
A Related Work

MARL has been used for solving multi-robot problems Alon and Zhou [2020], Khan et al. [2019],
Mitchell et al. [2020], Park et al. [2020], Stone et al. [2005], Strickland et al. [2019], Tang [2019]
and hierarchy has also been introduced into multi-robot scenarios Chen [2014], Luo et al. [2018],
Oliehoek and Visser [2006], Omidshafiei et al. [2017b], Zhang et al. [2017], but hierarchical MARL
is still novel for multi-robot systems Nachum et al. [2019], Wang et al. [2020b], Wu et al. [2021a],
Xiao et al. [2019].

One line of hierarchical MARL is still focusing on learning primitive-action-based policy for each
agent, while leveraging a hierarchical structure to achieve knowledge transfer Yang et al. [2021], credit
assignment Ahilan and Dayan [2019] and low-level policy factorization over agents Vezhnevets et al.
[2020]. In these works, as the decision-making over agents is still limited at a single low-level, none
of them has been evaluated in large-scale realistic domains. Instead, by having macro-actions, our
methods equip agents with the potential capability of exploiting abstracted skills, sub-task allocation
and problem decomposition via hierarchical decision-making, which is critical for scaling up to
real-world multi-robot tasks.

Another line of the research allow agents to learn both a high-level policy and a low-level policy, but
the methods either force agents to perform a high-level choice at every time step de Witt et al. [2019],
Han et al. [2019] or require all agents’ high-level decisions have the same time duration Nachum
et al. [2019], Wang et al. [2020b, 2021b], Xu et al. [2021], Yang et al. [2020b], where agents are
actually synchronized at both levels. In contrast, our frameworks are more general and applicable to
real-world multi-robot systems because they allow agents to asynchronously execute at a high-level
without synchronization or waiting for all agents to terminate.

Recently, some asynchronous hierarchical approaches have been developed. Xiao et al. [2019] and
Wu et al. [2021a] extend DQN Mnih et al. [2015] to learn macro-action-value functions and spatial-
action-value maps for agents respectively. Our work, however, focuses on policy gradient algorithms
that have different theoretical properties than value-based approaches (e.g., our methods are more
scalable in the action space). Both classes of methods can co-exit and fit well with different sets of
tasks. Menda et al. [2019] frame multi-agent asynchronous decision-making problems as event-driven
processes with one assumption on the acceptable of losing the ability to capture low-level interaction
between agents within an event duration and the other on homogeneous agents, but our frameworks
rely on the time-driven simulator used for general multi-agent and single-agent RL problems and
do not have the above assumptions. Chakravorty et al. [2019] adapt a single-agent option-critic
framework Bacon et al. [2017] to multi-agent domains to learn all components (e.g., low-level policy,
high-level abstraction, high-level policy) from scratch, but learning at both levels is difficult and the
proposed method does not perform well even in small TeamGrid Maxime and Julien [2020] scenarios.
More important to note is that none of the existing works provides a principled way for directly
optimizing parameterized macro-action-based policies via asynchronous policy gradients to solve
general multi-agent problems with macro-actions, and our work in this paper seeks to fill this gap.
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B Macro-Action-Based Policy Gradient Theorem

As POMDPs can always be transformed to history-based MDPs, we can directly adapt the general
Bellman equation for the state values of a hierarchical policy [Sutton et al., 1999] to a macro-action-
based POMDP by replacing the state s with a history h as follows (for keeping the notaion simple,
we use ⌧ to represent the number of timesteps taken by the corresponding macro-action m, and we
use h to represent macro-observation-action history):

V  (h) =
X

m

 (m|h)Q (h,m) (8)

Q (h,m) = rc(h,m) +
X

h0

P (h0|h,m)V  (h0) (9)
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Next, we follow the proof of the policy gradient theorem [Sutton et al., 2000]:
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C Asynchronous Acotr-Critic Algorithms

In this section, we present the pesudo code of each proposed macro-action-based actor-critic
algorithm with an example to show how the sequential experiences are squeezed for training the
critic and the actor. We describe all methods in the on-policy learning manner while off-policy
learning can be achieved by applying importance sampling weights and not resetting the buffer.

Macro-Action-Based Independent Actor-Critic (Mac-IAC):

Figure 6: An example of the trajectory squeezing process in Mac-IAC. We collect each agent’s high-
level transition tuple at every primitive-step. Each agent is allowed to obtain a new macro-observation
if and only if the current macro-action terminates, otherwise, the next macro-observation is set as
same as the previous one. Each agent separately squeezes its sequential experiences by picking out
the transitions when its macro-action terminates (red cells). Each agent independently train the critic
and the policy using the squeezed trajectory.

Algorithm 1 Mac-IAC
1: Initialize a decentralized policy network for each agent i:  ✓i

2: Initialize decentralized critic networks for each agent i: V
 ✓i
wi , V

 ✓i

w�
i

3: Initialize a buffer D
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t t+ 1
9: for each agent i do

10: if the macro-action mi is terminated then
11: mi ⇠  ✓i(· | hi; ✏)
12: else
13: Continue running current macro-action mi

14: for each agent i do
15: Get cumulative reward rci , next macro-observation z0i
16: Collect hzi,mi, z

0
i, r

c
i i into the buffer D

17: if episode mod Itrain = 0 then
18: for each agent i do
19: Squeeze agent i’s trajectories in the buffer D
20: Perform a gradient decent step on L(wi) =

�
y�V

 ✓i
wi (hi)

�2
D , where y = rci + �⌧miV

 ✓i

w�
i

(h0
i)

21: Perform a gradient ascent on:
22: r✓iJ(✓i) = E~ ~✓

h
r✓i log ✓i(mi|hi)

