≥
[
8(32p+ 1)C∥Γdep(PX)∥2op

] 1

1− q
2 ( 2

2+q
+γ) .

Now, with this requirement, we are left with the sufficient condition:

B2 exp
(
−T

q
2+q+

qγ
2

)
≤ 1

T
2

2+q+γ
⇐⇒ T

q
2+q+

qγ
2 ≥ log(B2T

2
2+q+γ).

It suffices to require that:

T
q

2+q+
qγ
2 ≥ 4 logB ⇐⇒ T ≥ (4 logB)

1
q
2 ( 2

2+q
+γ) ,

T
q

2+q+
qγ
2 ≥ 2 log(T

2
2+q+γ) =

4

q
log(T

q
2+q+

qγ
2 ).

By Simchowitz et al. [16, Lemma A.4], the bottom inequality holds when:

T
q

2+q+
qγ
2 ≥ 8

q
log

(
16

q

)
.

The claim now follows from Theorem 4.1. ■

D.2 Proof of Corollary 4.2

We set r2 = 1/T 1+γ . By the given assumptions, we can construct a r/
√
8-net Fr of ∂B(r) in the

∥·∥∞-norm that (a) satisfies

log |Fr| ≤ p logq

(√
8

r

)
,

and (b) satisfies the trajectory (C(r/
√
8), α)-hypercontractivity condition. Recalling the bounds

∥Γdep(PX)∥2op ≤ T b1 and C(r) ≤ (1/r)b2 , we have:

B2|Fr| exp

(
−Tr4−2α

8C(r/
√
8)∥Γdep(PX)∥2op

)
≤ B2 exp

{
p logq

(√
8

r

)
− T 1−b1r4−2α+b2

81+b2/2

}

= B2 exp

{
p logq

(√
8T

1+γ
2

)
− T 1−b1− (1+γ)(4−2α+b2)

2

81+b2/2

}

= B2 exp

{
p logq

(√
8T

1+γ
2

)
− Tψ

81+b2/2

}
≤ B2 exp

{
p logq

(√
8T

1+γ
2

)
− Tψ

64

}
.

Above, the last inequality holds since b2 < 2. Now, we choose T large enough so that:

p logq
(√

8T
1+γ
2

)
− Tψ

64
≤ − Tψ

128
⇐⇒ Tψ ≥ 128p logq

(√
8T

1+γ
2

)
⇐⇒ Tψ/q ≥ (128p)1/q

(
log(

√
8) +

1 + γ

2ψ/q
log(Tψ/q)

)
.

Thus, it suffices to require that:

Tψ/q ≥ (128p)1/q log 8, Tψ/q ≥ (128p)1/q
1 + γ

ψ/q
log(Tψ/q).

22



By Simchowitz et al. [16, Lemma A.4], the right hand side inequality holds when:

Tψ/q ≥ 2(128p)1/q
1 + γ

ψ/q
log

(
4(128p)1/q

1 + γ

ψ/q

)
.

We finish the proof by finding T such that:

B2 exp

(
−Tψ

128

)
≤ 1

T 1+γ
⇐⇒ Tψ ≥ 128 log(B2T 1+γ)

⇐⇒ Tψ ≥ 256 logB + 128
(1 + γ)

ψ
log(Tψ).

Thus, it suffices to require that:

Tψ ≥ 512 logB, Tψ ≥ 256
(1 + γ)

ψ
log(Tψ).

Another application of Simchowitz et al. [16, Lemma A.4] yields that the latter inequality holds if:

Tψ ≥ 512
1 + γ

ψ
log

(
1024

1 + γ

ψ

)
.

Combining all our requirements on T , we require that T ≥ max{T1, T2}, with:

T1 ≜ max

{
(128p)1/ψ(log 8)q/ψ, (128p)1/ψ

[
4q

ψ
log

(
(128p)1/q

8q

ψ

)]q/ψ}
,

T2 ≜ max

{
(512 logB)1/ψ,

[
1024

ψ
log

(
2056

ψ

)]1/ψ}
.

■

E Proofs for Section 5

E.1 Proof of Proposition 5.1

For notational brevity, we make the identification of the atoms {ψ1, . . . , ψK} with the integers
{1, . . . ,K}. Fix a function f : {1, . . . ,K} → RdY . For any time indices t1, t2 ∈ {0, . . . , T − 1}:

E∥f(Xt1)∥22E∥f(Xt2)∥22 =

(
K∑
k=1

∥f(k)∥22µt1(k)

)(
K∑
k=1

∥f(k)∥22µt2(k)

)

=

K∑
k1=1

K∑
k2=1

∥f(k1)∥22∥f(k2)∥22µt1(k1)µt2(k2) ≥
K∑

k1=1

∥f(k1)∥42µt1(k1)µt2(k1)

≥ µ

K∑
k1=1

∥f(k1)∥42µt1(k1) = µE∥f(Xt1)∥42.

Therefore:(
1

T

T−1∑
t=0

E∥f(Xt)∥22

)2

=
1

T 2

T−1∑
t1=0

T−1∑
t2=0

E∥f(Xt1)∥2E∥f(Xt2)∥22

≥
µ

T 2

T−1∑
t1=0

T−1∑
t2=0

E∥f(Xt1)∥42 =
µ

T

T−1∑
t1=0

E∥f(Xt1)∥42.

The claim now follows since we assume µ > 0. ■
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E.2 Proof of Proposition 5.2

Recall that E
[
1
T

∑T−1
t=0 ∥f(Xt)∥p2

]
= ∥f∥pLp for p ≥ 1. We estimate the left hand side of inequality

(3) as follows:

E

[
1

T

T−1∑
t=0

∥f(Xt)∥42

]
= E

[
1

T

T−1∑
t=0

∥f(Xt)∥2−ε2 ∥f(Xt)∥2+ε2

]

≤ B2−εE

[
1

T

T−1∑
t=0

∥f(Xt)∥2+ε2

]
(B-bounded)

= B2−ε∥f∥2+εL2+ε

≤ B2−ε(c∥f∥L2)2+ε (L2 − L2+ε-equivalence)

= B2−εc2+ε∥f∥2+εL2

= B2−εc2+ε

(
E

[
1

T

T−1∑
t=0

∥f(Xt)∥22

])1+ε/2

.

The result now follows. ■

E.3 Proof of Proposition 5.3

We first state an auxiliary proposition.
Proposition E.1. Let µ and ν be distributions satisfying µ≪ ν. Let g be any measurable function
such that Eνg2 <∞. We have:

Eµg −Eνg ≤
√
Eνg2

√
χ2(µ, ν).

Proof. By Cauchy-Schwarz:

Eµg −Eνg =

∫
g

(
dµ

dν
− 1

)
dν ≤

√∫
g2dν

√∫ (
dµ

dν
− 1

)2

dν =
√

Eνg2
√
χ2(µ, ν).

■

We can now complete the proof of Proposition 5.3. Fix any f ∈ F⋆. First, we note that the the
condition (5.3) implies:

Eπ∥f∥42 ≤ (Eπ∥f∥82)1/2 ≤ (C8→2(Eπ∥f∥22)4)1/2 =
√
C8→2(Eπ∥f∥22)2. (31)

Therefore, for any f ∈ F⋆ and any t ∈ N:

E∥f(Xt)∥42 ≤ Eπ∥f∥42 +
√
Eπ∥f∥82

√
χ2(µt, π) using Proposition E.1

≤ (1 +
√
Cχ2)

√
C8→2(Eπ∥f∥22)2 using (11), (5.3), and (31). (32)

Now let f ∈ ∂B(r). By Kuznetsov and Mohri [12, Lemma 1], since ∥f(x)∥22 ∈ [0, B2], we have:

Eπ∥f∥22 −E∥f(Xt)∥22 ≤ B2∥µt − π∥TV. (33)

Therefore:

Eπ∥f∥22 =
1

T

T−1∑
t=0

(Eπ∥f∥22 −E∥f(Xt)∥22) + r2 since f ∈ ∂B(r)

≤ B2

T

T−1∑
t=0

∥µt − π∥TV + r2 using (33)

≤ (1 + CTVB
2)r2 using (11). (34)
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Combining these inequalities:

1

T

T−1∑
t=0

E∥f(Xt)∥42 ≤ (1 +
√
Cχ2)

√
C8→2(Eπ∥f∥22)2 using (32)

≤ (1 +
√
Cχ2)

√
C8→2(1 + CTVB

2)2r4 using (34)

= (1 +
√
Cχ2)

√
C8→2(1 + CTVB

2)2

(
1

T

T−1∑
t=0

E∥f(Xt)∥22

)2

since f ∈ ∂B(r).

The claim now follows. ■

E.3.1 Further discussion related to Proposition 5.3

Let us discuss the ergodicity conditions in Proposition 5.3. The condition supt∈N χ
2(µt, π) < ∞

from (11) is quite mild. To illustrate this point, suppose that {Xt} are regularly spaced samples in
time from the Itô stochastic differential equation:

dZt = f(Zt) dt+
√
2 dBt,

where (Bt) is standard Brownian motion in RdX . Assume the process (Zt) admits a stationary
distribution π, and let ρt denote the measure of Zt at time t. A standard calculation [40, Theorem
4.2.5] shows that d

dtχ
2(ρt, π) = −2Eπ

∥∥∇ (ρtπ )∥∥22 ≤ 0, and hence supt≥0 χ
2(ρt, π) ≤ χ2(ρ0, π).

Thus, as long as the initial measure ρ0 has finite divergence with π, then this condition holds.
One caveat is that χ2(ρ0, π) can scale as edX , resulting in a hypercontractivity constant that scales
exponentially in dimension. This however only affects the burn-in time and not the final rate.

The second condition in (11) is 1
T

∑T−1
t=0 ∥µt − π∥TV ≲ r2. A typical setting is r2 ≍ 1/T β for some

β ∈ (0, 1], where β is dictated by the function class F . Hence, this requirement reads:

1

T

T−1∑
t=0

∥µt − π∥TV ≲
1

T β
⇐⇒

T−1∑
t=0

∥µt − π∥TV ≲ T 1−β .

Therefore, the setting of β determines the level of ergodicty required. For example, if β = 1 (which
corresponds to the parametric function case), then this condition necessitates geometric ergodicity,
since it requires that

∑T−1
t=0 ∥µt − π∥TV = O(1). On the other hand, suppose that β ∈ (0, 1). Then

this condition is satisfied if ∥µt − π∥TV ≲ 1/tβ , allowing for slower mixing rates.

