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Overview

In the supplemental material, we first give the proof of Theorem 1 in Section 1. We then analyze the1

convergence rate of Algorithm 1 in Section 2. Then we attach more results of targeted attack results2

on test sets for YOLOv3 [14] and Faster-RCNN [15] in Section 3. We then qualitatively compare our3

method with conventional training on several more real-world samples from RTTS and ExDark in4

Section 4. In Section 5 the statistics of object detection datasets are provided.5

1 Proof of Theorem6

Proposition 1 Let f, g : U → R be convex functions in a domain U ⊂ Rd. We have two optimization7

problems with coefficients s > 0 and β > 08

min
x∈U

f(x) s.t. g(x) ≤ s, (1)

min
x∈U

f(x) + βg(x). (2)

We assume that some constraint qualification such as Slater Condition is satisfied for (1). Strong9

duality thus holds for the above problem. Then for any β > 0, there exist s > 0 and vice versa, such10

that optimization problems (1) and (2) are equivalent.11

Proof 1.1 ((1)→(2)) Suppose s > 0 and x∗ is the optimal solution of (1). We have the Lagrangian12

of (1) with Lagrangian Multiplier β ≥ 013

L(β,x) = f(x) + β(g(x)− s) (3)

By the difinition of Lagrangian dual problem, β∗ is optimal for14

max
β≥0

min
x

L(β,x) = f(x) + β(g(x)− s) (4)

The assumption of strong duality gives rise to15

max
β≥0

min
x

L(β,x) = min
x

max
β≥0

L(β,x) (5)
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x∗ is the optimal solution of the saddle point problem when β reaches optimal16

x∗ = argmin
x

max
β≥0

L(β,x) = f(x) + β(g(x)− s)

= argmin
x

L(x) = f(x) + β∗(g(x)− s)

= argmin
x

L(x) = f(x) + β∗g(x)

(6)

Therefore, x∗ is optimal for both (1) and (2) when β = β∗.17

Proof 1.2 ((2)→(1)) Suppose β > 0 and x∗ is the optimal solution of (2). We want to show x∗ is18

also optimal for (1). Let s = g(x∗). If there exist an optimal solution x̂ ̸= x∗ for (1) such that19

g(x̂) ≤ s, we have20

f(x̂) < f(x∗)

⇒ f(x̂) + βg(x̂) < f(x∗) + βs

⇒ f(x̂) + βg(x̂) < f(x∗) + βg(x∗),

(7)

which contradicts that x∗ is optimal for (2).21

2 Convergence Analysis22

The proof of ADAM in the original paper [7] is found incomplete by several works [18, 16]. A23

failure case of ADAM is found in [16], caused by the exponential moving average. Bock et al. [1]24

prove the local convergence in batch mode on a fixed training set. In our case, since we are25

optimizing over image rather than network parameters, the assumption of deterministic training set26

holds. Ward et al. [17] show the standard convergence rate of ADAM for a non-convex problem27

is O(ln(N)/
√
N) with a scalar stepsize. Zou et al. [18] show that the sufficient conditions of28

ADAM’s convergence are an appropriate initial learning rate 1/
√
N and exponential moving average29

scale β2 = 1 − 1/N , given N the number of steps. Défossez et al. [3] give a simplified proof30

leading to the same convergence rate and conditions and extend the best known bound of ADAM31

from O((1 − β1)
−5) to O((1 − β1)

−1). The sign function used in previous works of adversarial32

attacks [8, 5] does not affect the convergence if we consider it as a fixed updating rate λ. The33

clamping operation restricting perturbation scale δ and box constraint within [0, 1] may confine the34

convergence but it is necessary for optimization settings.35
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3 More attack results36

We show more results of attack on test sets in the section. In Table 1, the detection performance gain37

of different attack methods for Faster-RCNN [15] is given. We can find that our method shows higher38

mAP boost than TOG [2]. We further give more visualization results of detection in Figure 1, 2 for39

hazy dataset RTTS [9] and Figure 3, 4 for low ligh dataset ExDark [12].

Table 1: The detection performance gain by different targeted adversarial attack methods on Faster-
RCNN [15]. δ = 2/255 and λ = 1/255.

RTTS VOC_fog_test VOC_clean_test

no attack TOG [2] Ours no attack TOG [2] Ours no attack TOG [2] Ours
bicycle 27.15 48.38 55.65 44.82 82.46 86.49 76.34 87.78 91.22

bus 12.70 38.76 48.26 54.37 91.37 94.59 82.24 95.52 97.45
car 31.29 44.46 47.52 61.32 85.79 88.99 81.83 91.00 93.29

motorcycle 16.90 46.28 50.14 36.28 80.92 87.27 73.47 87.03 90.77
person 58.55 67.24 70.31 52.24 83.16 86.03 76.58 86.33 88.97
mAP 29.32 49.02 54.37 49.81 84.74 88.67 78.09 89.53 92.34

ExDark VOC_dark_test VOC_clean_test

no_attack TOG [2] Ours no_attack TOG [2] Ours no_attack TOG [2] Ours
bicycle 44.71 73.09 78.72 57.20 79.23 83.1 76.61 83.83 87.79

boat 31.79 66.8 75.68 49.45 75.90 83.58 62.98 82.58 86.74
bottle 42.29 64.17 70.56 38.95 61.92 68.94 52.41 69.83 75.76
bus 50.65 87.59 88.68 64.53 85.11 92.01 78.62 90.82 94.07
car 38.58 62.71 68.94 67.48 82.27 86.91 81.71 88.80 90.96
cat 41.38 78.97 83.74 68.72 87.83 92.31 86.08 94.83 97.74

chair 35.06 77.14 82.62 29.84 64.23 74.90 49.94 74.64 84.14
dog 46.70 85.98 91.01 61.34 90.01 95.05 80.43 93.73 97.81

motorbike 27.76 54.55 62.76 65.04 79.93 86.52 75.71 85.93 89.30
person 40.21 62.60 68.68 61.14 75.87 81.28 77.48 84.19 86.64
mAP 39.91 71.36 77.14 56.37 78.23 84.46 72.20 84.92 89.09
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