�
rci + �⌧miV

 ✓i

w�
i

(h0
i)� V

 ✓i
wi (hi)

�i

23: Reset buffer D
24: if episode mod ITargetUpdate = 0 then
25: for each agent i do
26: Update the critic target network w�

i  wi
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Macro-Action-Based Centralized Actor-Critic (Mac-CAC):

Figure 7: An example of the trajectory squeezing process in Mac-CAC. Joint sequential experiences
are squeezed by picking out joint transition tuples when the joint macro-action terminates, in that,
any agent’s macro-action termination (marked in red) ends the joint macro-action at the timestep.
For example, at t = 1, agents execute a joint macro-action ~m = hm1,m4i for one timestep; at
t = 2, the joint macro-action becomes hm1,m5i as Agent2 finished m4 at last step and chooses a
new macro-action m5; Agent1 finished its macro-action m1 at t = 2 and selects a new macro-action
m2 at t = 3 so that the joint macro-action switches to hm2,m5i which keeps running until the 4th
timestep. Therefore, the first two joint macro-actions have two single-step reward respectively, and
reward of joint macro-action hm2,m5i is an accumulative reward over two consecutive timesteps.

Algorithm 2 Mac-CAC
1: Initialize a centralized policy network:  ✓

2: Initialize centralized critic networks: V  ✓
w , V  ✓

w�
3: Initialize a centralized buffer D  Mac-JERTs,
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t t+ 1
9: if the joint macro-action ~m is terminated then

10: ~m ⇠  ✓(· | ~h, ~mundone; ✏)
11: else
12: Continue running current joint macro-action ~m

13: Get a joint cumulative reward ~r c, next joint macro-observation ~z 0

14: Collect h~z, ~m, ~z 0, ~r ci into the buffer D
15: if episode mod Itrain = 0 then
16: Squeeze joint macro-level trajectories in the buffer D according to joint macro-action terminations
17: Perform a gradient decent step on L(w) =

�
y � V  ✓

w (~h)
�2
D , where y = ~r c + �~⌧~mV  ✓

w�(~h0)

18: Perform a gradient ascent onr✓J(✓) = E ✓

h
r✓ log ✓(~m | ~h)

�
~r c + �~⌧~mV  ✓

w�(~h0)�V  ✓
w (~h)

�i

19: Reset buffer D
20: if episode mod ITargetUpdate = 0 then
21: Update the critic target network w�  w

where, ~mundone is the sub-joint-macro-action over the agents who have not terminated their macro-
actions and will continue running.
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Naive Mac-IACC:
In the pseudo code of Naive Mac-IACC presented below, we assume the accessible centralized
information x is joint macro-observation-action history in the centralized critic.

Figure 8: An example of the trajectory squeezing process in Navie Mac-IACC.The joint trajectory is
first squeezed depending on joint macro-action termination for training the centralized critic (line 18-
19 in Algorithm 3). Then, the trajectory is further squeezed for each agent depending on each agent’s
own macro-action termination for training the decentralized policy (line 20-23 in Algorithm 3).

Algorithm 3 Naive Mac-IACC
1: Initialize a decentralized policy network for each agent i:  ✓i

2: Initialize centralized critic networks: V
~ ~✓
w , V

~ ~✓
w�

3: Initialize a decentralized buffer D  Mac-JERTs,
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t t+ 1
9: for each agent i do

10: if the macro-action mi is terminated then
11: mi ⇠  ✓i(· | hi; ✏)
12: else
13: Continue running current macro-action mi

14: Get a reward ~r c accumulated based on current joint macro-action termination
15: Get next joint macro-observations ~z 0

16: Collect h~z, ~m, ~z 0, ~r ci into the buffer D
17: if episode mod Itrain = 0 then
18: Squeeze joint macro-level trajectories in the buffer D according to joint macro-action terminations

19: Perform a gradient decent step on L(w) =
�
y � V

~ ~✓
w (~h)

�2
D , where y = ~r c + �~⌧~mV

~ ~✓
w�(~h0)

20: for each agent i do
21: Squeeze agent i’s trajectories in the buffer D according to its own macro-action terminations
22: Perform a gradient ascent on:

23: r✓iJ(✓i) = E~ ~✓

h
r✓i log ✓i(mi|hi)

�
~r c + �~⌧~mV

~ ~✓
w�(~h0)� V

~ ~✓
w (~h)

�i

24: Reset buffer D
25: if episode mod ITargetUpdate = 0 then
26: Update the critic target network w�  w
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Macro-Action-Based Independent Actor with Individual Centralized Critic (Mac-IAICC):
In the pseudo code of Mac-IAICC presented below, we assume the accessible centralized information
x is joint macro-observation-action history in the centralized critic.

Figure 9: An example of the trajectory squeezing process in Mac-IAICC: each agent learns an
individual centralized critic for the decentralized policy optimization. In order to achieve a better use
of centralized information, the recurrent layer in each critic’s neural network should receive all the
valid joint macro-observation-action information (when any agent terminates its macro-action (line
20-22) and obtain a new joint macro-observation). However, the critic’s TD updates and the policy’s
updates still rely on each agent’s individual macro-action termination and the accumulative reward at
the corresponding timestep (line 23-26). Hence, the trajectory squeezing process for training each
critic still depends on joint-macro-action termination but only retaining the accumulative rewards
w.r.t. the corresponding agent’s macro-action termination for computing the TD loss (the middle part
in the above picture). Then, each agent’s trajectory is further squeezed depending on its macro-action
termination to update the decentralized policy.
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Algorithm 4 Mac-IAICC
1: Initialize a decentralized policy network for each agent i:  ✓i

2: Initialize centralized critic networks for each agent i: V
~ ~✓
wi , V

~ ~✓

w�
i

3: Initialize a decentralized buffer D
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t t+ 1
9: for each agent i do