E.4 Proof of Proposition 5.4

Covering: We first approximate P by a finite-dimensional ellipsoid at resolution ε/4. To this end,
fix an integer m ∈ N+ and define:

Pm =

f =

m∑
j=1

θjϕj

∣∣∣∣∣
∞∑
j=1

θ2j
µj

≤ 1

 .
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Fix now an element f ∈ P with coordinates θ. Let f ′ be the orthogonal projection onto the subspace
of the first m-many coordinates (f ′ ∈ Pm). Then:

∥f − f ′∥∞ =

∥∥∥∥∥∥
∞∑

j=m+1

θjϕj

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥∥∥∥∥
√√√√ ∞∑
j=m+1

θ2j
µj︸ ︷︷ ︸

≤1

√√√√ ∞∑
j=m+1

µj∥ϕj∥22

∥∥∥∥∥∥∥∥∥∥∥
∞

(Cauchy-Schwarz)

≤ B

√√√√ ∞∑
j=m+1

j2qe−2βj (∥ϕj∥∞ ≤ Bjq, µj ≤ e−2βj)

≤ B

√√√√ ∞∑
j=m+1

e−βj
(

if
m

logm
≥ q

β

)

= B
e−βm/2√
eβ − 1

≤ 2B
e−βm/2

β
. (

√
e2x − 1 ≥ ex − 1 ≥ x, x ≥ 0)

(35)
Hence, we can take mε to be the smallest integer solution to m ≥ 2

β

∣∣∣log ( 8B
βε

)∣∣∣ to guarantee that for
every f ∈ P there exists f ′ ∈ Pm at most ε/4 removed from f , i.e., ∥f − f ′∥∞ ≤ ε/4.

Next, we construct an ε/4-covering of the set Pm. Observe now that the set of parameters of Θm
defining Pm satisfies:

Θm ≜

θ ∈ Rm
∣∣∣∣∣
m∑
j=1

θ2j
µj

≤ 1

 .

Using this, we obtain a covering of (Pm, ∥ · ∥∞) by regarding it as a subset of Rm. More precisely,
Θm is the unit ball in the norm ∥θ∥µ ≜

√∑m
i=1 θ

2
i /µi, θ ∈ Rm. Hence, by a standard volumetric

argument, we need no more than (1 + 2/δ)m points to cover Θm at resolution δ in ∥·∥µ. Let
now δ > 0 and choose N ∈ N+ so that {θ1, . . . , θN} is an optimal δ-covering of Θm. We thus
obtain the cover PN

m ≜ {(θ1)⊤ϕ(·), . . . , (θN )⊤ϕ(·)} ⊂ Pm where ϕ(·) = (ϕ1(·), . . . , ϕm(·)). Let
f ′ = (θ′)⊤ϕ ∈ Pm be arbitrary. It remains to verify the resolution of PN

m :

min
n∈[N ]

∥f ′ − (θn)⊤ϕ∥∞ = min
n∈[N ]

∥∥∥∥∥∥
m∑
j=1

(θ′j − θnj )ϕj

∥∥∥∥∥∥
∞

≤ min
n∈[N ]

∥∥∥∥∥∥
√√√√ m∑

j=1

(θ′j − θnj )
2

µj

√√√√ m∑
j=1

µj∥ϕj∥22

∥∥∥∥∥∥
∞

(Cauchy-Schwarz)

≤ δBmq (∥ϕj∥∞ ≤ Bmq if j ≤ m).

Hence, if we take N large enough so that δ ≤ ε
4Bmq , PN

m is a cover of Pm at resolution ε/4. Hence,
since we may take m ≤ mε:

N ≤
(
1 +

8Bmq
ε

ε

)mε
.

Now, we can immediately convert the covering PN
m into an exterior cover6 of the set P . For every

f ∈ P , by the approximation property of Pm, there exists an f ′ ∈ Pm such that ∥f − f ′∥∞ ≤ ε/4.
But since f ′ ∈ Pm, there exists an f ′′ ∈ PN

m such that ∥f ′ − f ′′∥∞ ≤ ε/4. By triangle inequality,
∥f − f ′′∥∞ ≤ ε/2. Thus, PN

m forms an exterior cover of P at resolution ε/2. By Vershynin [39,
Exercise 4.2.9], this means that there exists a (proper) cover of P at resolution ε with cardinality
bounded by N .

6An exterior cover of a set T is a cover where the elements are not restricted to T .
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Hypercontractivity: We first show that every f ∈ Pm is hypercontractive. First, observe by
orthogonality that the second moment takes the form:∫ ∥∥∥∥∥

mε∑
i=1

θiϕi

∥∥∥∥∥
2

2

dλ =

mε∑
i=1

θ2i ∥ϕi∥2L2(λ)
= ∥θ∥22.

On the other hand by the eigenfunction growth condition:∫ ∥∥∥∥∥
mε∑
i=1

θiϕi

∥∥∥∥∥
4

2

dλ ≤
∫ (mε∑

i=1

|θi|∥ϕi∥2

)4

dλ

≤ B4m4q
ε

(
me∑
i=1

|θi|

)4

≤ B4m4q+2
ε ∥θ∥42

= B4m4q+2
ε

∫ ∥∥∥∥∥
mε∑
i=1

θiϕi

∥∥∥∥∥
2

2

dλ

2

.

Now, for any t ∈ N, by a change of measure, with f =
∑mε
i=1 θiϕi,

Eµt ∥f∥
4
2 =

∫
∥f∥42

dµt
dλ

dλ ≤ K

∫
∥f∥42 dλ ≤ KB4m4q+2

ε

(∫
∥f∥22 dλ

)2

.

Hence, applying the previous inequality and another change of measure:

1

T

T−1∑
t=0

Eµt∥f∥42 ≤ KB4m4q+2
ε

(∫
∥f∥22 dλ

)2

= KB4m4q+2
ε

(
1

T

∫ T−1∑
t=0

∥f∥22
dλ

dµt
dµt

)2

≤ K3B4m4q+2
ε

(
1

T

T−1∑
t=0

Eµt∥f∥22

)2

. (36)

Next, fix a f ∈ P . We will show that f is hypercontractive. First, recall that f ′ is the element in Pm

satisfying ∥f − f ′∥∞ ≤ ε/4. Hence, we have for every x:

∥f(x)∥42 ≤ 8(∥f(x)− f ′(x)∥42 + ∥f ′(x)∥42) ≤
ε4

32
+ 8∥f ′(x)∥42, (37)

∥f ′(x)∥22 ≤ 2(∥f(x)− f ′(x)∥22 + ∥f(x)∥22) ≤
ε2

2
+ 2∥f(x)∥22. (38)

We now bound:

1

T

T−1∑
t=0

Eµt∥f∥42
(a)

≤ ε4

32
+

1

T

T−1∑
t=0

Eµt∥f ′∥42
(b)

≤ ε4

32
+K3B4m4q+2

ε

(
1

T

T−1∑
t=0

Eµt∥f ′∥22

)2

(c)

≤ ε4

32
+K3B4m4q+2

ε

(
ε2

2
+

2

T

T−1∑
t=0

Eµt∥f∥22

)2

(d)

≤
(

1

32
+

25

4
K3B4m4q+2

ε

)(
1

T

T−1∑
t=0

Eµt∥f∥22

)2

.

Above, (a) uses the inequality (37), (b) uses the fact that f ′ ∈ Pm and (36), (c) uses (38), and (d)
uses the assumption that ε ≤ inff∈P ∥f∥L2(PX), which implies that ε2 ≤ 1

T

∑T−1
t=0 Eµt∥f∥22 and

ε4 ≤
(

1
T

∑T−1
t=0 Eµt∥f∥22

)2
. Since f ∈ P is arbitrary, the claim follows. ■
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F Basic tools for analyzing the dependency matrix

In this section, we outline some basic tools used to analyze the dependency matrix Γdep(PX). We
will introduce the following shorthand. Given a process {Zt}t≥0 and indices 0 ≤ i ≤ j ≤ k, we
will write PZj:k(· | Z0:i = z0:i) as shorthand for PZj:k(· | A) for A ∈ Z0:i, where we recall that
Z0:i denotes the σ-algebra generated by Z0:i. We will also write ess supz0:i∈Z0:i

as shorthand for
supA∈Z0:i

.

Before we proceed, we recall the coupling representation of the total-variation norm:

∥µ− ν∥TV = inf{P(X ̸= Y ) | (X,Y ) is a coupling of (µ, ν)}. (39)

Proposition F.1. Suppose that {Zt}t≥0 is a Markov chain. For any integers 0 ≤ i ≤ j ≤ k:

∥PZj:k(· | Zi = z)− PZj:k∥TV = ∥PZj (· | Zi = z)− PZj∥TV.

Proof. Let us first prove the upper bound. Let (Zj , Z ′
j) be a coupling of (PZj (· | Zi = z),PZj ).

We can construct a coupling (Z̄j:k, Z̄
′
j:k) of (PZj:k(· | Zi = z),PZj:k) by first setting Z̄j = Zj ,

Z̄ ′
j = Z ′

j , and then evolving the chains onward via the following process. If Z̄j = Z̄ ′
j , we evolve

Z̄j+1:k onwards according to the dynamics, and copy Z̄ ′
j+1:k = Z̄j+1:k. Otherwise if Z̄j ̸= Z̄ ′

j , then
we evolve both chains separately. Observe that Z̄j:k ̸= Z̄ ′

j:k iff Zj ̸= Z ′
j . Hence ∥PZj:k(· | Zi =

x)− PZj:k∥TV ≤ P(Zj ̸= Z ′
j). Since the coupling (Zj , Z

′
j) is arbitrary, taking the infimum over all

couplings of (PZj (· | Zi = z),PZj ) yields the upper bound via (39).

We now turn to the lower bound. Let (Zj:k, Z ′
j:k) be a coupling of (PZj:k(· | Zi = z),PZj:k). Since

projection (Zj , Z
′
j) is a coupling for (PZj (· | Zi = z),PZj ), and Zj ̸= Z ′

j implies Zj:k ̸= Z ′
j:k, we

have again by (39):

∥PZj (· | Zi = x)− PZj∥TV ≤ P(Zj ̸= Z ′
j) ≤ P(Zj:k ̸= Z ′

j:k).

Taking the infimum over all couplings of (PZj:k(· | Zi = z),PZj:k) yields the lower bound. ■

Proposition F.2. Let M,N be two size conforming matrices with all non-negative entries. Suppose
that M ≤ N , where the inequality holds elementwise. Then, ∥M∥op ≤ ∥N∥op.

Proof. Let Q be a matrix with non-negative entries, and let qi denote the rows of Q. The variational
form of the operator norm states that ∥Q∥op = sup∥v∥2≤1∥Qv∥2 = sup∥v∥2≤1

√∑
i⟨qi, v⟩2. Since

each qi only has non-negative entries. The supremum must be attained by a vector v with non-negative
entries, otherwise flipping the sign of the negative entries in v would only possibly increase the value
of ∥Qv∥2, and never decrease the value.

Now let mi, ni denote the rows of M,N , and let v be a vector with non-negative entries. Since
0 ≤ mi ≤ ni (elementwise), it is clear that ⟨mi, v⟩2 ≤ ⟨ni, v⟩2. Hence the claim follows. ■

Proposition F.3. Let a1, . . . , an ∈ R, and let M ∈ Rn×n be the upper triangular Toeplitz matrix:

M =


a1 a2 a3 a4 · · · an
0 a1 a2 a3 · · · an−1

0 0 a1 a2 · · · an−2

...
...

