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Abstract

We study square loss in a realizable time-series framework with martingale dif-
ference noise. Our main result is a fast rate excess risk bound which shows that
whenever a trajectory hypercontractivity condition holds, the risk of the least-
squares estimator on dependent data matches the iid rate order-wise after a burn-in
time. In comparison, many existing results in learning from dependent data have
rates where the effective sample size is deflated by a factor of the mixing-time of the
underlying process, even after the burn-in time. Furthermore, our results allow the
covariate process to exhibit long range correlations which are substantially weaker
than geometric ergodicity. We call this phenomenon learning with little mixing, and
present several examples for when it occurs: bounded function classes for which
the L2 and L2+ε norms are equivalent, ergodic finite state Markov chains, various
parametric models, and a broad family of infinite dimensional ℓ2(N) ellipsoids. By
instantiating our main result to system identification of nonlinear dynamics with
generalized linear model transitions, we obtain a nearly minimax optimal excess
risk bound after only a polynomial burn-in time.

1 Introduction

Consider regression in the context of the time-series model:

Yt = f⋆(Xt) +Wt, t = 0, 1, 2, . . . . (1)

Such models are ubiquitous in applications of machine learning, signal processing, econometrics,
and control theory. In our setup, the learner is given access to T ∈ N+ pairs {(Xt, Yt)}T−1

t=0 drawn
from the model (1), and is asked to output a hypothesis f̂ from a hypothesis class F which best
approximates the (realizable) regression function f⋆ ∈ F in terms of square loss.

In this work, we study the least-squares estimator (LSE). This procedure minimizes the empirical
risk associated to the square loss over the class F . When each pair of observations (Xt, Yt) is drawn
iid from some fixed distribution, this procedure is minimax optimal over a broad set of hypothesis
classes [1–4]. However, much less is known about the optimal rate of convergence for the general
time-series model (1), as correlations across time in the covariates {Xt} complicate the analysis.

With this in mind, we seek to extend our understanding of the minimax optimality of the LSE for the
time-series model (1). We show that for a broad class of function spaces and covariate processes, the
effects of data dependency across time enter the LSE excess risk only as a higher order term, whereas
the leading term in the excess risk remains order-wise identical to that in the iid setting. Hence,
after a sufficiently long, but finite burn-in time, the LSE’s excess risk scales as if all T samples are
independent. This behavior applies to processes that exhibit correlations which decay slower than
geometrically. We refer to this double phenomenon, where the mixing-time only enters as a burn-in
time, and where the mixing requirement is mild, as learning with little mixing.

Our result stands in contrast to a long line of work on learning from dependent data (see e.g., [5–14]
and the references within), where the blocking technique [5] is used to create independence amongst
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the dependent covariates, so that tools to analyze independent learning can be applied. While these
aforementioned works differ in their specific setups, the main commonality is that the resulting
dependent data rates mimic the corresponding independent rates, but with the caveat that the sample
size is replaced by an “effective” sample size that is decreased in some way by the mixing-time, even
after any necessary burn-in time. Interestingly, the results of Ziemann et al. [15] studying the LSE on
the model (1) also suffer from such sample degradation, but do not rely on the blocking technique.

The model (1) captures learning dynamical systems by setting Yt = Xt+1, so that the regression
function f⋆ describes the dynamics of the state variable Xt. Recent progress in system identification
shows that the lack of ergodicity does not necessarily degrade learning rates. Indeed, when the states
evolve as a linear dynamical system (i.e., the function f⋆ is linear), learning rates are not deflated
by any mixing times, and match existing rates for iid linear regression [16–19]. Kowshik et al.
[20], Gao and Raskutti [21] extend results of this flavor to parameter recovery of dynamics driven
by a generalized linear model. The extent to which this phenomenon—less ergodicity not impeding
learning—generalizes beyond linear and generalized linear models is a key motivation for our work.

Contributions We consider the realizable setting, where f⋆ is assumed to be contained in a known
function space F . Our results rest on two assumptions regarding both the covariate process {Xt}
and the function space F . The first assumption posits that the process {Xt} exhibits some mild form
of ergodicity (that is significantly weaker than the typical geometric ergodicity assumption). The
second assumption is a hypercontractivity condition that holds uniformly in F along the trajectory
{Xt}, extending contractivity assumptions for iid learning [3] to dependent processes.

Informally, our main result (Theorem 4.1, presented in Section 4), shows that under these two
assumptions, letting comp(F ) denote some (inverse) measure of complexity of F , the LSE f̂
satisfies:

E∥f̂ − f⋆∥2L2 ≲
(

dimensional factors × σ2
W

T

)comp(F)

+ higher order o(1/T comp(F)) terms. (2)

The first term in (2) matches existing LSE risk bounds for iid learning order-wise, and most impor-
tantly, does not include any dependence on the mixing-time of the process. Indeed, all mixing-time
dependencies enter only in the higher order term. Since this term scales as o(1/T comp(F)), it becomes
negligible after a finite burn-in time. This captures the crux of our results: on a broad class of
problems, given enough data, the LSE applied to time-series model (1) behaves as if all samples are
independent.