10: if the macro-action mi is terminated then
11: mi ⇠  ✓i(· | hi; ✏)
12: else
13: Continue running current macro-action mi

14: for each agent i do
15: Get a reward rci accumulated based on agent i’s macro-action termination
16: Get next joint macro-observations ~z 0

17: Collect h~z, ~m, ~z 0, {rc1, . . . , rcn}i into the buffer D
18: if episode mod Itrain = 0 then
19: for each agent i do
20: Squeeze trajectories in the buffer D according to joint macro-action terminations
21: Compute the TD-error of each timestep in the squeezed experiences:

22: L(wi) =
�
y � V

~ ~✓
wi (~h)

�2
D , where y = rci + �⌧miV

~ ~✓

w�
i

(~h0)

23: Perform a gradient descent only over the TD-errors when agent i’s macro-action is terminated
24: Squeeze agent i’s trajectories in the buffer D according to its own macro-action terminations
25: Perform a gradient ascent on:

26: r✓iJ(✓i) = E~ ~✓

h
r✓i log ✓i(mi|hi)

�
rci + �⌧miV

~ ~✓

w�
i

(~h0)� V
~ ~✓
wi (~h)

�i

27: Reset buffer D
28: if episode mod ITargetUpdate = 0 then
29: for each agent i do
30: Update the critic target network w�

i  wi
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D Domain Descriptions and Results

D.1 Box Pushing

(a) 8x8 (b) 10x10 (c) 12x12

Figure 10: Experimental environments.

Goal. The objective of the two robots is to learn collaboratively push the middle big box to the goal
area at the top rather than pushing a small box on each own.

State. The global state information consists of the position and orientation of each robot and each
box’s position in a grid world.

Primitive-Action Space. move forward, turn-left, turn-right and stay.

Macro-Action Space.

• One-step macro-actions: Turn-left, Turn-right, and Stay.

• Multi-step macro-actions: Move-to-small-box(i) that navigates the robot to the red spot below the
corresponding small box and terminate with robot facing the box; Move-to-big-box(i) that navigates
the robot to a red spot below the big box and terminate with robot facing the big box; Push that
operates the robot to keep moving forward and terminate while arriving the world’s boundary,
touching the big box along or pushing a small box to the goal.

Observation Space. In both the primitive-observation and macro-observation, each robot is only
allowed to capture one of five states of the cell in front of it: empty, teammate, boundary, small box,
big box.

Dynamics. The transition in this task is deterministic. Boxes can only be moved towards the north
when the robot faces the box and moves forward. The small box can be moved by a single robot
while the big box require two robots to move it together.

Rewards. The team receives +300 for pushing big box to the goal area and +20 for pushing a small
box to the goal area. A penalty �10 is issued when any robot hits the boundary or pushes the big box
on its own.

Episode Termination. Each episode terminates when any box is pushed to the goal area, or when
100 timesteps has elapsed.
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Figure 11: Decentralized learning with macro-actions vs primitive-actions.
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Figure 12: Centralized learning with macro-actions vs primitive-actions.
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Figure 13: Comparison of macro-action-based multi-agent actor-critic methods.
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Figure 14: Comparison of macro-action-based actor-critic methods and value-based methods
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D.2 Overcooked

(a) Overcooked-A (b) Overcooked-B (c) Overcooked-C (d) Lettuce-Onion-Tomato salad
recipe

Figure 15: Experimental environments.

Goal. Three agents need to learn cooperating with each other to prepare a Tomato-Lettuce-Onion
salad and deliver it to the ‘star’ counter cell as soon as possible. The challenge is that the recipe
of making a tomato-lettuce-onion salad is unknown to agents. Agents have to learn the correct
procedure in terms of picking up raw vegetables, chopping, and merging in a plate before delivering.

State Space. The environment is a 7×7 grid world involving three agents, one tomato, one lettuce,
one onion, two plates, two cutting boards and one delivery cell. The global state information consists
of the positions of each agent and above items, and the status of each vegetable: chopped, unchopped,
or the progress under chopping.

Primitive-Action Space. Each agent has five primitive-actions: up, down, left, right and stay. Agents
can move around and achieve picking, placing, chopping and delivering by standing next to the
corresponding cell and moving against it (e.g., in Fig. 15a, the pink agent can move right and then
move up to pick up the tomato).

Macro-Action Space. Here, we first describe the main function of each macro-action and then list
the corresponding termination conditions.

• Five one-step macro-actions that are the same as the primitive ones;
• Chop, cuts a raw vegetable into pieces (taking three time steps) when the agent stands next

to a cutting board and an unchopped vegetable is on the board, otherwise it does nothing;
and it terminates when:

– The vegetable on the cutting board has been chopped into pieces;
– The agent is not next to a cutting board;
– There is no unchopped vegetable on the cutting board;
– The agent holds something in hand.

• Get-Lettuce, Get-Tomato, and Get-Onion, navigate the agent to the latest observed position
of the vegetable, and pick the vegetable up if it is there; otherwise, the agent moves to check
the initial position of the vegetable. The corresponding termination conditions are listed
below:

– The agent successfully picks up a chopped or unchopped vegetable;
– The agent observes the target vegetable is held by another agent or itself;
– The agent is holding something else in hand;
– The agent’s path to the vegetable is blocked by another agent;
– The agent does not find the vegetable either at the latest observed location or the initial

location;
– The agent attempts to enter the same cell with another agent, but has a lower priority

than another agent.
• Get-Plate-1/2, navigates the agent to the latest observed position of the plate, and picks the

vegetable up if it is there; otherwise, the agent moves to check the initial position of the
vegetable. The corresponding termination conditions are listed below:

– The agent successfully picks up a plate;
– The agent observes the target plate is held by another agent or itself;
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– The agent is holding something else in hand;
– The agent’s path to the plate is blocked by another agent;
– The agent does not find the plate either at the latest observed location or at the initial

location;
– The agent attempts to enter the same cell with another agent but has a lower priority

than another agent.
• Go-Cut-Board-1/2, navigates the agent to the corresponding cutting board with the following

termination conditions:
– The agent stops in front of the corresponding cutting board, and places an in-hand item

on it if the cutting board is not occupied;
– If any other agent is using the target cutting board, the agent stops next to the teammate;

– The agent attempts to enter the same cell with another agent but has a lower priority
than another agent.