...
...

. . .
...

0 0 0 0
... a1

 .
We have that:

∥M∥op ≤
n∑
i=1

|ai|.

Proof. Let Ei, for i = 1, . . . , n, denote the shift matrix where Ei has ones along the (i− 1)-th super
diagonal and is zero everywhere else (the zero-th diagonal refers to the main diagonal). It is not hard
to see that ∥Ei∥op ≤ 1 for all i, since it simply selects (and shifts) a subset of the coordinates of the
input. With this notation, M =

∑n
i=1 aiEi. The claim now follows by the triangle inequality. ■

28



Proposition F.4. Let {Zt}t≥0 be a Markov process, and let PZ denote the joint distribution of
{Zt}T−1

t=0 . We have that:

∥Γdep(PZ)∥op ≤ 1 +
√
2

T−1∑
k=1

max
t=0,...,T−1−k

ess sup
z∈Zt

√
∥PZt+k(· | Zt = z)− PZt+k∥TV.

Proof. For any indices 0 ≤ i < j, by the Markov property and Proposition F.1:

ess sup
z0:i∈Z0:i

∥PZj:T−1
(· | Z0:i = z0:i)− PZj:T−1

∥TV = ess sup
z∈Zi

∥PZj:T−1
(· | Zi = z)− PZj:T−1

∥TV

= ess sup
z∈Zi

∥PZj (· | Zi = z)− PZj∥TV.

Therefore:

Γdep(PZ)ij =
√
2 ess sup

z∈Zi

√
∥PZj (· | Zi = z)− PZj∥TV

≤
√
2 max
t=0,...,T−1−(j−i)

ess sup
z∈Zt

√
∥PZt+j−i(· | Zt = z)− PZt+j−i∥TV ≜ aj−i.

Thus, we can construct a matrix Γ′ such that for all indices 0 ≤ i < j, we have Γ′
ij = aj−i, and the

other entries are identical to Γdep(PZ). This gives us the entry-wise bound Γdep(PZ) ≤ Γ′. Applying
Proposition F.2 and Proposition F.3, we conclude ∥Γdep(PZ)∥op ≤ ∥Γ′∥op ≤ 1 +

∑T−1
k=1 ak. ■

G Mixing properties of truncated Gaussian processes

We first recall the notation from Appendix B.1. Let {Wt}t≥0, {W ′
t}t≥0 be sequences of iid N(0, I)

vectors in RdX . Fix a dynamics function f : RdX → RdX and radius R > 0. Define the truncated
Gaussian noise process {W̄t}t≥0 as W̄t ≜W ′

t1{∥W ′
t∥2 ≤ R}. Now, consider the two processes:

Xt+1 = f(Xt) +HWt, X0 = HW0, (40a)

X̄t+1 = f(X̄t) +HW̄t, X̄0 = HW̄0. (40b)

We develop the necessary arguments in this section to transfer mixing properties of the original
process (40a) to the truncated process (40b). This will let us apply our results in Section 4 to
unbounded processes of the form (40a), by studying their truncated counterparts (40b).

The main tool to do this is the following coupling argument.

Proposition G.1. Fix a δ ∈ (0, 1). Let k ∈ {1, . . . , T − 1} and t ∈ {0, . . . , T − 1− k}. Consider
the processes {Xt}t≥0 and {X̄t}t≥0 described in (40a) and (40b) with R satisfying the inequality
R ≥

√
dX +

√
2 log(T/δ). The following bound hold for any x ∈ RdX :

∥PXt+k(· | Xt = x)− PX̄t+k(· | X̄t = x)∥TV ≤ δ.

The following bound also holds for any t ∈ {0, . . . , T − 1}:

∥PXt − PX̄t∥TV ≤ δ.

Proof. Let (Zt+k, Z ′
t+k) be a coupling of (PXt+k(· | Xt = x),PX̄t+k(· | X̄t = x)) defined as

follows. We initialize both Xt = X̄t = x. We let {Ws}t+k−1
s=t be iid draws from N(0, I), we

set W̄s = Ws1{∥Ws∥2 ≤ R}, and we evolve Xt, X̄
′
t forward to Xt+k, X̄

′
t+k according to their

laws (40a) and (40b), respectively. Let E denote the event E = {maxs=t,...,t+k−1∥Ws∥2 ≤ R}. A
standard Gaussian concentration plus union bound yields P(Ec) ≤ δ, since t+ k − 1 ≤ T − 2. By
the coupling representation (39) of the total-variation norm:

∥PXt+k(· | Xt = x)− PX̄t+k(· | X̄t = x)∥TV ≤ P{Zt+k ̸= Z ′
t+k}

= P({Zt+k ̸= Z ′
t+k} ∩ E) +P({Zt+k ̸= Z ′

t+k} ∩ Ec)
≤ P(Ec) ≤ δ.
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The second inequality holds since on E , Zt+k = Z ′
t+k because the truncation is inactive the entire

duration of the process. This establishes the first inequality.

The second inequality holds by a nearly identical coupling argument, where we set {Ws}t−1
s=0 to

be iid draws from N(0, I), we set W̄s = Ws1{∥Ws∥2 ≤ R}, and we initialize the processes at
X0 = HW0 and X̄0 = HW̄0. ■

The next result states that as long as we set the failure probability δ in R as 1/T 2, then we can bound
the dependency matrix appropriately.

Proposition G.2. Let PX denote the joint distribution of {Xt}T−1
t=0 from (40a), and let PX̄ denote

the joint distribution of {X̄t}T−1
t=0 from (40b), with R ≥

√
dX +

√
6 log T . We have that:

∥Γdep(PX̄)∥op ≤ 3 +
√
2

T−1∑
k=1

max
t=0,...,T−1−k

ess sup
x∈X̄t

√
∥PXt+k(· | Xt = x)− PXt+k∥TV. (41)

Proof. First, we invoke Proposition F.4 to obtain:

∥Γdep(PX̄)∥op ≤ 1 +
√
2

T−1∑
k=1

max
t=0,...,T−1−k

ess sup
x∈X̄t

√
∥PX̄t+k(· | X̄t = x)− PX̄t+k∥TV.

Now fix k ∈ {1, . . . , T − 1}, t ∈ {0, . . . , T − 1− k}, and x ∈ X̄t. By triangle inequality:

∥PX̄t+k(· | X̄t = x)− PX̄t+k∥TV ≤ ∥PXt+k(· | Xt = x)− PXt+k∥TV
+ ∥PX̄t+k(· | X̄t = x)− PXt+k(· | Xt = x)∥TV
+ ∥PX̄t+k − PXt+k∥TV.

By setting δ = 1/T 2 in Proposition G.1, the last two terms are bounded by 1/T 2. Hence:

∥PX̄t+k(· | X̄t = x)− PX̄t+k∥TV ≤ ∥PXt+k(· | Xt = x)− PXt+k∥TV +
2

T 2
.

The claim now follows. ■

Crucially, the essential supremum in (41) is over X̄t and not Xt, of which the latter is unbounded.

The next condition that we need to check for the truncated process (40b) is that the noise process
{HW̄t}t≥0 is still a zero-mean sub-Gaussian martingale difference sequence. By symmetry of the
truncation, it is clear that the noise process remains zero-mean. To check sub-Gaussianity, we use the
following result.
Proposition G.3. Let A ⊆ RdX be any set that is symmetric about the origin. Let W ∼ N(0, I),
and let W̄ := W1{W ∈ A}. We have that W̄ is 4-sub-Gaussian. Hence for any H , HW̄ is
4∥H∥2op-sub-Gaussian.

Proof. Since A is symmetric about the origin, W̄ inherits the symmetry of W , i.e., E[W̄ ] = 0. Now
fix a unit vector u ∈ RdX , and λ ∈ R. First, let us assume that λ2 ≤ 1/2. Let ε denote a Rademacher
random variable7 that is independent of W̄ . Since W̄ is a symmetric zero-mean distribution, we have
that ⟨u, W̄ ⟩ has the same distribution as ε⟨u, W̄ ⟩. Therefore:

E exp(λ⟨u, W̄ ⟩) = EW̄Eε exp(λε⟨u, W̄ ⟩)
≤ EW̄ exp(λ2⟨u, W̄ ⟩2/2) cosh(x) ≤ exp(x2/2)∀x ∈ R
≤ EW̄ exp(λ2⟨u,W ⟩2/2)

=
1

(1− λ2)1/2
since ⟨u,W ⟩ ∼ N(0, 1) and λ2 < 1

≤ exp(λ2)
1

1− x
≤ exp(2x)∀x ∈ [0, 1/2].

7That is, P(ε = 1) = P(ε = −1) = 1/2.
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Now, let us assume λ2 > 1/2. We have:
E exp(λ⟨u, W̄ ⟩) = E exp(λ⟨u,W ⟩)1{W ∈ A}+P(W ̸∈ A)

≤ E exp(λ⟨u,W ⟩) + 1

= exp(λ2/2) + 1 since ⟨u,W ⟩ ∼ N(0, 1)

≤ exp(log 2 + λ2/2) since 1 ≤ exp(λ2/2)

≤ exp((2 log 2 + 1/2)λ2) since λ2 > 1/2

≤ exp(2λ2).

The claim now follows. ■

The following result will be useful later on. It states that the truncation does not affect the isotropic
nature of the noise, as long as the truncation probability is a sufficiently small constant.
Proposition G.4. Let A ⊆ RdX be any set. Let W ∼ N(0, I) and W̄ =W1{W ∈ A}, and suppose
that P(W ̸∈ A) ≤ 1/12. We have that:

1

2
I ≼ E[W̄W̄T] ≼ I.

Proof. The upper bound is immediate. For the lower bound, fix a v ∈ SdX−1. We have:
E[⟨v, W̄ ⟩2] = E[⟨v, W̄ ⟩21{W ∈ A}] +E[⟨v, W̄ ⟩21{W ̸∈ A}]

= E[⟨v, W̄ ⟩21{W ∈ A}] since W̄ =W1{W ∈ A}
= E[⟨v,W ⟩2]−E[⟨v,W ⟩21{W ̸∈ A}]

≥ 1−
√
E[⟨v,W ⟩4]P(W ̸∈ A) since ⟨v,W ⟩ ∼ N(0, 1) and Cauchy-Schwarz

≥ 1−
√
3δ

≥ 1/2 since P(W ̸∈ A) ≤ 1/12.

Since v ∈ SdX−1 is arbitrary, the claim follows. ■

Proposition G.5. Let w ∼ N(0, I) and let M be positive semidefinite. We have:

E[(wTMw)2] ≤ 3(E[wTMw])2.