Section 5 provides several examples for which the trajectory hypercontractivity assumption holds.
When the covariate process {Xt} is generated by a finite-state irreducible and aperiodic Markov
chain, then any function class F satisfies the requisite condition. More broadly, the condition is
satisfied for any bounded function classes for which the L2 and L2+ε norms (along trajectories) are
equivalent. Next, we show that many infinite dimensional function spaces based on ℓ2(N) ellipsoids
satisfy our hypercontractivity condition, demonstrating that our results are not inherently limited to
finite-dimensional hypothesis classes.

To demonstrate the broad applicability of our framework, Section 6 instantiates our main result on two
system identification problems that have received recent attention in the literature: linear dynamical
systems (LDS), and systems with generalized linear model (GLM) transitions. For stable LDS, after
a polynomial burn-in time, we recover an excess risk bound that matches the iid rate. A more general
form of this result was recently established by Tu et al. [19]. For stable GLMs, also after a polynomial
burn-in time, we obtain the first excess risk bound for this problem which matches the iid rate, up to
logarithmic factors in various problem constants including the mixing-time. In both of these settings,
our excess risk bounds also yield nearly optimal rates for parameter recovery, matching known results
for LDS [16] and GLMs [20] in the stable case. In Appendix A, we show experimentally, using the
stable GLM model, that the trends predicted by our theory are indeed realized in practice.

2 Related work

While regression is a fundamental problem studied across many disciplines, our work draws its
main inspiration from Mendelson [3] and Simchowitz et al. [16]. Mendelson [3] shows that for
nonparametric iid regression, only minimal assumptions are required for one-sided isometry, and
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thus learning. Simchowitz et al. [16] build on this intuition and provide mixing-free rates for linear
regression over trajectories generated by a linear dynamical system. We continue this trend, by
leveraging one-sided isometry to show that mixing only enters as a higher order term in the rates of
the nonparametric LSE. More broadly, the technical developments we follow synthesize techniques
from two lines of work: nonparametric regression with iid data, and learning from dependent data.

Nonparametric regression with iid data. Beyond the seminal work of Mendelson [3], the works
[2, 22, 23] all study iid regression with square loss under various moment equivalence conditions. In
addition to moment equivalence, we build on the notion of offset Rademacher complexity defined
by [24] in the context of iid regression. Indeed, we show that a martingale analogue of the offset
complexity (described in [15]) characterizes the LSE rate in (1).

Learning from dependent data. As discussed previously, many existing results for learning from
dependent data reduce the problem to independent learning via the blocking technique [5], at the
expense of sample complexity deflation by the mixing-time. Nagaraj et al. [25] prove a lower
bound for linear regression stating that in a worst case agnostic model, this deflation is unavoidable.
Moreover, if the linear regression problem is realizable, Nagaraj et al. [25] provide upper and lower
bounds showing that the mixing-time only affects the burn-in time, but not the final risk. We note
that their upper bound is an algorithmic result that holds only for a specific modification of SGD.
Our work can be interpreted as an upper bound in the more general nonparametric setting, where
we put forth sufficient conditions to recover the iid rate after a burn-in time. Our result is algorithm
agnostic and directly applies to the empirical risk minimizer. Ziemann et al. [15] also study the
model (1), and provide an information-theoretic analysis of the nonparametric LSE. However, their
approach fundamentally reduces to showing two-sided concentration—something our work evades—
and therefore their bounds incur worst case dependency on the mixing-time. Roy et al. [13] extend
the results from Mendelson [3] to the dependent data setting. While following Mendelson’s argument
allows their results to handle non-realizability and heavy-tailed noise, their proof ultimately still
relies on two-sided concentration for both the “version space” and the “noise interaction”. Hence,
their rates end up degrading for slower mixing processes. We note that this is actually expected in the
non-realizable setting in light of the lower bounds in Nagaraj et al. [25].

The measure of dependencies we use for the process {Xt} is due to Samson [26]. Recently, Dagan
et al. [27] use a similar measure to study learning when the covariates have no obvious sequential
ordering (e.g., a graph structure or Ising model). However, our results are not directly comparable,
other than noting that their risk bounds degrade as the measure of correlation increases.

Results in linear system identification show that lack of ergodicity does not degrade parameter
recovery rates [16–19, 28, 29]. Beyond linear system identification, Kowshik et al. [20], Gao
and Raskutti [21], Sattar and Oymak [30], Foster et al. [31] prove parameter recovery bounds for
dynamical systems driven by a generalized linear model (GLM) transition. Most relevant are Kowshik
et al. [20] and Gao and Raskutti [21], who again show that the lack of ergodicity does not hamper
rates. Indeed, Gao and Raskutti [21] even manage to do so in a semiparametric setting with an
unknown link function. As mentioned previously, our main result instantiated to these problems
in the stable case matches existing excess risk and parameter recovery bounds for linear system
identification, and actually provides the sharpest known excess risk bound for the GLM setting
(when the link function is known). A more detailed comparison to existing LDS results is given in
Appendix I.4, and to existing GLM results in Appendix J.1.