• Go-Counter (only available in Overcook-B, Fig. 1c), navigates the agent to the center cell
in the middle of the map when the cell is not occupied, otherwise it moves to an adjacent
cell. If the agent is holding an object the object will be placed. If an object is in the cell, the
object will be picked up.

• Deliver, navigates the agent to the ‘star’ cell for delivering with several possible termination
conditions:

– The agent places the in-hand item on the cell if it is holding any item;
– If any other agent is standing in front of the ‘star’ cell, the agent stops next to the

teammate;
– The agent attempts to enter the same cell with another agent, but has a lower priority

than another agent.

Observation Space: The macro-observation space for each agent is the same as the primitive
observation space. Agents are only allowed to observe the positions and status of the entities within a
5⇥ 5 view centered on the agent. The initial position of all the items are known to agents.

Dynamics: The transition in this task is deterministic. If an agent delivers any wrong item, the item
will be reset to its initial position. From the low-level perspective, to chop a vegetable into pieces on
a cutting board, the agent needs to stand next to the cutting board and executes left three times. Only
the chopped vegetable can be put on a plate.

Reward: +10 for chopping a vegetable, +200 terminal reward for delivering a tomato-lettuce-onion
salad, �5 for delivering any wrong entity, and �0.1 for every timestep.

Episode Termination: Each episode terminates either when agents successfully deliver a tomato-
lettuce-onion salad or reaching the maximal time steps, 200.
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Figure 16: Decentralized learning with macro-actions vs primitive-actions.
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Figure 17: Centralized learning with macro-actions vs primitive-actions.
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Figure 18: Comparison of macro-action-based multi-agent actor-critic methods.
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Figure 19: Comparisons of macro-action-based actor-critic methods and value-based methods.
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D.3 Warehouse Tool Delivery

(a) Warehouse-A (b) Warehouse-B

(c) Warehouse-C (d) Warehouse-D

(e) Warehouse-E

Figure 20: Experimental environments.

In this Warehouse Tool Delivery domain, we consider five different scenarios shown in Fig. 20. To
further examine the scalability of our methods and the effectiveness of Mac-IAICC on handling more
noisy asynchronous terminations over robots, we consider many variants in terms of both the number
of robots and the number of humans as well as having faster human(orange) in the environment.

Goal. Under all scenarios, in each workshop, a human is working on an assembly task involving 4
subtasks to be finished (each subtask takes amount of primitive time steps). At the beginning, each
human has already got the tool for the first subtask and immediately starts. In order to continue, the
human needs a particular tool for each following subtask. In the scenarios, humans either work in the
same speed (Fig. 20a, 20b, 20d) or have one of them working faster (the orange one in Fig.20c and
20e). A team of robots includes a robot arm (gray) with the duty of finding tools for each human on
the table (brown) and passing them to mobile robots (green, blue and yellow) who are responsible for
delivering tools to the humans. The objective of the robots is to assist the humans to finish their
assembly tasks as soon as possible by finding and delivering the correct tools in the proper order. To
make this problem more challenging, the correct tools needed by each human are unknown to robots,
which has to be learned during training in order to perform timely delivery without letting humans
wait.

State. The environment is either a 5⇥ 7 (Fig. 20a and 20e) or a 5⇥ 9 (Fig. 20b - 20d) continuous
space. A global state consists of the 2D position of each mobile robots, the execution status of the
arm robot’s current macro-action (e.g how munch steps are left for completing the macro-action, but
in real-world, this should be the angle and speed of each arm’s joint), the subtask each human is
working with a percentage indicating the progress of the subtask, and the position of each tools (either
on the brown table or carried by a mobile robot). The initial state of every episode is deterministic as
shown in Fig. 20, where humans always start from the first step.
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Macro-Action Space.

The available macro-actions for each mobile robot include:

• Go-W(i), navigates to the red waypoint at the corresponding workshop;

• Go-TR, navigates to the red waypoint (covered by the blue robot in Fig. 20c and 20d) at the right
side of the tool room;

• Get-Tool, navigates to a pre-allocated waypoint besides the arm robot and waits over there until
either 10 timesteps have passed or receiving a tool from the gray robot.

The available macro-actions for the arm robot include:

• Search-Tool(i), takes 6 timesteps to find tool i and place it in a staging area (containing at most two
tools) when the area is not fully occupied, otherwise freezes the robot for the same amount of time;

• Pass-to-M(i), takes 4 timesteps to pass the first found tool to a mobile robot from the staging area;

• Wait-M, takes 1 timestep to wait for mobile robots coming.

Macro-Observation Space.

The arm robot’s macro-observation include the information about the type of each tool in the staging
area and which mobile robot is waiting beside.

Each mobile robot always observes its own position and the type of each tool carried by itself, while
observes the number of tools in the staging area or the subtask a human working on only when
locating at the tool room or the workshop respectively.