Proof. This is a standard calculation [see e.g. 41, Lemma 6.2]. ■

We will also need the following result which states that the square of quadratic forms under W̄ can
be upper bounded by the square of the same quadratic form under the original noise W .
Proposition G.6. Let A ⊆ RdX be any set. Let W ∼ N(0, I) and W̄ =W1{W ∈ A}. Fix a k ≥ 1.
Let M ∈ RdXk×dXk be a positive semidefinite matrix, and let {Wi}ki=1 and {W̄i}ki=1 be iid copies
of W and W̄ , respectively. Let W1:k ∈ RdXk denote the stacked column vector of {Wi}ki=1 and
similarly for W̄1:k ∈ RdXk. We have that:

E[(W̄T
1:kMW̄1:k)

2] ≤ E[(WT
1:kMW1:k)

2].

Proof. Let {Mij}ki,j=1 ⊂ RdX×dX denote the blocks of M . We have:

E[(W̄T
1:kMW̄1:k)

2] =
∑
a,b,c,d

E[(W̄T
aMabW̄b)(W̄

T
c McdW̄d)].

Since W̄ is zero-mean, the only terms that are non-zero in the summation have the following form
E[(W̄T

aMaaW̄a)(W̄
T
b MbbW̄b)]. Hence:

E[(W̄T
1:kMW̄1:k)

2] =
∑
a

E[(W̄T
aMaaW̄a)

2] +
∑
a ̸=b

E[(W̄T
aMaaW̄a)(W̄

T
b MbbW̄b)]

(a)

≤
∑
a

E[(WT
aMaaWa)

2] +
∑
a̸=b

E[(WT
aMaaWa)(W

T
b MbbWb)]

= E[(WT
1:kMW1:k)

2].
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Above, (a) holds since the matrix M is positive semidefinite and therefore so are its diagonal sub-
blocks Maa. This ensures that each of the quadratic forms are non-negative, and hence we can upper
bound the first expression by removing the indicators. ■

We conclude this section with a result that will be useful for analyzing the mixing properties of the
Gaussian process (40a), when the dynamics function f is nonlinear. First, recall the definition of the
1-Wasserstein distance:

W1(µ, ν) ≜ inf{E∥X − Y ∥2 | (X,Y ) is a coupling of (µ, ν)}. (42)

The following result uses the smoothness of the Gaussian transition kernel to upper bound the TV
norm via the 1-Wasserstein distance. This result is inspired by the work of Chae and Walker [42].
Lemma G.1. Let X0, Y0 be random vectors in Rp, and let f : Rp → Rn be an L-Lipschitz
function. Suppose that X0, Y0 are both absolutely continuous w.r.t. the Lebesgue measure on Rp.
Let Σ ∈ Rn×n be positive definite, and let X1, Y1 be random vectors in Rn defined conditionally:
X1 | X0 = N(f(X0),Σ) and Y1 | Y0 = N(f(Y0),Σ). Then:

∥PX1
− PY1

∥TV ≤
L
√
tr(Σ−1)

2
W1(PX0

,PY0
).

Proof. Since X0, Y0 are absolutely continuous, the Radon-Nikodym theorem ensures that there exists
densities p0, q0 for X0, Y0, respectively. Let ϕ denote the density of the N(0,Σ) distribution. Let
p1, q1 denote the densities of X1, Y1, respectively. We have the following convolution expressions:

p1(x) =

∫
ϕ(x− f(x0))p0(x0)dx0 =

∫
ϕ(x− f(X0))dX0,

q1(x) =

∫
ϕ(x− f(x0))q0(x0)dx0 =

∫
ϕ(x− f(Y0))dY0.

Now, let π be a coupling of (X0, Y0). We can equivalently write p1, q1 as a convolution over π:

p1(x) =

∫
ϕ(x− f(X0))dπ(X0, Y0),

q1(x) =

∫
ϕ(x− f(Y0))dπ(X0, Y0).

Hence:

(p1 − q1)(x) =

∫
[ϕ(x− f(X0))− ϕ(x− f(Y0))]dπ(X0, Y0)

= Eπ(X0,Y0)[ϕ(x− f(X0))− ϕ(x− f(Y0))].

Now by the L1 representation of total-variation norm [see e.g. 1, Lemma 2.1]:

∥PX1
− PY1

∥TV =
1

2

∫
|p1(x)− q1(x)|dx

=
1

2

∫
|Eπ(X0,Y0)[ϕ(x− f(X0))− ϕ(x− f(Y0))]|dx

(a)

≤ 1

2

∫
Eπ(X0,Y0)[|ϕ(x− f(X0))− ϕ(x− f(Y0))|]dx

(b)
=

1

2
Eπ(X0,Y0)

[∫
|ϕ(x− f(X0))− ϕ(x− f(Y0))|dx

]
.

The inequality (a) is Jensen’s inequality, and the equality (b) is Tonelli’s theorem since the integrand
is non-negative. We now focus on the inner integral inside the expectation over π. By the mean-value
theorem, since ϕ is continuously differentiable, fixing x,X0, Y0:

|ϕ(x− f(X0))− ϕ(x− f(Y0))| =
∣∣∣∣∫ 1

0

∇ϕ((1− s)(x− f(Y0)) + s(x− f(X0)))
T(f(Y0)− f(X0))ds

∣∣∣∣
≤ ∥f(Y0)− f(X0)∥2

∫ 1

0

∥∇ϕ(x− (sf(X0)− (1− s)f(Y0))∥2ds.
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Hence, by another application of Tonelli’s theorem:∫
|ϕ(x− f(X0))− ϕ(x− f(Y0))|dx ≤ ∥f(X0)− f(Y0)∥2

∫ ∫ 1

0

∥∇ϕ(x− (sf(X0)− (1− s)f(Y0))∥2dsdx

= ∥f(X0)− f(Y0)∥2
∫ 1

0

∫
∥∇ϕ(x− (sf(X0)− (1− s)f(Y0))∥2dxds

≤ ∥f(X0)− f(Y0)∥2
√
tr(Σ−1).

The last inequality follows from the following computation. Observe that ∇ϕ(x) = −Σ−1xϕ(x) and
define µ = sf(X0)− (1− s)f(Y0). Since µ does not depend on x, by the translation invariance of
the Lebesgue integral:∫

∥∇ϕ(x− (sf(X0)− (1− s)f(Y0))∥2dx =

∫
∥Σ−1(x− µ)∥2ϕ(x− µ)dx

=

∫
∥Σ−1x∥2ϕ(x)dx

= Ex∼N(0,Σ−1)[∥x∥2]

≤
√

tr(Σ−1).

The last inequality above is another application of Jensen’s inequality. Therefore, combining the
inequalities thus far, and using the L-Lipschitz property of f :

∥PX1 − PY1∥TV ≤
√
tr(Σ−1)

2
Eπ(X0,Y0) [∥f(X0)− f(Y0)∥2]

≤
L
√
tr(Σ−1)

2
Eπ(X0,Y0)[∥X0 − Y0∥2].

Since the coupling π of (X0, Y0) was arbitrary, the result now follows by taking the infimum of the
right hand side over all valid couplings. ■

H Recovering Ziemann et al. [15] via boundedness

Here we show how to recover the results for mixing systems from Ziemann et al. [15, Theorem 1
combined with Proposition 2], corresponding to α = 1. This rests on the observation that (B2, 1)-
hypercontractivity is automatic by B-boundedness.
Corollary H.1. Suppose that F⋆ is star-shaped and B-bounded. Fix also p ∈ R+ and q ∈ (0, 2)
and suppose further that F⋆ satisfies condition (8). Then we have that:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆) +
1√
8

(
16B2p∥Γdep(PX)∥2op

)2/q
T−2/(2+q)

+ exp

(
−T q/(2+q)

16B2∥Γdep(PX)∥2op

)
. (43)

The first two terms in inequality (43) are both of order T−2/(2+q) if ∥Γdep∥2op = O(1). Note that,
without further control of the moments of f ∈ F⋆, the bound in Theorem 4.1 thus degrades by a
factor of the dependency matrix through the second term.

Proof of Corollary H.1 Fix c > 0 to be determined later and choose r = cT−1/(2+q). We find:

B2N∞(F⋆, r/
√
8) exp

(
−Tr2

8B2∥Γdep(PX)∥2op

)

≤ exp

(
p

(√
8

r

)q
− Tr2

8B2∥Γdep(PX)∥2op

)
(Condition (8))

= exp

([
p

(√
8

c

)q
− 1

8B2∥Γdep(PX)∥2op

]
T q/(2+q)

)
. (r = cT−1/(2+q))
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Hence we may solve for c = 1√
8

(
16B2p∥Γdep(PX)∥2op

)1/q
in

p

(√
8

c

)q
=

1

16B2∥Γdep(PX)∥2op
to arrive at the desired conclusion. ■

I Linear dynamical systems

We define the truncated linear dynamics:

X̄t+1 = A⋆X̄t +HV̄t, X̄0 = HV̄0, V̄t = Vt1{∥Vt∥2 ≤ R}. (44)

We set R =
√
dX +

√
2(1 + β) log T where β > 4 is a free parameter. Define the event E as:

E :=

{
max

0≤t≤T−1
∥Vt∥2 ≤ R

}
. (45)

Note that by the setting of R, we have P(Ec) ≤ 1/T β using standard Gaussian concentration results
plus a union bound. Furthermore on E , the original GLM process driven by Gaussian noise (12)
coincides with the truncated process (44). Let f̂ denote the LSE on the original process (44), and let
f̄ denote the LSE on the truncated process (44). Hence:

E∥f̂ − f⋆∥2L2 = E∥f̂ − f⋆∥2L21{E}+E∥f̂ − f⋆∥2L21{Ec}

≤ E∥f̄ − f⋆∥2L2 +E∥f̂ − f⋆∥2L21{Ec}.

Let us now control the error term E∥f̂ − f⋆∥2L21{Ec}. Since Xt is a linear function of the Gaussian
noise {Wt} process, by Proposition G.5 we have E∥Xt∥42 ≤ 3(E∥Xt∥22)2. Write f̂(x) = Âx, and
put ∆̂ = Â−A⋆. We have:

E∥f̂ − f⋆∥2L21{Ec} =
1

T

T−1∑
t=0

E∥∆̂Xt∥221{Ec}
(a)

≤ 4B2

T

T−1∑
t=0

E∥Xt∥221{Ec}

(b)

≤ 4B2

T 1+β/2

T−1∑
t=0

√
E∥Xt∥42

(c)

≤ 4
√
3B2

T 1+β/2

T−1∑
t=0

E∥Xt∥22

=
4
√
3B2

T 1+β/2

T−1∑
t=0

tr(Γt)
(d)

≤ 4
√
3B2 tr(ΓT−1)

T β/2

(e)

≤
4
√
3B2∥H∥2opτ2dX
(1− ρ)T β/2

. (46)

Above, (a) follows from the definition of F , (b) follows from Cauchy-Schwarz, (c) uses the hyper-
contractivity bound E∥Xt∥42 ≤ 3(E∥Xt∥22)2, (d) uses the fact that Γt is monotonically increasing in
the Loewner order, and (e) uses the following bound on tr(ΓT−1) using the (τ, ρ)-stability of A⋆:

tr(ΓT−1) ≤
∥H∥2opτ2dX

1− ρ2
≤

∥H∥2opτ2dX
1− ρ

.