3 Problem formulation

The time-series (1) evolves on two subsets of Euclidean space, X ⊂ RdX and Y ⊂ RdY , with Xt ∈ X
and Yt,Wt ∈ Y. Expectation (resp. probability) with respect to all the randomness of the underlying
probability space is denoted by E (resp. P). The Euclidean norm on Rd is denoted ∥ · ∥2, and the unit
sphere in Rd is denoted Sd−1. For a matrix M ∈ Rd1×d2 , ∥M∥op denotes the largest singular value,
σmin(M) the smallest non-zero singular value, and cond(M) = ∥M∥op/σmin(M) the condition
number. When the matrix M is symmetric, λmin(M) will be used to denote its minimum eigenvalue.

We assume there exists a filtration {Ft} such that (a) {Wt} is a square integrable martingale difference
sequence (MDS) with respect to this filtration, and (b) {Xt} is adapted to {Ft−1}. Further tail
conditions on this MDS will be imposed as necessary later on.
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Let F be a hypothesis space of functions mapping RdX to RdY . We assume that the true regression
function is an element of F (i.e., f⋆ ∈ F ), and that F is known to the learner. Given two compatible
function spaces F1,F2, let F1 − F2 ≜ {f1 − f2 | f1 ∈ F1, f2 ∈ F2}. A key quantity in
our analysis is the shifted function class F⋆ ≜ F − {f⋆}. Our results will be stated under the
assumption that F⋆ is star-shaped,1 although we will see that this is not too restrictive. For any
function f : X → RdY , we define ∥f∥∞ ≜ supx∈X∥f∥2. A function f is B-bounded if ∥f∥∞ ≤ B.
Similarly, a hypothesis class is B-bounded if each of its elements is B-bounded. For a bounded
class F and resolution ε > 0, the quantity N∞(F , ε) denotes the size of the minimal ε-cover of F
(contained in F ) in the ∥·∥∞-norm.

We fix a T ∈ N+, indicating the number of labeled observations {(Xt, Yt)}T−1
t=0 from the time-series

(1) that are available to the learner. The joint distribution of X0:T−1 ≜ (X0, . . . , XT−1) is denoted
PX . For p ≥ 1, we endow F −F with Lp(PX) norms: ∥f−g∥pLp ≜ 1

T

∑T−1
t=0 E∥f(Xt)−g(Xt)∥p2,

where expectation is taken with respect to PX . We will mostly be interested in L2(PX), hereafter
often just referred to as L2. This is the L2 space associated to the law of the uniform mixture over
X0:T−1 and thus, for iid data, coincides with the standard L2 space often considered in iid regression.
For a radius r > 0, we let B(r) denote the closed ball of F⋆ with radius r in L2, and we let ∂B(r)

denote its boundary: B(r) ≜
{
f ∈ F⋆

∣∣ ∥f∥2L2 ≤ r2
}

and ∂B(r) ≜
{
f ∈ F⋆

∣∣ ∥f∥2L2 = r2
}

.

The learning task is to produce an estimate f̂ of f⋆, which renders the excess risk ∥f̂ −f⋆∥2L2 as small
as possible. We emphasize that ∥f̂ − f⋆∥2L2 = 1

T

∑T−1
t=0 EX̃0:T−1

∥f̂(X̃t)− f⋆(X̃t)∥22 where X̃0:T−1

is a fresh, statistically independent, sample with the same law PX as X0:T−1. Namely, ∥f̂ − f⋆∥2L2

is a random quantity, still depending on the internal randomness of the learner and that of the sample
X0:T−1 used to generate f̂ . We study the performance of the least-squares estimator (LSE) defined
as f̂ ∈ argminf∈F

{
1
T

∑T−1
t=0 ∥Yt − f(Xt)∥22

}
, and measure the excess risk E∥f̂ − f⋆∥2L2 .

4 Results

This section presents our main result. We first detail the definitions behind our main assumptions in
Section 4.1. The main result and two corollaries are then presented in Section 4.2.

4.1 Hypercontractivity and the dependency matrix

Hypercontractivity. We first state our main trajectory hypercontractivity condition, which we will
use to establish lower isometry. The following definition is heavily inspired by recent work on
learning without concentration [3, 23].

Definition 4.1 (Trajectory (C,α)-hypercontractivity). Fix constants C > 0 and α ∈ [1, 2]. We say
that the tuple (F ,PX) satisfies the trajectory (C,α)-hypercontractivity condition if

E

[
1

T

T−1∑

t=0

∥f(Xt)∥42

]
≤ C

(
E

[
1

T

T−1∑

t=0

∥f(Xt)∥22

])α
for all f ∈ F . (3)

Here, the expectation is with respect to PX , the joint law of X0:T−1.

Condition (3) interpolates between boundedness and small-ball behavior. Indeed, if the class F is
B-bounded, then it satisfies trajectory (B2, 1)-hypercontractivity trivially. On the other hand, for
α = 2, (3) asks that ∥f∥L4 ≤ C1/4∥f∥L2 for trajectory-wise Lp-norms; by the Paley-Zygmund
inequality, this implies that a small-ball condition holds. Moreover, if for some ε ∈ (0, 2), the
trajectory-wise L2 and L2+ε norms are equivalent on F , then Proposition 5.2 (Section 5) shows that
the condition holds for a nontrivial α = 1 + ε/2 ∈ (1, 2). More examples are given in Section 5.