Dynamics. Transitions are deterministic. Each mobile robot moves in a fixed velocity 0.8 and is only
allowed to receive tools from the arm robot rather than from humans. Note that each human is only
allowed to possess the tool for the next subtask from a mobile robot when the robot locates at the
corresponding workshop and carries the correct tool. Humans are not allowed to pass tool back to
mobile robots. There are enough tools for humans on the table in tool room, such that the number of
each type of tool exactly matches with the number of humans in the environment. Human cannot
start the next subtask without obtaining the correct tool. Humans’ dynamics on their tasks are shown
in Table 1.

Table 1: The number of time steps taken by each human on each subtask in scenarios.
Scenarios Warehouse-A Warehouse-B Warehouse-C Warehouse-D Warehouse-E

Human-0 [27, 20, 20, 20] [40, 40, 40, 40] [38, 38, 38, 38] [40, 40, 40, 40] [18, 15, 15, 15]
Human-1 [27, 20, 20, 20] [40, 40, 40, 40] [38, 38, 38, 38] [40, 40, 40, 40] [48, 18, 15, 15]
Human-2 N/A [40, 40, 40, 40] [27, 27, 27, 27] [40, 40, 40, 40] N/A
Human-3 N/A N/A N/A [40, 40, 40, 40] N/A

Rewards. The team receives a +100 reward when a correct tool is delivered to a human in time
while getting an extra �20 penalty for a delayed delivery such that the human has paused over there.
A �10 reward occurs when the gray robot does Pass-to-M(i) but the mobile robot i is not next to it,
and a �1 reward is issued every time step.

Episode Termination. Each episode terminates when all humans obtained all the correct tools for all
subtasks, otherwise, the episode will run until the maximal time steps (200 for Warehouse-A and E,
250 for Warehouse-B and C, 300 for Warehous-D).
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Figure 21: Comparison of macro-action-based multi-agent actor-critic methods.

Ablation Study
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Figure 22: Results of an ablation study.

Scenarios Ablation Experiment

Human-0 [18, 18, 18, 18]
Human-1 [18, 18, 18, 18]
Human-2 N/A
Human-3 N/A

Table 2: The number of time steps taken by each
human in the ablation study.

We also conducted an ablation experiment in Warehouse-A, where two humans still operate at the
same speed on their tasks but faster than the original setting. Such a change makes agents’ learning
more difficult, because the probability of having a delayed delivery for each tool grows, especially
when agents are exploring. Agents likely receives more penalty during training. Fig. 22 shows the
learning quality of Naive Mac-IACC degrades markedly and becomes much less stable with higher
variance than its performance in the original domain configuration (shown in Fig. 21). In contrast,
Mac-IAICC remains its high-quality performance, which reveals its robustness to noisy penalty
signals and further proves the advantage of separately training a centralized critic depending on each
agent’s own macro-action terminations. Both Mac-CAC and Mac-IAC still cannot rival Mac-IAICC.
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Figure 23: Comparison of macro-action-based actor-critic methods and value-based methods.
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E Training Details

Our results are generated by running on a cluster of computer nodes under "CentOS Linux" operating
system. We use the CPUs including "Dual Intel Xeon E5-2650", "Dual Intel Xeon E5-2680 v2",
"Dual Intel Xeon E5-2690 v3".

E.1 Network Architecture

For all domains, all methods apply the same neural network architecture for both actor & critic
network and Q-network. Each of them consists of two fully connected (FC) layers with Leaky-Relu
activation function, one GRU layer [Cho et al., 2014] and one more FC layer followed by an output
layer. The number of neurons in each layer for Decentralized(Dec) or Centralized(Cen) actor, critic
or Q-network are shown in Table 3. Empirical experiments show that centralized actor and critic
usually need more neurons to deal with larger joint macro-observation and macro-action spaces.

Table 3: Number of neurons on each layer in networks for all methods in domains
Domain Box Pushing Overcooked Warehouse

Actor & Critic & Q-network Dec Cen Dec Cen Dec Cen

MLP-1 32 32 32 128 32 32
MLP-2 32 32 32 128 32 32
GRU 32 64 32 64 32 64

MLP-3 32 32 32 64 32 32

E.2 Hyper-Parameters for macro-action-based actor-critic methods

In following subsections, we first list the hyper-parameter candidates used for tuning each method
via grid search in the corresponding domain, and then show the hyper-parameter table with the
parameters used by each method achieving the best performance. We choose the best performance of
each method depending on its final converged value as the first priority and the sample efficiency as
the second.

• Box Pushing:

Table 4: Hyper-parameter candidates for grid search tuning.
Learning rate pair (actor,critic) (1e-3,3e-3), (1e-3,1e-3) (5e-4,3e-3), (5e-4,1e-3)

(5e-4,5e-4), (3e-4,3e-3)
Episodes per train 8, 16, 32
Target-net update freq (episode) 32, 64, 128
N-step TD 0, 3, 5

Table 5: Hyper-parameter candidates for grid search tuning.
Learning rate pair (actor,critic) (1e-3,3e-3), (1e-3,1e-3) (5e-4,3e-3), (5e-4,1e-3)

(5e-4,5e-4), (3e-4,3e-3)
Episodes per train 48
Target-net update freq (episode) 48, 96, 144
N-step TD 0, 3, 5
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Table 6: Hyper-parameters used for methods in Box Pushing 6⇥ 6.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor Learning rate 0.001 0.0005 0.0005 0.0003 0.0005 0.0003
Critic Learning rate 0.003 0.0005 0.001 0.003 0.001 0.003
Episodes per train 8 8 48 48 48 48
Target-net update freq 32 64 48 144 144 96

(episode)
N-step TD 5 5 5 5 0 0
✏start 1 1 1 1 1 1
✏end 0.01 0.01 0.01 0.01 0.01 0.01
✏decay (episode) 4K 4K 4K 4K 4K 4K