The remainder of the proof is to bound the error of the LSE f̄ using Theorem 4.1. This involves two
main steps: showing the trajectory hypercontractivity condition Definition 4.1 holds, and bounding
the dependency matrix ∥Γdep(PX̄)∥op (cf. Definition 4.2), where PX̄ denotes the joint distribution of
the process {X̄t}T−1

t=0 . Before we proceed, we define some reoccurring constants:

µ ≜ λmin(Γκ−1), BX̄ ≜
∥H∥opτ(

√
dX +

√
2(1 + β) log T )

1− ρ
. (47)

I.1 Trajectory hypercontractivity for truncated LDS

Proposition I.1. Suppose that T ≥ max{6, 2κ}. The pair (F⋆,PX̄) with F given in (13) and PX̄
as the joint distribution of {X̄t}T−1

t=0 from (44) satisfies the (CLDS, 2)-trajectory hypercontractivity

condition with CLDS =
108τ4∥H∥4

op

(1−ρ)2µ2 .

34



Proof. Fix any size-conforming matrix M . Let the noise process {V̄t}T−1
t=0 be stacked into a noise

vector V̄0:T−1 ∈ RdXT . Observe that we can write MXt = MTtV̄0:T−1 for some matrix Tt. We
invoke the comparison inequality in Proposition G.6 followed by the Gaussian fourth moment identity
in Proposition G.5 to conclude that:

E∥MX̄t∥42 = E∥MTtV̄0:T−1∥42 ≤ E∥MXt∥42 ≤ 3(E∥MXt∥22)2 = 3 tr(MTMΓt)
2.

By monotonicity of Γt and the assumption T ≥ 6:

1

T

T−1∑
t=0

Γt ≽
1

T

T−1∑
t=⌊T/2⌋

Γt ≽
T − ⌊T/2⌋

T
Γ⌊T/2⌋ ≽

1

3
Γ⌊T/2⌋. (48)

Since T ≥ 2κ, the inequality Γ⌊T/2⌋ ≽ Γκ−1 holds, and therefore Γ⌊T/2⌋ is invertible since (A⋆, H)
is κ-step controllable. Therefore:

1

T

T−1∑
t=0

E∥MX̄t∥42 ≤ 3 tr(MTMΓT−1)
2

= 3 tr(MΓ
1/2
⌊T/2⌋Γ

−1/2
⌊T/2⌋ΓT−1Γ

−1/2
⌊T/2⌋Γ

1/2
⌊T/2⌋M

T)2

≤ 3∥Γ−1
⌊T/2⌋ΓT−1∥2op tr(MTMΓ⌊T/2⌋)

2

≤ 27∥Γ−1
⌊T/2⌋ΓT−1∥2op tr

(
MTM · 1

T

T−1∑
t=0

Γt

)2

using (48)

= 27∥Γ−1
⌊T/2⌋ΓT−1∥2op

(
1

T

T−1∑
t=0

E∥MXt∥22

)2

≤ 108∥Γ−1
⌊T/2⌋ΓT−1∥2op

(
1

T

T−1∑
t=0

E∥MX̄t∥22

)2

using Proposition G.4.

Since the matrix M is arbitrary, the claim follows using the following bound for ∥Γ−1
⌊T/2⌋ΓT−1∥2op:

∥Γ−1
⌊T/2⌋ΓT−1∥2op ≤

τ4∥H∥4op
(1− ρ2)2µ2

≤
τ4∥H∥4op
(1− ρ)2µ2

.

■

I.2 Bounding the dependency matrix for truncated LDS

We control ∥Γdep(PX̄)∥op by a direct computation of the mixing properties of the original Gaussian
process (12).
Proposition I.2. Consider the process {X̄t}t≥0 from (44), and let PX̄ denote the joint distribution
of {X̄t}T−1

t=0 . We have that:

∥Γdep(PX̄)∥op ≤ 5κ+
22

1− ρ
log

(
τ2

4µ

[
B2
X̄ +

dX∥H∥2op
1− ρ

])
.

Proof. We first construct an almost sure bound on the process {X̄t}t≥0. Indeed, for any t ≥ 0, using
the (τ, ρ)-stability of A⋆:

∥X̄t∥2 ≤ ∥H∥opτR
1− ρ

=
∥H∥opτ(

√
dX +

√
2(1 + β) log T )

1− ρ
= BX̄ .

Also, by (τ, ρ)-stability, we have for any indices s ≤ t:

∥Γs − Γt∥op =

∥∥∥∥∥
t∑

k=s+1

AkHHT(Ak)T

∥∥∥∥∥
op

≤ ∥H∥2opτ2
t∑

k=s+1

ρ2k ≤
∥H∥2opτ2

1− ρ2
ρ2(s+1). (49)
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The marginal and conditional distributions of {Xt}t≥0 are easily characterized. We have that
Xt ∼ N(0,Γt). Furthermore, Xt | X0 = x for t ≥ 1 is distributed as N(Atx,Γt−1). So now for
any t ≥ 0 and k ≥ 1:

PXt+k(· | Xt = x) = N(Akx,Γk−1), PXt+k = N(0,Γt+k).

Now suppose k ≥ κ. The matrices Γk−1 and Γt+k will both be invertible, so the two distributions are
mutually absolutely continuous. We can then use the closed-form expression for the KL-divergence
between two multivariate Gaussians:
KL(N(Akx,Γk−1), N(0,Γt+k))

=
1

2

[
tr(Γ−1

t+kΓk−1) + xT(Ak)TΓ−1
t+kA

kx− dX + log det(Γt+kΓ
−1
k−1)

]
≤ 1

2
xT(Ak)TΓ−1

t+kA
kx+

dX
2

log ∥Γt+kΓ−1
k−1∥op since Γk−1 ≼ Γt+k

≤ τ2ρ2k∥x∥22
2µ

+
dX
2

log

(
1 +

∥Γt+k − Γk−1∥op
µ

)
using (τ, ρ)-stability

≤ τ2ρ2k∥x∥22
2µ

+
dX
2

log

(
1 +

∥H∥2opτ2

(1− ρ2)µ
ρ2k

)
using (49)

≤

[
τ2∥x∥22
2µ

+
dX∥H∥2opτ2

2(1− ρ2)µ

]
ρ2k log(1 + x) ≤ x∀x ≥ 0.

Hence by Pinsker’s inequality [see e.g. 1, Lemma 2.5], whenever k ≥ κ:

∥PXt+k(· | Xt = x)− PXt+k∥TV ≤
√
KL(N(Akx,Γk−1), N(0,Γt+k))/2

≤

√
τ2∥x∥22
4µ

+
dX∥H∥2opτ2

4(1− ρ2)µ
ρk.

By Proposition G.2 (which we can invoke since we constrained β ≥ 2), for any ℓ ∈ N:

∥Γdep(PX̄)∥op ≤ 3 +
√
2

T−1∑
k=1

max
t=0,...,T−1−k

ess sup
x∈X̄t

√
∥PXt+k(· | Xt = x)− PXt+k∥TV

≤ 3 +
√
2(κ− 1 + ℓ) +

T−1∑
k=κ+ℓ

[
τ2B2

X̄

4µ
+
dX∥H∥2opτ2

4(1− ρ2)µ

]1/4
ρk/2

≤ 5(κ+ ℓ) +

[
τ2B2

X̄

4µ
+
dX∥H∥2opτ2

4(1− ρ2)µ

]1/4
ρ(κ+ℓ)/2

1− ρ1/2
.

Now, define ψ ≜
τ2B2

X̄

4µ +
dX∥H∥2

opτ
2

4(1−ρ2)µ . We choose ℓ = max
{⌈

log(ψ1/4)
1−ρ1/2

⌉
− κ, 0

}
, so ρ(κ+ℓ)/2 ≤

1/ψ1/4. With this choice of ℓ and the observation that infx∈[0,1]
1−

√
x

1−x = 1
2 ,

∥Γdep(PX̄)∥op ≤ 5κ+
11 logψ

4(1− ρ1/2)
≤ 5κ+

22 logψ

1− ρ
.

The claim now follows. ■

I.3 Finishing the proof of Theorem 6.1

For what follows, ci will denote universal positive constants whose values remain unspecified.

For any ε > 0 and r > 0, we now construct an ε-covering of ∂B(r) with F⋆ the offset class of F
from (13). To this end, we let {A1, . . . , AN} be a δ-cover of A ≜ {A ∈ RdX×dX | ∥A∥F ≤ B} for δ

to be specified. By a volumetric argument we may choose {A1, . . . , AN} such that N ≤
(
1 + 2B

δ

)d2X .
Now, any realization of {X̄t} will have norm less than BX̄ , where BX̄ is given by (47) and satisfies

BX̄ ≤ c0
∥H∥opτ(

√
dX +

√
(1 + β) log T )

1− ρ
.
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Let A ∈ A , and let Ai denote an element in the covering satisfying ∥A − Ai∥F ≤ δ. For any x
satisfying ∥x∥2 ≤ BX̄ :

∥(Aix−A⋆x)− (Ax−A⋆x)∥F = ∥(Ai −A)x∥2 ≤ ∥Ai −A∥F ∥x∥2 ≤ δBX̄ .

Thus, it suffices to take δ = ε/BX̄ to construct an ε-covering of F⋆ over {X̄t}, which shows that

N∞(F⋆, ε) ≤
(
1 + 2BBX̄

ε

)d2X
. Since ∂B(r) ⊂ F⋆, we have the following inequality [see e.g. 39,

Exercise 4.2.10]:

N∞(∂B(r), ε) ≤ N∞(F⋆, ε/2) ≤
(
1 +

4BBX̄
ε

)d2X
.

By Proposition I.1, (F⋆,PX̄) is (CLDS, 2)-hypercontractive for all T ≥ max{6, 2κ}, with

CLDS =
108τ4∥H∥4op
(1− ρ)2µ2

.

Also by Proposition I.2,

∥Γdep(PX̄)∥2op ≤ c1κ
2 +

c2
(1− ρ)2

log2

(
τ2

4µ

[
B2
X̄ +

dX∥H∥2op
1− ρ

])
≜ γ2.

Since F⋆ is convex and contains the zero function, it is also star-shaped. Furthermore, on the
truncated process (44), the class F⋆ is 2BBX̄ -bounded. Invoking Theorem 4.1, we thus have for
every r > 0 that

E∥f̄ − f⋆∥2L2 ≤ 8EM̄T (F⋆) + r2 + 4B2B2
X̄

(
1 +

4
√
8BBX̄
r

)d2X
exp

(
−T

8CLDSγ2

)
. (50)

Here, the notation EM̄T (F⋆) is meant to emphasize that the offset complexity is with respect to the
truncated process PX̄ and not the original process PX . We now set r2 = ∥H∥2opd2X/T , and compute a
T0 such that the third term in (50) is also bounded by ∥H∥2opd2X/T . To do this, it suffices to compute
T0 such that for all T ≥ T0:

T ≥ c3CLDSγ
2d2X log

(
TBBX̄

∥H∥op
√
dX

)
.