Our main results assume that (F⋆,PX) (or a particular subset of F⋆) satisfies the trajectory (C,α)-
hypercontractivity condition with α > 1, which we refer to as the hypercontractive regime. The
condition α > 1 is required in our analysis for the lower order excess risk term to not depend on

1A function class F is star-shaped if for any α ∈ [0, 1], f ∈ F implies αf ∈ F .
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the mixing-time. Our results instantiated for the α = 1 case directly correspond to existing work by
Ziemann et al. [15], and exhibit a lower order term that depends on the mixing-time.

Ergodicity via the dependency matrix. We now state the main definition we use to measure the
stochastic dependency of a process. Recall that for two measures µ, ν on the same measurable space
with σ-algebra A, the total-variation norm is defined as ∥µ− ν∥TV ≜ supA∈A |µ(A)− ν(A)|.
Definition 4.2 (Dependency matrix, Samson [26, Section 2]). The dependency matrix of a process
{Zt}T−1

t=0 with distribution PZ is the (upper-triangular) matrix Γdep(PZ) = {Γij}T−1
i,j=0 ∈ RT×T

defined as follows. Let Z0:i denote the σ-algebra generated by {Zt}it=0. For indices i < j, let

Γij =
√
2 sup
A∈Z0:i

∥PZj:T−1
(· | A)− PZj:T−1

∥TV. (4)

For the remaining indices i ≥ j, let Γii = 1 and Γij = 0 when i > j (below the diagonal).

Given the dependency matrix from Definition 4.2, we measure the dependency of the process PX by
the quantity ∥Γdep(PX)∥op. Notice that this quantity always satisfies 1 ≤ ∥Γdep(PX)∥op ≲ T . The
lower bound indicates that the process PX is independent across time. The upper bound indicates
that the process is fully dependent, e.g., Xt+1 = Xt for all t ∈ N.

Our results apply to cases where ∥Γdep(PX)∥2op grows sub-linearly in T– the exact require-
ment depends on the specific function class F . If the process {Xt} is geometrically ϕ-mixing,
then ∥Γdep(PX)∥2op is upper bounded by a constant that depends on the mixing-time of the pro-
cess, and is independent of T [26, Section 2]. Other examples, such as processes satisfying
Doeblin’s condition [32], are given in Samson [26, Section 2]. When {Xt} is a stationary
time-homogenous Markov chain with invariant distribution π, the coefficients Γij simplify to
Γ2
ij = 2 supA∈X∞ ∥PXj−i(· | A) − π∥TV for indices j > i, where X∞ is the σ-algebra gener-

ated by X∞ ∼ π (cf. Proposition F.1). Hence, the requirement ∥Γdep(PX)∥2op ≲ T β for β ∈ (0, 1)

then corresponds to supA∈X∞ ∥PXt(· | A)− π∥TV ≲ 1/t1−β for t ∈ N+. Jarner and Roberts [33]
give various examples and conditions to check polynomial convergence rates for Markov chains. We
also provide further means to verify ∥Γdep(PX)∥op = O(1) in Appendix F and Appendix G.

4.2 Learning with little mixing

A key quantity appearing in our bounds is a martingale variant of the notion of Gaussian complexity.
Definition 4.3 (Martingale offset complexity, cf. Liang et al. [24], Ziemann et al. [15]). For the
regression problem (1), the martingale offset complexity of a function space F is given by:

MT (F ) ≜ sup
f∈F

{
1

T

T−1∑

t=0

4⟨Wt, f(Xt)⟩ − ∥f(Xt)∥22

}
. (5)

Recall that F⋆ = F − {f⋆} is the centered function class and ∂B(r) = {f ∈ F⋆ | ∥f∥L2 = r} is
the boundary of the L2 ball B(r). The following theorem is the main result of this paper.
Theorem 4.1. Fix B > 0, C : (0, B] → R+, α ∈ [1, 2], and r ∈ (0, B]. Suppose that F⋆

is star-shaped and B-bounded. Let Fr ⊂ F⋆ be a r/
√
8-net of ∂B(r) in the supremum norm

∥·∥∞, and suppose that (Fr,PX) satisfies the trajectory (C(r), α)-hypercontractivity condition
(cf. Definition 4.1). Then:

E∥f̂ − f⋆∥2L2
≤ 8EMT (F⋆) + r2 +B2|Fr| exp

( −Tr4−2α

8C(r)∥Γdep(PX)∥2op

)
. (6)

The assumption that F⋆ is star-shaped in Theorem 4.1 is not particularly restrictive. Indeed, The-
orem 4.1 still holds if we replace F⋆ by its star-hull star(F⋆) ≜ {γf | γ ∈ [0, 1], f ∈ F⋆}, and
∂B(r) with the boundary of the r-sphere of star(F⋆). In this case, we note that (a) the metric entropy
of star(F⋆) is well controlled by the metric entropy of F⋆,2 and (b) the trajectory hypercontractivity
conditions over a class F⋆ and its star-hull star(F⋆) are equivalent. Hence, at least whenever we are

2Specifically, logN∞(star(F⋆), ε) ≤ log(2B/ε) + logN∞(F⋆, ε/2) [34, Lemma 4.5].
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able to verify hypercontractivity over the entire class F⋆, little generality is lost. While most of our
examples are star-shaped, we will need the observations above when we work with generalized linear
model dynamics in Section 6.2.