Table 7: Hyper-parameters used for methods in Box Pushing 8⇥ 8.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor Learning rate 0.001 0.001 0.001 0.0005 0.0005 0.0003
Critic Learning rate 0.003 0.003 0.003 0.003 0.001 0.003
Episodes per train 8 8 16 48 48 48
Target-net update freq 32 32 32 48 144 144

(episode)
N-step TD 3 0 5 3 0 0
✏start 1 1 1 1 1 1
✏end 0.01 0.01 0.01 0.01 0.01 0.01
✏decay (episode) 4K 4K 4K 4K 4K 4K

Table 8: Hyper-parameters used for methods in Box Pushing 10⇥ 10.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor Learning rate 0.001 0.001 0.001 0.001 0.0005 0.0003
Critic Learning rate 0.003 0.003 0.001 0.003 0.001 0.003
Episodes per train 8 8 32 48 48 32
Target-net update freq 64 32 32 96 144 64

(episode)
N-step TD 0 0 5 3 0 0
✏start 1 1 1 1 1 1
✏end 0.01 0.01 0.01 0.01 0.01 0.01
✏decay (episode) 6K 6K 6K 6K 6K 6K

Table 9: Hyper-parameters used for methods in Box Pushing 12⇥ 12.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor Learning rate 0.001 0.001 0.001 0.0005 0.0005 0.0003
Critic Learning rate 0.003 0.003 0.003 0.0005 0.001 0.003
Episodes per train 8 8 8 32 48 32
Target-net update freq 128 128 64 64 96 128

(episode)
N-step TD 0 0 5 3 0 0
✏start 1 1 1 1 1 1
✏end 0.01 0.01 0.01 0.01 0.01 0.01
✏decay (episode) 6K 6K 6K 6K 6K 6K
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Table 10: Hyper-parameters used for methods in Box Pushing 14⇥ 14.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor Learning rate 0.001 0.001 0.001 0.001 0.001 0.0003
Critic Learning rate 0.003 0.003 0.003 0.001 0.003 0.003
Episodes per train 8 8 8 48 16 32
Target-net update freq 128 64 32 96 32 64

(episode)
N-step TD 0 0 3 3 5 0
✏start 1 1 1 1 1 1
✏end 0.01 0.01 0.01 0.01 0.01 0.01
✏decay (episode) 8K 8K 8K 8K 8K 8K

• Overcooked:

Table 11: Hyper-parameter candidates for grid search tuning.
Learning rate pair (actor,critic) (1e-4, 3e-3) (3e-4,3e-3)
Episodes per train 4
Target-net update freq (episode) 8, 16, 32
N-step TD 3, 5

Table 12: Hyper-parameter candidates for grid search tuning.
Learning rate pair (actor,critic) (1e-4, 3e-3) (3e-4,3e-3)
Episodes per train 8, 16
Target-net update freq (episode) 16, 32, 64
N-step TD 3, 5

Table 13: Hyper-parameters used for methods in Overcooked-A.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 100K 100K 100K 100K 100K 100K
Actor Learning rate 0.0003 0.0003 0.0003 0.0001 0.0003 0.0003
Critic Learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Episodes per train 4 8 4 8 4 8
Target-net update freq 8 16 8 32 16 32

(episode)
N-step TD 5 5 5 5 5 5
✏start 1 1 1 1 1 1
✏end 0.05 0.05 0.05 0.05 0.05 0.05
✏decay (episode) 20K 20K 20K 20K 20K 20K

36



Table 14: Hyper-parameters used for methods in Overcooked-B.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 120K 120K 120K 120K 120K 120K
Actor Learning rate 0.0003 0.0003 0.0003 0.0001 0.0003 0.0003
Critic Learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Episodes per train 4 4 4 4 8 4
Target-net update freq 8 16 8 16 16 32

(episode)
N-step TD 5 5 5 3 5 5
✏start 1 1 1 1 1 1
✏end 0.05 0.05 0.05 0.05 0.05 0.05
✏decay (episode) 20K 20K 20K 20K 20K 20K

Table 15: Hyper-parameters used for methods in Overcooked-C.
Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 100K 100K 100K 100K 100K 100K
Actor Learning rate 0.0003 0.0003 0.0003 0.0001 0.0003 0.0003
Critic Learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Episodes per train 8 8 8 8 8 8
Target-net update freq 32 32 32 32 16 32

(episode)
N-step TD 5 5 5 3 5 5
✏start 1 1 1 1 1 1
✏end 0.05 0.05 0.05 0.05 0.05 0.05
✏decay (episode) 20K 20K 20K 20K 20K 20K
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• Warehouse Tool Delivery:

Table 16: Hyper-parameter candidates for grid search tuning.
Learning rate pair (actor,critic) (1e-3,1e-3), (5e-4,1e-3) (5e-4,5e-4) (3e-4,3e-3)
Episodes per train 4, 8
Target-net update freq (episode) 8, 16, 32, 64
N-step TD 0, 3, 5

Table 17: Hyper-parameter candidates for grid search tuning.
Learning rate pair (actor,critic) (1e-3,1e-3), (5e-4,1e-3) (5e-4,5e-4) (3e-4,3e-3)
Episodes per train 16
Target-net update freq (episode) 16, 32, 64
N-step TD 0, 3, 5

Table 18: Hyper-parameters used for methods in Warehouse-A.
Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K
Actor Learning rate 0.0003 0.0003 0.0003 0.0005
Critic Learning rate 0.003 0.003 0.003 0.0005
Episodes per train 4 4 4 4
Target-net update freq 32 32 32 32

(episode)
N-step TD 5 5 3 5
✏start 1 1 1 1
✏end 0.01 0.01 0.01 0.01
✏decay (episode) 10K 10K 10K 10K