Thus it suffices to set T0 as (provided that β is at most polylogarithmic in the problem constants—we
later make such a choice):

T0 = c4
τ4∥H∥4opd2X
(1− ρ)2µ2

[
κ2 +

1

(1− ρ)2

]
polylog

(
B, dX, τ, ∥H∥op,

1

µ
,

1

1− ρ
,

)
. (51)

We do not attempt to compute the exact power of the polylog term; it can in principle be done via Du
et al. [43, Lemma F.2].

Next, by (46), E∥f̂ − f⋆∥2L21{Ec} ≤ 4
√
3B2∥H∥2

opτ
2dX

(1−ρ)Tβ/2 . Thus we also need to set T0 large enough
so that this term is bounded by ∥H∥2opd2X/T . To do this, it suffices to constrain β > 2 and set

T0 ≥ c5

[
B2τ2

1−ρ

] 1
β/2−1

. Hence, setting β = max{4, c6 logB} implies that (51) suffices.

Let us now upper bound EM̄T (F⋆) by EMT (F⋆) plus ∥H∥2opd2X/T . Recall the definition of E from
(45). We first write:

EM̄T (F⋆) = EM̄T (F⋆)1{E}+EM̄T (F⋆)1{Ec}
= EMT (F⋆)1{E}+EM̄T (F⋆)1{Ec}
≤ EMT (F⋆) +EM̄T (F⋆)1{Ec}.
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The last inequality holds since it can be checked that MT (F⋆) ≥ 0 (i.e., by lower bounding the
supremum with the zero function which is in F⋆ since F contains f⋆). Furthermore, an elementary
linear algebra calculation yields that we can upper bound M̄T (F⋆) deterministically by:

M̄T (F⋆) ≤
4

T

∥∥∥∥∥∥∥
(T−1∑

t=0

X̄tX̄
T
t

)†1/2
T−1∑
t=0

X̄tV̄
T
t H

T

∥∥∥∥∥∥∥
2

F

≤ 4

T

T−1∑
t=0

∥HV̄t∥22

Here, the † notation refers to the Moore-Penrose pseudo-inverse. Therefore taking expectations:

EM̄T (F⋆)1{Ec} ≤ 4

T

T−1∑
t=0

E∥HV̄t∥221{Ec} ≤ 4

T

T−1∑
t=0

E∥HVt∥221{Ec}
(a)

≤ 4

T 1+β/2

T−1∑
t=0

√
E∥HVt∥42

(b)

≤ 4
√
3

T 1+β/2

T−1∑
t=0

E∥HVt∥22 =
4
√
3∥H∥2F
T β/2

≤
4
√
3dX∥H∥2op
T β/2

.

Here, (a) is Cauchy-Schwarz, and (b) follows from Proposition G.5. This last term will be bounded
by ∥H∥2opd2X/T as soon as T ≥ 4

√
3, since we set β ≥ 4. The claim now follows. ■

I.4 Further discussion related to Theorem 6.1

We first discuss the rate (14) prescribed by Theorem 6.1. A simple computation shows that the
martingale complexity EMT (F⋆) can be upper bounded by 1/T times the self-normalized martingale
term which typically appears in the analysis of least-squares [44]. Specifically, when the empirical
covariance matrix

∑T−1
t=0 XtX

T
t is invertible:

EMT (F⋆) ≤
4

T
E

∥∥∥∥∥∥
(
T−1∑
t=0

XtX
T
t

)−1/2 T−1∑
t=0

XtV
T
t H

T

∥∥∥∥∥∥
2

F

.

A sharp analysis of this self-normalized martingale term [19, Lemma 4.1] shows that EMT (F⋆) ≲
∥H∥2

opd
2
X

T , and hence (14) yields the minimax optimal rate up to constant factors after a polynomial
burn-in time.8 This is unlike the chaining bound (7) which yields extra logarithmic factors [see e.g.
15, Lemma 4]. Note that the burn-in time of Õ(d2X) given by our result is sub-optimal by a factor of
dX. This extra factor comes from the union bound over a Frobenius norm ball of dX × dX matrices in
Theorem 4.1.

To convert (14) into a parameter recovery bound, we simply lower bound the excess risk:

E∥f̂ − f⋆∥2L2 ≥ E∥Â−A⋆∥2Fλmin(Γ̄T ) =⇒ E∥Â−A⋆∥2F ≲
∥H∥2opd2X
Tλmin(Γ̄T )

, (52)

where Γ̄T ≜ 1
T

∑T−1
t=0 E[XtX

T
t ] is the average covariance matrix. The rate (52) recovers, after the

polynomial burn-in time, existing results [16, 18, 19, 29] for stable systems, with a few caveats. First,
most of the existing results are given in operator instead of Frobenius norm. We ignore this issue,
since the only difference is the extra unavoidable factor of dX in the rate for the Frobenius norm
compared to the operator norm rate. Second, since Theorem 4.1 ultimately relies on some degree of
ergodicity for the covariate process {Xt}t≥0, we cannot handle the marginally stable case (where
A⋆ is allowed to have spectral radius equal to one) as in Simchowitz et al. [16], Sarkar and Rakhlin
[18], Tu et al. [19], nor the unstable case as in Faradonbeh et al. [17], Sarkar and Rakhlin [18].

We conclude with a short discussion on the proof of Theorem 6.1. As the LDS process (12) is
unbounded, we use the truncation argument outlined in Appendix B.1 so that Theorem 4.1 still
applies. Furthermore, since the process (12) is jointly Gaussian, the dependency matrix coefficients
are simple to bound, resulting in polynomial rates (15) for the burn-in time. A much wider variety of
non-Gaussian noise distributions can be handled via ergodic theory for Markov chains [see e.g. 32,
Chapter 15]. While these results typically do not offer explicit expressions for the mixing coefficients,
both Douc et al. [46] and Hairer and Mattingly [47] provide a path forward for deriving explicit
bounds. We however omit these calculations in the interest of simplicity.

8While the burn-in time is polynomial in the problem constants listed in (15), Tsiamis and Pappas [45] show
that these constants (specifically 1/λmin(Γκ−1)) can scale exponentially in κ, the controllability index of the
system.
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J General linearized model dynamics

J.1 Comparison to existing results

We first compare the results of Theorem 6.2 to the existing bounds from Kowshik et al. [20], Sattar
and Oymak [30], Foster et al. [31]. Before doing so, we note that these existing results bound the
loss of specific gradient based algorithms. On the other hand, Theorem 6.2 directly applies to the
empirical risk minimizer of the square loss. In general, the LSE optimization problem specialized to
this setting is non-convex due to the composition of the square loss with the link function σ. However,
we believe it should be possible to show that the quasi-Newton method described in Kowshik et al.
[20, Algorithm 1] can be used to optimize the empirical risk to precision of order ∥H∥2opd2X/T , in
which case a simple modification of Theorem 4.1 combined with the current analysis in Theorem 6.2
would apply to bound the excess risk of the final iterate of this algorithm. This is left to future work.

For our comparison, we will ignore all logarithmic factors, and assume any necessary burn-in times,
remarking that the existing results all prescribe sharper burn-in times than Theorem 6.2. First, we
compare with Sattar and Oymak [30, Corollary 6.2]. In doing so, we will assume that H = (1 + σ)I
for some σ > 0, since this is the setting they study. When H is diagonal, (66) is actually invariant to
the noise scale σ which is the correct behavior: E∥Â−A⋆∥2F ≤ Õ(1)

d2X
ζ2T . On the other hand, Sattar

and Oymak [30, Corollary 6.2] gives a high probability bound of ∥Â − A⋆∥2F ≤ Õ(1)
σ2d2X

ζ4(1−ρ)3T .
Thus, (66) improves on this rate by not only a factor of 1/ζ2, but also in moving the 1/(1 − ρ)
dependence into the log. We note that their result seems to improve as σ → 0, but the probability of
success also tends to 0 as σ → 0.

Next, we turn our attention to Foster et al. [31, Theorem 2, fast rate]. This result actually gives
both in-sample excess risk and parameter recovery bounds. For simplicity, we only compare to the
parameter recovery bounds, as this is their sharper result. Their result yields a high probability bound

that ∥Â − A⋆∥2F ≤ Õ(1)
∥H∥2

op∥P⋆∥opd
2
X

ζ4(1−ρ)T . Again, we see (66) improve this rate by a factor of 1/ζ2,
and moves the dependence on ∥P⋆∥op and 1/(1 − ρ) into the logarithm. We note again, this rate
seems to improve as ∥H∥op → 0, but the number of iterations m of GLMtron needed tends to ∞ as
∥H∥op → 0. We conclude by noting that the rate of Foster et al. [31] does not have any burn-in times.

Finally, we compare to Kowshik et al. [20, Theorem 1]. We will assume that H = σI again, as
this is the setting of their work. Their parameter recovery bound states that with high probability,
∥Â − A⋆∥2F ≤ Õ(1)

σ2d2X
ζ2T , which matches (66) up to the log factors. As noted previously, their

logarithmic dependencies are sharper than ours. Furthermore, their result can also handle the unstable
regime when ρ ≤ 1 +O(1/T ), which ours cannot. However, we note that Theorem 6.2 also bounds
L2 excess risk with logarithmic dependence on 1/(1− ρ), which is not an immediate consequence
of parameter error bounds. Indeed, a naïve upper bound using the 1-Lipschitz property of the link
function yields: ∥f̂ − f⋆∥2L2 ≤ ∥Â− A⋆∥2op 1

T

∑T−1
t=0 E∥Xt∥22 ≲ ∥Â− A⋆∥2op 1

(1−ρ)2 . Hence, even
if the parameter error only depends logarithmically on 1/(1− ρ), it does not immediately translate
over to excess risk.

J.2 Proof of Theorem 6.2

We first turn our attention to controlling the states {Xt}t≥0 in expectation. Note that the Lyapunov
assumption in Assumption 6.1 implies that for every x ∈ RdX :

∥σ(A⋆x)∥2P⋆ ≤ ρ∥x∥2P⋆ , (53)

and hence the function x 7→ ∥x∥2P⋆ is a Lyapunov function (recall that P⋆ ≽ I) which certifies
exponential stability to the origin for the deterministic system x+ = σ(A⋆x).