To understand Theorem 4.1, we will proceed in a series of steps. We first need to understand the
martingale complexity term EMT (F⋆). Since F⋆ is B-bounded, if one further imposes the tail
conditions that the noise process {Wt} is a σ2

W -sub-Gaussian MDS,3 a chaining argument detailed in
Ziemann et al. [15, Lemma 4] shows that:

EMT (F⋆) ≲ inf
γ>0,δ∈[0,γ]

{
σ2
W logN∞(F⋆, γ)

T
+ σW

√
dYδ +

σW√
T

∫ γ

δ

√
logN∞(F⋆, s)ds+ γ2

}
.

(7)
In particular, this bound only depends on F⋆ and is independent of ∥Γdep(PX)∥2op. Furthermore, (7)
coincides with the corresponding risk bound for the LSE with iid covariates [24].

Given that EMT (F⋆) corresponds to the rate of learning from T iid covariates, the form of (6)
suggests that we choose r2 ≲ EMT (F⋆), so that the dominant term in (6) is equal to EMT (F⋆) in
scale. Given that r has been set, the only remaining degree of freedom in (6) is to set T large enough
(the burn-in time) so that the third term is dominated by r2. Thus, it is this third term in (6) that
captures the interplay between the function class F⋆ and the dependency measure ∥Γdep(PX)∥op.
We will now consider specific examples to illustrate how the burn-in time can be set.

Our first example supposes that (a) F⋆ satisfies the trajectory (C, 2)-hypercontractivity condition,
and that (b) F⋆ is nonparametric, but not too large:

∃ p > 0, q ∈ (0, 2) s.t. logN∞(F⋆, ε) ≤ p

(
1

ε

)q
for all ε ∈ (0, 1). (8)

Covering numbers of the form (8) are typical for sufficiently smooth function classes, e.g. the
space of k-times continuously differentiable functions mapping X → Y for any k ≥ ⌈dX/2⌉ [35].
If condition (8) holds and the noise process {Wt} is a sub-Gaussian MDS, inequality (7) yields
EMT (F⋆) ≲ T− 2

2+q , and hence we want to set r2 = o(T− 2
2+q ). Carrying out this program yields

the following corollary.

Corollary 4.1. Fix B ≥ 1, C > 0, p > 0, q ∈ (0, 2), and γ ∈ (0, q
2+q ). Suppose that F⋆ is

star-shaped, B-bounded, satisfies (8), and (F⋆,PX) satisfies the trajectory (C, 2)-hypercontractivity
condition. Suppose that T satisfies:

T ≥ max

{
[
8(32p+ 1)C∥Γdep(PX)∥2op

] 1

1− q
2 ( 2

2+q
+γ) ,

[
4 logB ∨ 8

q
log

(
16

q

)] 1
q
2 ( 2

2+q
+γ)
}
.

(9)

Then, we have that:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆) + 2T−( 2
2+q+γ). (10)

The rate (10) of Corollary 4.1 highlights the fact that the first order term of the excess risk is
bounded by the martingale offset complexity EMT (F⋆). This behavior arises since the dependency
matrix Γdep(PX) only appears as the burn-in requirement (9). Here, the value of q constrains how
fast ∥Γdep(PX)∥2op is allowed to grow. In particular, condition (9) requires that ∥Γdep(PX)∥2op =

o(T 1− q
2+q ), otherwise the burn-in condition cannot be satisfied for any γ ∈ (0, q

2+q ).

In our next example, we consider both a variable hypercontractivity parameter C(r) that varies with
the covering radius r, and also allow α ∈ (1, 2] to vary. Since our focus is on the interaction of
the parameters in the hypercontractivity definition, we will consider smaller function classes with
logarithmic metric entropy. This includes parametric classes but also bounded subsets of certain
reproducing kernel Hilbert spaces. For such function spaces, one expects EMT (F⋆) ≤ Õ(T−1), and
hence we set r2 = o(T−1).

3That is, for any u ∈ SdY−1, λ ∈ R, and t ∈ N, we have E[exp(λ⟨Wt, u⟩) | Ft−1] ≤ exp(λ2σ2
W /2).
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Corollary 4.2. Fix B ≥ 1, C : (0, 1] → R+, α ∈ (1, 2], b1 ∈ [0, 1), b2 ∈ [0, 2), γ ∈ (0, 1), and
p, q ≥ 1. Suppose that F⋆ is star-shaped and B-bounded, and that for every r ∈ (0, 1), there exists a
r-net Fr of ∂B(r) in the ∥·∥∞-norm such that (a) log |Fr| ≤ p logq

(
1
r

)
and (b) (Fr,PX) satisfies

the trajectory (C(r), α)-hypercontractivity condition. Next, suppose the growth conditions hold:

∥Γdep(PX)∥2op ≤ T b1 , C(r) ≤ (1/r)b2 ∀r ∈ (0, 1).