Table 19: Hyper-parameters used for methods in Warehouse-A for ablation.
Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K
Actor Learning rate 0.0005 0.0005 0.0003 0.0005
Critic Learning rate 0.0005 0.001 0.003 0.0005
Episodes per train 16 8 8 4
Target-net update freq 16 64 64 64

(episode)
N-step TD 5 5 5 5
✏start 1 1 1 1
✏end 0.05 0.05 0.05 0.05
✏decay (episode) 10K 10K 10K 10K
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Table 20: Hyper-parameters used for methods in Warehouse-B.
Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K
Actor Learning rate 0.0005 0.0005 0.0003 0.0003
Critic Learning rate 0.0005 0.001 0.003 0.003
Episodes per train 8 4 16 4
Target-net update freq 64 64 64 32

(episode)
N-step TD 5 5 5 5
✏start 1 1 1 1
✏end 0.01 0.01 0.01 0.01
✏decay (episode) 10K 10K 10K 10K

Table 21: Hyper-parameters used for methods in Warehouse-C.
Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 80K 80K 80K 80K
Actor Learning rate 0.0005 0.0003 0.0003 0.0003
Critic Learning rate 0.001 0.003 0.003 0.003
Episodes per train 8 8 8 8
Target-net update freq 64 64 64 64

(episode)
N-step TD 5 5 5 5
✏start 1 1 1 1
✏end 0.01 0.01 0.01 0.01
✏decay (episode) 10K 10K 10K 10K

Table 22: Hyper-parameters used for methods in Warehouse-D.
Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 80K 80K 80K 80K
Actor Learning rate 0.0003 0.0003 0.0005 0.0003
Critic Learning rate 0.003 0.003 0.005 0.003
Episodes per train 4 8 4 8
Target-net update freq 16 64 32 64

(episode)
N-step TD 5 5 5 5
✏start 1 1 1 1
✏end 0.01 0.01 0.01 0.01
✏decay (episode) 10K 10K 10K 10K

Table 23: Hyper-parameters used for methods in Warehouse-E.
Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 100K 100K 100K 100K
Actor Learning rate 0.0005 0.0003 0.0003 0.0005
Critic Learning rate 0.001 0.003 0.003 0.0005
Episodes per train 4 4 4 4
Target-net update freq 32 16 32 32

(episode)
N-step TD 5 5 5 5
✏start 1 1 1 1
✏end 0.05 0.05 0.05 0.05
✏decay (episode) 10K 10K 10K 10K
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E.3 Hyper-Parameters for macro-action-based value-based methods

• Box Pushing:

Table 24: Hyper-parameter candidates for grid search tuning.
Learning rate 5e-4, 1e-3
batch size 32, 64, 128

Table 25: Hyper-parameters used in Box Pushing 8⇥ 8.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.001 0.001
Batch size 64 64
Replay-buffer size (step) 100K 100K
Train freq (step) 10 10
Trace length 10 10
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 4K 4K

Table 26: Hyper-parameters used in Box Pushing 10⇥ 10.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.001 0.001
Batch size 32 128
Replay-buffer size (step) 100K 100K
Train freq (step) 14 14
Trace length 14 14
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 6K 6K
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Table 27: Hyper-parameters used in Box Pushing 12⇥ 12.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.001 0.001
Batch size 32 128
Replay-buffer size (step) 100K 100K
Train freq (step) 20 20
Trace length 20 20
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 6K 6K

Table 28: Hyper-parameters used in Box Pushing 20⇥ 20.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.001 0.001
Batch size 32 64
Replay-buffer size (step) 100K 100K
Train freq (step) 35 35
Trace length 35 35
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 8K 8K

Table 29: Hyper-parameters used in Box Pushing 30⇥ 30.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.0005 0.001
Batch size 32 32
Replay-buffer size (step) 100K 100K
Train freq (step) 45 45
Trace length 45 45
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 8K 8K

• Overcooked:

Table 30: Hyper-parameter candidates for grid search tuning.
Learning rate 3e-5, 5e-5, 1e-4, 3e-4, 5e-4
batch size 32, 64
Train freq (step) 64, 128
Replay-buffer size (episode) 500, 1K, 2K, 3K
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Table 31: Hyper-parameters used in Overcooked-A.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 100K 100K
Learning rate 0.0005 0.00003
Batch size 64 64
Replay-buffer size (episode) 1K 1K
Train freq (step) 64 64
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 20K 20K

Table 32: Hyper-parameters used in Overcooked-B.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 100K 100K
Learning rate 0.0005 0.0001
Batch size 32 32
Replay-buffer size (episode) 3K 500
Train freq (step) 64 64
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 20K 20K

• Warehouse Tool Delivery:

Table 33: Hyper-parameter candidates for grid search tuning.
Learning rate 5e-5, 1e-4
batch size 32, 64
Train freq (step) 64, 128
Replay-buffer size (episode) 1K, 2K

Table 34: Hyper-parameters used in Warehouse-A.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.0001 0.0001
Batch size 64 64
Replay-buffer size (episode) 2K 2K
Train freq (step) 128 128
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 10K 10K
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Table 35: Hyper-parameters used in Warehouse-B.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 40K 40K
Learning rate 0.00005 0.00005
Batch size 64 64
Replay-buffer size (episode) 2K 2K
Train freq (step) 128 128
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 10K 10K

Table 36: Hyper-parameters used in Warehouse-E.
Parameter Mac-Dec-Q Mac-Cen-Q

Training Episodes 100K 100K
Learning rate 0.0001 0.0001
Batch size 64 64
Replay-buffer size (episode) 2K 2K
Train freq (step) 128 128
Target-net update freq (step) 5K 5K
✏start 1 1
✏end 0.05 0.05
✏decay (episode) 10K 10K
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F Hardware Experiments

Figure 24: Overview of Warehouse-A hardware domain.