Proposition J.1. Consider the GLM process {Xt}t≥0 from (16). Under Assumption 6.1:

sup
t∈N

E∥Xt∥42 ≤ B4
X , BX ≜

12
√
2∥H∥op∥P⋆∥1/2op

√
dX

1− ρ
. (54)
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Proof. For any a, b ∈ R and ε > 0, (a+ b)4 ≤ (1 + ε)3a4 + (1 + 1/ε)3b4. Hence for any ε > 0:

E∥Xt∥4P⋆ = E∥σ(A⋆Xt) +HVt∥4P⋆
≤ (1 + ε)3E∥σ(A⋆Xt)∥4P⋆ + (1 + 1/ε)3E∥HVt∥4P⋆
≤ (1 + ε)3ρ2E∥Xt∥4P⋆ + (1 + 1/ε)3E∥HVt∥4P⋆ using (53). (55)

Now, we first assume that ρ ∈ [1/2, 1). For any ε ∈ [0, 1], we have that (1+ε)3 ≤ 1+12ε. Choosing
ε = 1−ρ2

24ρ2 , we have that ε ≤ 1, and therefore continuing from (55):

E∥Xt∥4P⋆ ≤ (1 + 12ε)E∥Xt∥4P⋆ + (1 + 1/ε)3E∥HVt∥4P⋆

=
1 + ρ2

2
E∥Xt∥4P⋆ +

243

(1− ρ2)3
E∥HVt∥4P⋆

≤ 1 + ρ2

2
E∥Xt∥4P⋆ +

3 · 243

(1− ρ2)3
(E∥HVt∥2P⋆)

2 using Proposition G.5

≤ 1 + ρ2

2
E∥Xt∥4P⋆ +

3 · 243

(1− ρ2)3
tr(HTP⋆H)2.

Unrolling this recursion yields:

E∥Xt∥4P⋆ ≤ 6 · 243

(1− ρ2)4
tr(HTP⋆H)2.

We now handle the case when ρ ∈ [0, 1/2). Setting ε = 21/3 − 1 and starting from (55):

E∥Xt∥4P⋆ ≤ 1

2
E∥Xt∥4P⋆ + 125E∥HVt∥4P⋆

≤ 1

2
E∥Xt∥4P⋆ + 375 tr(HTP⋆H)2.

Unrolling this recursion yields:

E∥Xt∥4P⋆ ≤ 750 tr(HTP⋆H)2.

The claim now follows by taking the maximum of these two bounds and using the inequalities
tr(HTP⋆H) ≤ ∥H∥2op∥P⋆∥opdX and 1− ρ2 ≥ 1− ρ. ■

This proof proceeds quite similarly to the linear dynamical systems proof given in Appendix I. We
start again by defining the truncated GLM dynamics:

X̄t+1 = σ(A⋆X̄t) +HV̄t, X̄0 = HV̄0, V̄t = Vt1{∥Vt∥2 ≤ R}. (56)

We set R =
√
dX +

√
2(1 + β) log T where β ≥ 2 is a free parameter. Define the event E as:

E :=

{
max

0≤t≤T−1
∥Vt∥2 ≤ R

}
. (57)

Note that by the setting of R, we have P(Ec) ≤ 1/T β using standard Gaussian concentration results
plus a union bound. Furthermore on E , the original GLM process driven by Gaussian noise (16)
coincides with the truncated process (56). Let f̂ denote the LSE on the original process (56), and let
f̄ denote the LSE on the truncated process (56). Hence:

E∥f̂ − f⋆∥2L2 = E∥f̂ − f⋆∥2L21{E}+E∥f̂ − f⋆∥2L21{Ec}

≤ E∥f̄ − f⋆∥2L2 +E∥f̂ − f⋆∥2L21{Ec}. (58)

Let us now control the error term E∥f̂ − f⋆∥2L21{Ec}. Write f̂(x) = σ(Âx), and put ∆̂ = Â−A⋆.
We have:

E∥f̂ − f⋆∥2L21{Ec} =
1

T

T−1∑
t=0

E∥σ(ÂXt)− σ(A⋆Xt)∥221{Ec}
(a)

≤ 1

T

T−1∑
t=0

E∥∆̂Xt∥221{Ec}

(b)

≤ 4B2

T

T−1∑
t=0

E∥Xt∥221{Ec}
(c)

≤ 4B2

T 1+β/2

T−1∑
t=0

√
E∥Xt∥42

(d)

≤ 4B2B2
X

T β/2
. (59)
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Here, (a) follows since σ is 1-Lipschitz, (b) uses the definition of F in (17), (c) follows by Cauchy-
Schwarz, and (d) uses Proposition J.1.

The remainder of the proof is to bound the LSE error E∥f̄ − f⋆∥2L2 . First, we establish an almost
sure bound on {X̄t}t≥0.
Proposition J.2. Consider the truncated GLM process (56). Under Assumption 6.1, the process
{X̄t}t≥0 satisfies:

sup
t∈N

∥X̄t∥P⋆ ≤
2∥P⋆∥1/2op ∥H∥op(

√
dX +

√
2(1 + β) log T )

1− ρ
≜ BX̄ . (60)

Proof. By triangle inequality and (53):
∥X̄t+1∥P⋆ = ∥σ(A⋆X̄t) +HV̄t∥P⋆ ≤ ∥σ(A⋆X̄t)∥P⋆ + ∥HV̄t∥P⋆

≤ ρ1/2∥X̄t∥P⋆ + ∥HV̄t∥P⋆ ≤ ρ1/2∥X̄t∥P⋆ + ∥P 1/2
⋆ H∥opR.

Unrolling this recursion, and using the fact that infx∈[0,1]
1−

√
x

1−x = 1/2 yields the result. ■

We next establish uniform bounds for the covariance matrices of the truncated process.
Proposition J.3. Suppose T ≥ 4. Consider the truncated GLM process (56), and let the covariance
matrices for the process {X̄t}t≥0 be denoted as Γ̄t ≜ E[X̄tX̄

T
t ]. Under Assumption 6.1:

1

2
HHT ≼ Γ̄t ≼ B2

X̄ · I.

Proof. The upper bound is immediate from Proposition J.2, since E[X̄tX̄
T
t ] ≼ E[∥X̄t∥22]I ≼ B2

X̄
I .

For the lower bound, it is immediate when t = 0 using Proposition G.4. On the other hand, for t ≥ 1,
since V̄t is zero-mean:
E[X̄tX̄

T
t ] = E[(σ(A⋆X̄t−1) +HV̄t−1)(σ(A⋆X̄t−1) +HV̄t−1)

T]

= E[σ(A⋆X̄t−1)σ(A⋆X̄t−1)
T] +E[HV̄t−1V̄

T
t−1H

T] ≽ E[HV̄t−1V̄
T
t−1H

T] ≽
1

2
HHT.

The last inequality again holds from Proposition G.4. ■

J.2.1 Trajectory hypercontractivity for truncated GLM

For our purposes, the link function assumption in Assumption 6.1 ensures the following approximate
isometry inequality which holds for all x ∈ RdX and all matrices A,A′ ∈ RdX×dX :

ζ2∥Ax−A′x∥22 ≤ ∥σ(Ax)− σ(A′x)∥22 ≤ ∥Ax−A′x∥22. (61)
This inequality is needed to establish trajectory hypercontractivity for F⋆.
Proposition J.4. Suppose that T ≥ 4. Fix any matrix A ∈ RdX×dX . Under Assumption 6.1, the
truncated process (56) satisfies:

1

T

T−1∑
t=0

E∥σ(AX̄t)− σ(A⋆X̄t)∥42 ≤
4B4

X̄

σmin(H)4ζ4

(
1

T

T−1∑
t=0

E∥σ(AX̄t)− σ(A⋆X̄t)∥22

)2

. (62)

Hence, the function class F⋆ with F defined in (17) satisfies the (CGLM, 2)-trajectory hypercontrac-

tivity condition with CGLM =
4B4

X̄

σmin(H)4ζ4 .

Proof. Put ∆ ≜ A−A⋆ and M ≜ ∆T∆. We have:
E∥∆X̄t∥42 = E[X̄T

t MX̄tX̄
T
t MX̄t]

≤ B2
X̄ tr(M2Γ̄t) using Proposition J.2

≤ B2
X̄∥M∥op tr(M Γ̄t) Hölder’s inequality

≤ B2
X̄ tr(M) tr(M Γ̄t) since M is positive semidefinite

≤ B4
X̄ tr(M)2 using Proposition J.3

≤
B4
X̄

λmin(HHT)2
tr(MHHT)2.
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On the other hand, by Proposition J.3:

E∥∆X̄t∥22 = tr(M Γ̄t) ≥
1

2
tr(MHHT).

Combining these bounds yields:

1

T

T−1∑
t=0

E∥∆X̄t∥42 ≤
B4
X̄

λmin(HHT)2
tr(MHHT)2 ≤

4B4
X̄

λmin(HHT)2

(
1

T

T−1∑
t=0

E∥∆X̄t∥22

)2

.

The claim now follows via the approximate isometry inequality (61). ■

J.2.2 Bounding the dependency matrix for truncated GLM

We will use the result in Lemma G.1 to bound the total-variation distance by the 1-Wasserstein
distance. This is where the non-degenerate noise assumption in Assumption 6.1 is necessary.

The starting point is the observation that the diagonal Lyapunov function in Assumption 6.1 actually
yields incremental stability [48] in addition to Lyapunov stability. In particular, let {ai} denote the
rows of A⋆. For any x, x′ ∈ RdX :

∥σ(A⋆x)− σ(A⋆x
′)∥2P⋆ =

dX∑
i=1

(P⋆)ii(σ(⟨ai, x⟩)− σ(⟨ai, x′⟩))2

≤
dX∑
i=1

(P⋆)ii(⟨ai, x⟩ − ⟨ai, x′⟩)2

= (x− x′)TAT
⋆P⋆A⋆(x− x′)

≤ ρ∥x− x′∥2P⋆ . (63)

This incremental stability property allows us to control the dependency matrix as follows.
Proposition J.5. Consider the truncated GLM process {X̄t}t≥0 from (56). Let PX̄ denote the joint
distribution of {X̄t}T−1

t=0 . Under Assumption 6.1 and when B ≥ 1, we have that:

∥Γdep(PX̄)∥op ≤
22

1− ρ
log

(
B
√
dX(BX̄ +BX)

2σmin(H)

)
.

Proof. Let {Xt}t≥0 denote the original GLM dynamics from (16). Fix indices t ≥ 0 and k ≥ 1.
We construct a coupling of (PXt+k(· | Xt = x),PXt+k) as follows. Let {Vt}t≥0 be iid N(0, I).
Let {Zs}s≥t be the process such that Zt = x, and follows the GLM dynamics (16) using the noise
{Vt}t≥0 (we do not bother defining Zt′ for t′ < t since we do not need it). Similarly, let {Z ′

s}s≥0 be
the process following the GLM dynamics (16) using the same noise {Vt}t≥0. Now we have:

E∥Zt+k − Z ′
t+k∥P⋆ = E∥σ(A⋆Zt+k−1)− σ(A⋆Z

′
t+k−1)∥P⋆

≤ ρ1/2E∥Zt+k−1 − Z ′
t+k−1∥P⋆ using Equation (63).

We now unroll this recursion down to t:

E∥Zt+k − Z ′
t+k∥P⋆ ≤ ρk/2E∥Zt − Z ′

t∥P⋆ = ρk/2E∥x− Z ′
t∥P⋆ .