As long as the constants α, b1, b2, and γ satisfy ψ := 1 − b1 − (1+γ)(4−2α+b2)
2 > 0, then for any

T ≥ poly q
ψ

(
p, logB, qψ

)
, we have:

E∥f̂ − f⋆∥2L2
≤ 8EMT (F⋆) + 2

(
1

T

)1+γ

.

Here polyq/ψ denotes a polynomial of degree O(q/ψ) in its arguments– the exact expression is given
in the proof. Proposition 5.4 in Section 5 gives an example of an ℓ2(N) ellipsoid which satisfies the
assumptions in Corollary 4.2. Corollary 4.2 illustrates the interplay between the function class F⋆,
the data dependence of the covariate process {Xt}, and the hypercontractivity constant α. Let us
consider a few cases. First, let us suppose that the process {Xt} is geometrically ergodic and that
C(r) is a constant, so that we can set b1 and b2 arbitrarily close to zero (at the expense of a longer
burn-in time). Then, the ψ > 0 condition simplifies to α > 2 − 1

1+γ . This illustrates that in the
hypercontractivity regime (α > 1), there exists a valid setting of (b1, b2, γ) that satisfies ψ > 0. Next,
let us consider the case where C(r) is again a constant, but {Xt} is not geometrically ergodic. Setting
b2 and γ arbitrarily close to zero, we have ψ > 0 simplifies to b1 < α−1. Compared to Corollary 4.1,
we see that in the case when α = 2, the parametric nature of F⋆ allows the dependency requirement
to be less strict: o(T ) in the parametric case versus o(T 1− q

2+q ) in the nonparametric case.

We conclude with noting that when α = 1, it is not possible to remove the dependence on
∥Γdep(PX)∥2op in the lowest order term. In this situation, our results recover existing risk bounds
from Ziemann et al. [15]– see Appendix H for a discussion.

5 Examples of trajectory hypercontractivity

In this section, we detail a few examples of trajectory hypercontractivity. Let us begin by considering
the simplest possible example: a finite hypothesis class. Let |F | <∞. Define for any fixed f ∈ F⋆

the constant cf ≜ E
[
1
T

∑T−1
t=0 ∥f(Xt)∥42

]
/
(
E
[
1
T

∑T−1
t=0 ∥f(Xt)∥22

])2
, where the ratio 0/0 is

taken to be 1. Then the class F⋆ is trajectory (maxf∈F⋆
cf , 2)-hypercontractive.

Similarly, processes evolving on a finite state space can also be verified to be hypercontractive.

Proposition 5.1. Fix a µ > 0. Let {µt}T−1
t=0 denote the marginal distributions of PX . Suppose

that the µt’s all share a common support of a finite set of atoms {ψ1, . . . , ψK} ⊂ RdX , and that
min0≤t≤T−1 min1≤k≤K µt(ψk) ≥ µ. For any class of functions F mapping {ψ1, . . . , ψK} → RdY ,
we have that F satisfies the trajectory (1/µ, 2)-hypercontractivity condition.

We remark that when PX is an aperiodic and irreducible Markov chain over a finite state space, the
condition µ > 0 is always valid even as T → ∞ [36]. In this case, our findings are related to Wolfer
and Kontorovich [37, Theorem 3.1], who show that in the high accuracy regime (i.e., after a burn-in
time), the minimax rate of estimating the transition probabilities of such a chain is not affected by the
mixing time (in their case the pseudo-spectral gap).

The examples considered thus far rely on the fact that under a certain degree of finiteness, the fourth
and second moment can be made uniformly equivalent. The next proposition relaxes this assumption.
Namely, if for some ε ∈ (0, 2] the L2 and L2+ε norms are equivalent on a bounded class F , this
class then satisfies a nontrivial hypercontractivity constant, α > 1 (cf. Mendelson [23]).
Proposition 5.2. Fix ε ∈ (0, 2] and c > 0. Suppose that F is B-bounded and that ∥f∥L2+ε ≤
c∥f∥L2 for all f ∈ F . Then F is trajectory (B2−εc2+ε, 1 + ε/2)-hypercontractive.

Next, we show that for processes {Xt} which converge fast enough to a stationary distribution, it
suffices to verify the hypercontractivity condition only over the stationary distribution. This mimics
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existing results in iid learning, where hypercontractivity is assumed over the covariate distribution
[3, 24]. We first recall the definition of the χ2 divergence between two measures. Let µ and ν be two
measures over the same probability space, and suppose that µ is absolutely continuous w.r.t. ν. The

χ2(µ, ν) divergence is defined as χ2(µ, ν) ≜ Eν

[(
dµ
dν − 1

)2]
.

Proposition 5.3. Fix positive r,Cχ2 ,CTV, andC8→2. Suppose that the process {Xt} has a stationary
distribution π. Let {µt} denote the marginal distributions of {Xt}, and suppose that the marginals
{µt} are absolutely continuous w.r.t. π. Assume the process is ergodic in the sense that:

sup
t∈N

χ2(µt, π) ≤ Cχ2 ,
1

T

T−1∑

t=0

∥µt − π∥TV ≤ CTVr
2. (11)

Suppose also that for all f ∈ F⋆: Eπ∥f(X)∥82 ≤ C8→2(Eπ∥f(X)∥22)4. Then the set ∂B(r) satisfies
(C, 2)-trajectory hypercontractivity with C = (1 +

√
Cχ2)

√
C8→2(1 + CTVB

2)2.

We further discuss the ergodicity condition (11) in Appendix E.3.1.

Ellipsoids in ℓ2(N). Given that equivalence of norms is typically a finite-dimensional phenomenon,
one may wonder whether examples of hypercontractivity exist in an infinite-dimensional setting.
Here we show that such examples are actually rather abundant. The key is that hypercontractivity
need only be satisfied on an ε-cover of F⋆. As discussed above, every finite hypothesis class (and
thus every finite cover) is automatically (C, 2)-hypercontractive for some C > 0. The issue is to
ensure that this constant does not grow too fast as one refines the cover. The next result shows that
the growth can be controlled for ℓ2(N) ellipsoids of orthogonal expansions. By Mercer’s theorem,
these ellipsoids correspond to unit balls in reproducing kernel Hilbert spaces [4, Corollary 12.26].
Proposition 5.4. Fix positive constants β, B, K, and q. Fix a base measure λ on X and suppose
that {ϕn}n∈N+

is an orthonormal system in L2(λ) satisfying ∥ϕn∥∞ ≤ Bnq, ∀n ∈ N. Suppose

µj ≤ e−2βj and define the ellipsoid: P ≜
{
f =

∑∞
j=1 θjϕj

∣∣∣
∑∞
j=1

θ2j
µj

≤ 1
}
. Fix ε > 0, and

let mε denote the smallest positive integer solution to m ≥ 2
β

∣∣∣log
(

8B
βε

)∣∣∣ subject to m
logm ≥ q

β .

Let P ⊂ P be an arbitrary subset. There exists an ε-cover Pε of P in the ∥·∥∞-norm satisfying

log |Pε| ≤ mε log
(
1 +

8Bmqε
ε

)
. Further, let {µt}T−1

t=0 be the marginal distributions of PX and

suppose that max0≤t≤T−1 max
{
dµt
dλ ,

dλ
dµt

}
≤ K. Then, as long as ε ≤ inff∈P ∥f∥L2(PX), (Pε,PX)

is trajectory (Cε, 2)-hypercontractive with Cε = (1 + 7K3B4m4q+2
ε ).

Proposition 5.4 states that when F⋆ ⊆ P , then (∂B(r),PX) is (C(r), 2)-hypercontractive where
C(r) = Cr only grows poly-logarithmically in 1/r and thus verifies the assumptions of Corollary 4.2.

6 System identification in parametric classes

To demonstrate the sharpness of our main result, we instantiate Theorem 4.1 on two parametric
system identification problems which have received recent attention in the literature: linear dynamical
systems (LDS) and generalized linear model (GLM) dynamics.

6.1 Linear dynamical systems

Consider the setting where the process {Xt}t≥0 is described by a linear dynamical system:

Xt+1 = A⋆Xt +HVt, X0 = HV0, Vt ∈ RdV , Vt ∼ N(0, I), Vt ⊥ Vt′ ∀ t ̸= t′. (12)

In this setting, the system identification problem is to recover the dynamics matrix A⋆ from {Xt}T−1
t=0

evolving according to (12). We derive rates for recovering A⋆ by first deriving an excess risk bound
on the least-squares estimator via Theorem 4.1, and then converting the risk bound to a parameter
error bound. Since Theorem 4.1 relies on the process being ergodic, we consider the case when A⋆ is
stable. We start by stating a few standard definitions.
Definition 6.1. Fix a k ∈ {1, . . . , dX}. The pair (A,H) is k-step controllable if
rank

([
H AH A2H . . . Ak−1H

])
= dX.
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For t ∈ N, let the t-step controllability gramian be defined as Γt ≜
∑t
k=0A

kHHT(Ak)T. Since the
noise in (12) serves as the “control” in this setting, the controllability gramian also coincides with the
covariance at time t, i.e., E[XtX

T
t ] = Γt.

Definition 6.2. Fix a τ ≥ 1 and ρ ∈ (0, 1). A matrix A is called (τ, ρ)-stable if for all k ∈ N we
have ∥Ak∥op ≤ τρk.