Since P⋆ ≽ I , this shows that:

W1(PXt+k(· | Xt = x),PXt+k) ≤ ρk/2(∥x∥P⋆ +E∥Xt∥P⋆) ≤ ρk/2(∥x∥P⋆ +BX),

where the last inequality follows from Proposition J.1 and Jensen’s inequality.

Next, it is easy to see the map x 7→ σ(A⋆x) is ∥A∥op-Lipschitz. Furthermore, since H is full rank by
Assumption 6.1, then for any t and k ≥ 1 both Pt and PXt+k(· | Xt = x) are absolutely continuous
w.r.t. the Lebesgue measure in RdX . Using Lemma G.1, we have for any k ≥ 2:

∥PXt+k(· | Xt = x)− PXt+k∥TV ≤ ∥A⋆∥op
√

tr((HHT)−1)

2
W1(PXt+k−1

(· | Xt = x),PXt+k−1
)

≤ ∥A⋆∥op
√

tr((HHT)−1)

2
ρ(k−1)/2(∥x∥P⋆ +BX).
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Using Proposition G.2 to bound ∥Γdep(PX̄)∥op (which is valid because we constrained β ≥ 2), and
Proposition J.2 to bound x ∈ X̄t, for any ℓ ≥ 1:

∥Γdep(PX̄)∥op ≤ 3 +
√
2

T−1∑
k=1

max
t=0,...,T−1−k

ess sup
x∈X̄t

√
∥PXt+k(· | Xt = x)− PXt+k∥TV

≤ 3 +
√
2ℓ+

[
∥A⋆∥op

√
tr((HHT)−1)(BX̄ +BX)

2

]1/2 T−1∑
k=ℓ+1

ρ(k−1)/4

(a)

≤ 5ℓ+

[
B
√
dX(BX̄ +BX)

2σmin(H)

]1/2
ρℓ/4

1− ρ1/4
.

Above, (a) uses the bounds ∥A⋆∥op ≤ B and tr(HH−1) ≤ dX/σmin(H)2. Now put ψ ≜
B
√
dX(BX̄+BX)
2σmin(H) . We choose ℓ =

⌈
log(

√
ψ)

1−ρ1/4

⌉
so that ρℓ/4 ≤ 1/

√
ψ. This yields:

∥Γdep(PX̄)∥op ≤
11 logψ

2(1− ρ1/4)

(a)

≤ 22 logψ

1− ρ
=

22

1− ρ
log

(
B
√
dX(BX̄ +BX)

2σmin(H)

)
.

Above, (a) follows from infx∈[0,1]
1−x1/4

1−x = 1/4. ■

J.2.3 Finishing the proof of Theorem 6.2

Below, we let ci be universal positive constants that we do not track precisely.

For any ε > 0 we now construct an ε-covering of F⋆ \B(r), with F⋆ the offset class of F from (17).
Note that we are not covering ∂B(r) since the class F⋆ is not star-shaped. However, an inspection of
the proof of Theorem B.2 shows that one can remove the star-shaped assumption by instead covering
the set F⋆ \B(r). To this end, we let {A1, . . . , AN} be a δ-cover of A ≜ {A ∈ RdX×dX | ∥A∥F ≤
B}, for a δ to be specified. By a volumetric argument we may choose {A1, . . . , AN} such that

N ≤
(
1 + 2B

δ

)d2X . Now, any realization of {X̄t} will have norm less than BX̄ from (60), where BX̄
is bounded by:

BX̄ ≤
c0∥P⋆∥1/2op ∥H∥op(

√
dX +

√
(1 + β) log T )

1− ρ
.

Now fix any A ∈ A , and let Ai be an element in the δ-cover satisfying ∥A−Ai∥F ≤ δ. We observe
that for any x satisfying ∥x∥2 ≤ BX̄ :

∥(σ(Aix)− σ(A⋆x))− (σ(Ax)− σ(A⋆x))∥2 = ∥σ(Aix)− σ(Ax)∥2 ≤ ∥(Ai −A)x∥2
≤ ∥Ai −A∥F ∥x∥2 ≤ δBX̄ .

Thus, it suffices to take δ = ε/BX̄ to construct the ε cover of F⋆, i.e., N∞(F⋆, ε) ≤
(
1 + 2BBX̄

ε

)d2X
.

This then implies [see e.g. 39, Example 4.2.10]:

N∞(F⋆ \B(r), ε) ≤ N∞(F⋆, ε/2) ≤
(
1 +

4BBX̄
ε

)d2X
.

Next, by Proposition J.4, (F⋆,PX̄) is (CGLM, 2)-hypercontractive for all T ≥ 4, where

CGLM ≤
4B4

X̄

σmin(H)4ζ4
≤
c1∥P⋆∥2opcond(H)4(d2X + ((1 + β) log T )2)

ζ4(1− ρ)4
.

Furthermore, by Proposition J.5:

∥Γdep(PX̄)∥2op ≤
c2

(1− ρ)2
log2

(
B
√
dX(BX̄ +BX)

2σmin(H)

)
≜ γ2.

The class F⋆ is 2BBX̄ -bounded on (56). Invoking Theorem 4.1, for every r > 0:

E∥f̄ − f⋆∥2L2 ≤ 8EM̄T (F⋆) + r2 + 4B2B2
X̄

(
1 +

4
√
8BBX̄
r

)d2X
exp

(
−T

8CGLMγ2

)
. (64)
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Here, the notation EM̄T (F⋆) is meant to emphasize that the offset complexity is with respect to the
truncated process PX̄ and not the original process PX . We now set r2 = ∥H∥2opd2X/T , and compute a
T0 such that the third term in (64) is also bounded by ∥H∥2opd2X/T . To do this, it suffices to compute
T0 such that for all T ≥ T0:

T ≥ c3CGLMγ
2d2X log

(
TBBX̄

∥H∥op
√
dX

)
.

It suffices to take (assuming β is at most polylogarithmic in any problem constants):

T0 ≥ c4
∥P⋆∥2opcond(H)4d4X

ζ4(1− ρ)6
polylog

(
B, dX, ∥P⋆∥op, cond(H),

1

ζ
,

1

1− ρ

)
. (65)

Again, we do not attempt to compute the exact power of the polylog term, but note it can in principle
be done via Du et al. [43, Lemma F.2].

Next, from (59) we have that the error term E∥f̂ − f⋆∥2L21{Ec} ≤ 4B2B2
X

Tβ/2
. Thus if we further

constrain β > 2 and require T0 ≥ c5

[
B2∥P⋆∥op

(1−ρ)2

] 1
β/2−1

, then E∥f̂ − f⋆∥2L21{Ec} ≤ ∥H∥2
opd

2
X

T . Note
that setting β = max{3, c6 logB} suffices.

To finish the proof, it remains to bound EM̄T (F⋆). Now, unlike the linear dynamical systems case,
there is no closed-form expression for EM̄T (F⋆). Hence, we will bound it via the chaining bound
(7). This computation is done in Ziemann et al. [15, Example 3]. Before we can use the result,
however, we need to verify that the truncated noise process {HV̄t}t≥0 is a sub-Gaussian MDS. The
MDS part is clear since V̄t ⊥ V̄t′ for t ̸= t′, and V̄t is zero-mean. Furthermore, Proposition G.3
yields that HV̄t is a 4∥H∥2op-sub-Gaussian random vector. Hence, we have:

EM̄T (F⋆) ≤ c7
∥H∥2opd2X

T
log(1 + ∥H∥op

√
dXBBX̄T

2).

The claim now follows.

J.3 Further discussion related to Theorem 6.2

Several remarks on Assumption 6.1 are in order. First, the rank condition on H ensures that the
noise process {HVt}t≥0 is non-degenerate. Viewing (16) as a control system mapping {Vt}t≥0 7→
{Xt}t≥0, this condition ensures that this system is one-step controllable. Next, the link function
assumption is standard in the literature (see e.g. Kowshik et al. [20], Sattar and Oymak [30], Foster
et al. [31]). The expansiveness condition |σ(x) − σ(y)| ≥ ζ|x − y| ensures that the link function
is increasing at a uniform rate. For efficient parameter recovery, some extra assumption other than
Lipschitzness and monotonicity is needed [20, Theorem 4], and expansiveness yields a sufficient
condition. However, for excess risk, it is unclear if any extra requirements are necessary. We leave
resolving this issue to future work. Finally, the Lyapunov stability condition is due to Foster et al.
[31, Proposition 2], and yields a certificate for global exponential stability (GES) to the origin. It is
weaker than requiring that ∥A⋆∥op < 1, which amounts to taking P⋆ = I . The assumption P⋆ ≽ I is
without loss of generality by rescaling P⋆.

Theorem 6.2 states that after a polynomial burn-in time (which scales quite sub-optimally as Õ(d4X)
in the dimension), the excess risk scales as the minimax rate ∥H∥2opd2X/T times a logarithmic factor
of various problem constants. To the best of our knowledge, this is the sharpest excess risk bound for
this problem in the literature and is nearly minimax optimal. As noted previously, the logarithmic
factor enters via the chaining inequality (7) when bounding the martingale offset complexity. We
leave to future work a more refined analysis that removes this logarithmic dependence, and also
improves the polynomial dependence of T0 on dX. The extra d2X factor in (19) over the LDS burn-in
time (15) comes from our analysis of the trajectory hypercontractivity constant for this problem, and
should be removable.

Much like in (52), we can use the link function expansiveness in Assumption 6.1 to convert the excess
risk bound (18) to a parameter recovery rate:

E∥Â−A⋆∥2F ≤ Õ(1)
∥H∥2opd2X

ζ2Tλmin(Γ̄T )
, (66)
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where again Γ̄T ≜ 1
T

∑T−1
t=0 E[XtX

T
t ] is the average covariance matrix of the GLM process (16).

Note that the one-step controllability assumption in Assumption 6.1 ensures that the covariance
matrix E[XtX

T
t ] ≽ HHT is invertible for every t ∈ N. A detailed comparison of the excess risk rate

(18) and parameter recovery rate (66) with existing bounds in the literature is given in Appendix J.1.

Let us briefly discuss the proof of Theorem 6.2. As in the LDS case, we use the truncation argu-
ment described in Appendix B.1 that allows us apply Theorem 4.1 while still using bounds on the
dependency matrix coefficients of the original unbounded process (16). However, an additional
complication arises compared to the LDS case, as the covariates are not jointly Gaussian due to the
presence of the link function. While at this point we could appeal to ergodic theory, we instead
develop an alternative approach that still allows us to compute explicit constants. Building on the
work of Chae and Walker [42], we use the smoothness of the Gaussian transition kernel to upper
bound the TV distance by the 1-Wasserstein distance. This argument is where our analysis crucially
relies on the non-degeneracy of H in Assumption 6.1, as the transition kernel corresponding to
multiple steps of (16) is no longer Gaussian. The 1-Wasserstein distance is then controlled by using
the incremental stability [48] properties of the deterministic dynamics x+ = σ(A⋆x). Since this
technique only depends on the GLM dynamics through incremental stability, it is of independent
interest as it applies much more broadly.
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