With these definitions in place, we now state our result for linear dynamical system.
Theorem 6.1. Suppose that the matrix A⋆ in (12) is (τ, ρ)-stable (cf. Definition 6.2), and that the
pair (A⋆, H) is κ-step controllable (cf. Definition 6.1). Suppose also that ∥A⋆∥F ≤ B for some
B ≥ 1. Consider the linear hypothesis class and true regression function:

F ≜ {f(x) = Ax | A ∈ RdX×dX , ∥A∥F ≤ B}, f⋆(x) = A⋆x. (13)

Suppose that model (1) follows the process described in (12) with Yt = Xt+1. There exists T0 such
that the LSE with hypothesis class F achieves for all T ≥ T0:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆) +
4∥H∥2opd2X

T
. (14)

Furthermore, T0 satisfies for a universal positive constant c0:

T0 = c0
τ4∥H∥4opd2X

(1− ρ)2λmin(Γκ−1)2

[
κ2 ∨ 1

(1− ρ)2

]
polylog

(
B, dX, τ, ∥H∥op,

1

λmin(Γκ−1)
,

1

1− ρ
,

)
.

(15)

Appendix I.4 contains a more detailed discussion about the results in Theorem 6.1. There, we
argue that the term EMT (F⋆) in (14) is proportional to ∥H∥2opd2X/T implying that the final rate is
proportional to the minimax rate, i.e., E∥f̂ − f⋆∥2L2 ≲ ∥H∥2opd2X/T .

6.2 Generalized linear models

We next consider the following non-linear dynamical system:

Xt+1 = σ(A⋆Xt) +HVt, X0 = HV0, Vt ∈ RdX , Vt ∼ N(0, I), Vt ⊥ Vt′ ∀ t ̸= t′. (16)

Here, A⋆ ∈ RdX×dX is the dynamics matrix and σ : RdX → RdX is a coordinate wise link function.
The notation σ will also be overloaded to refer to the individual coordinate function mapping R → R.
We study the system identification problem where the link function σ is assumed to be known, but
the dynamics matrix A⋆ is unknown and to be recovered from {Xt}T−1

t=0 . We will apply Theorem 4.1
to derive a nearly optimal excess risk bound for the LSE on this problem in the stable case.

We start by stating a few assumptions that are again standard in the literature [20, 31].
Assumption 6.1. Suppose that A⋆, H , and σ from the GLM process (16) satisfy:

1. (One-step controllability). The matrix H ∈ RdX×dX is full rank.

2. (Link function regularity). The link function σ : R → R is 1-Lipschitz, satisfies ϕ(0) = 0,
and there exists a ζ ∈ (0, 1] such that |σ(x)− σ(y)| ≥ ζ|x− y| for all x, y ∈ R.

3. (Lyapunov stability). There exists a positive definite diagonal matrix P⋆ ∈ RdX×dX satisfying
P⋆ ≽ I and a ρ ∈ (0, 1) such that AT

⋆P⋆A⋆ ≼ ρP⋆.

With our assumptions in place, we are ready to instantiate our main result on the process (16).
Theorem 6.2. Suppose the model (1) follows the process described in (16) with Yt = Xt+1. Assume
that the process (16) satisfies Assumption 6.1. Fix a B ≥ 1, and suppose that ∥A⋆∥F ≤ B. Consider
the hypothesis class and true regression function:

F ≜ {f(x) = σ(Ax) | A ∈ RdX×dX , ∥A∥F ≤ B}, f⋆(x) = σ(A⋆x). (17)

There exists a T0 and a universal positive constant c0 such that the LSE with hypothesis class F
achieves for all T ≥ T0:

E∥f̂ − f⋆∥2L2 ≤ c0
∥H∥2opd2X

T
log

(
max

{
T,B, dX, ∥P⋆∥op, ∥H∥op,

1

1− ρ

})
. (18)
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Furthermore, for a universal constant c1 > 0, we may choose T0 that satisfies:

T0 = c1 max

(
∥P⋆∥2opcond(H)4d4X

ζ4(1− ρ)6
,

1

∥H∥1/3op

)
polylog

(
B, dX, ∥P⋆∥op, cond(H),

1

ζ
,

1

1− ρ

)
.

(19)

Further discussion regarding Assumption 6.1 and Theorem 6.2, including a more detailed comparison
with existing results, can be found in Appendix J.3.

7 Conclusion

We developed a framework for showing when the mixing-time of the covariates plays a relatively
small role in the rate of convergence of the least-squares estimator. In many situations, after a finite
burn-in time, this learning procedure exhibits an excess risk that scales as if all the samples were
independent (Theorem 4.1). As a byproduct of our framework, by instantiating our results to system
identification for dynamics with generalized linear model transitions (Section 6.2), we derived the
sharpest known excess risk rate for this problem; our rates are nearly minimax optimal after only a
polynomial burn-in time.

To arrive at Theorem 4.1, we leveraged insights from Mendelson [3] via a one-sided concentration
inequality (Theorem B.2). As mentioned in Section 4.1, hypercontractivity is closely related to the
small-ball condition [3]. Such conditions can be understood as quantitative identifiability conditions
by providing control of the “version space” (cf. Mendelson [3]). Given that identifiability conditions
also play a key role in linear system identification—a setting in which a similar phenomenon as
studied here had already been reported—this suggests an interesting direction for future work: are
such conditions actually necessary for learning with little mixing?
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