While simulation results validate that the proposed Mac-IAICC approach achieves the best perfor-
mance for learning decentralized policies in various macro-action-based domains, we also extend
scenario A of the Warehouse Tool Delivery task to a hardware domain. Fig. 24 provides an overview
of the real-world experimental setup. An open area is divided into regions, a tool room, a corridor,
and two workshops, to resemble the configuration shown in Fig. 1e. This mission involves one Fetch
Robot Wise et al. [2016] and two Turtlebots Koubaa et al. [2016] to cooperatively find and deliver
three YCB tools Calli et al. [2015], in the order: a tape measure, a clamp and an electric drill, required
by each human in order to assemble an IKEA table.

The Turtlebot’s navigation macro-actions were executed by using the ROS navigation stack Marder-
Eppstein et al. [2010]. For Fetch’s manipulation macro-actions, we combined PCL bindings for
Python Gualtieri et al. [2018], MoveIt Coleman et al. and the OpenRave simulator Diankov and
Kuffner [2008] with an OMPL Şucan et al. [2012] plugin to achieve picking and placing of tools. The
information about the number of tools in staging areas and each human’s working status was tracked
and broadcast by ROS services but were only observable in the tool room and the corresponding
workshop area respectively (to simulate possible visual information).

For the visualization of the real-robot experiment, please check the video in our supplementary.

44



G Behavior Visualization in Simulation

In this section, we display the decentralized behaviors learned by using Mac-IAICC under all
considered domains.

G.1 Box Pushing

We show the behaviors learned under the grid world size 14⇥ 14 in Fig. 25. Although the averaged
performance of the training is not near-optimal (Fig. 13), several runs can learn the optimal behavior.

(a) Green robot executes Move-

to-big-box(1) to move to the left
waypoint below the big box while
the blue robot runs Move-to-big-

box(2) to move to the right way-
point below the big box.

(b) After completing the previ-
ous macro-actions, robots choose
Push to move the big box towards
the goal together.

(c) Robots finish the task by push-
ing the big box to the goal area.

Figure 25: Visualization of the optimal macro-action-based behaviors learned using Mac-IAICC in
the Box Pushing domain under a 14⇥ 14 grid world.
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G.2 Overcooked

Map A: In this map, our method learns an efficient collaboration such as three agents separately get
three different vegetables, and then go to the cutting board and chop them respectively. Especially,
the pink agent leans to take away the chopped lettuce in order to make room for the incoming green
agent to chop the onion (Fig. 27h - 27i). Details are shown below.

(a) The blue agent exe-
cutes Get-Lettuce. The
pink agent executes Get-

Tomato. The green agent
executes Get-Onion.

(b) After getting the let-
tuce, the pink agent exe-
cutes Go-Cut-Board-2.

(c) After getting the
tomato, the blue agent ex-
ecutes Go-Cut-Board-1.

(d) After getting the
onion, the green agent ex-
ecutes Go-Cut-Board-2.

(e) After placing the let-
tuce on the cutting board,
the pink agent executes
Chop.

(f) After placing the
tomato on the cutting
board, the blue agent
executes Chop.

(g) After finishing
chopping the lettuce,
the pink agent executes
Get-Lettuce to pick it up.

(h) With the lettuce in
hand, the pink agent ex-
ecutes Get-Plate-1.

(i) After placing the onion
on the cutting board,
the green agent executes
Chop.

(j) The green agent ex-
ecutes Get-Plate-2, and
the blue agent keep run-
ning Move-Down to make
room for the pink agent
to merge the chopped veg-
etables later on.

(k) The pink agent
reaches the plate and it is
going to put the lettuce
on the plate.

(l) After putting the let-
tuce on the plate, the pink
agent merges the onion in
the plate by executing ex-
ecutes Get-Onion.
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(m) The pink agent gets
the chopped tomato into
the plate by executing
Get-Tomato.

(n) The pink agent
successfully delivers the
tomato-lettuce-onion
salad by running Deliver.

Figure 27: Visualization of running decentralized policies learned by Mac-IAICC in Overcooked-A.

Map B: In this map, the decentralized policies trained by our method learns the collaboration such
that the pink agent focuses on transporting items from right to left, while the other two agents
cooperatively prepare the salad.

(a) The blue agent ex-
ecutes Go-Cut-board-1.
The green agent executes
Go-Cut-board-2. The
pink agent executes Get-

Lettuce.

(b) After getting the let-
tuce, the pink agent exe-
cutes Go-Counter.

(c) After putting the let-
tuce on the counter, the
pink agent executes Get-

Onion.

(d) The green agent exe-
cutes Get-Lettuce.

(e) After getting the
onion, the pink agent
executes Go-Counter.

(f) After getting the let-
tuce, the green agent ex-
ecutes Go-Cut-Board-2.
Meanwhile the pink agent
puts the onion on the
counter, and then exe-
cutes Get-Tomato. The
blue agent executes Get-

Onion.

(g) After putting the let-
tuce on the cutting board,
the green executes Chop.
Blue agent executes Go-

Cut-Board-1 with onion
in hand.

(h) The blue agent ex-
ecutes Chop to cut the
onion to pieces.
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(i) After putting the
tomato on the counter, the
pink agent executes Get-

Plate-2. The green agent
executes Get-Tomato.

(j) The blue agent finishes
chopping the onion, and
then picks it up by execut-
ing Get-Onion again.

(k) The blue agent keeps
executing Moving-Down

to make room for the
green agent to chop
tomato later on. Mean-
while the green agent
moves towards the upper
cutting board by execut-
ing Go-Cut-Board-1.

(l) After getting the plate,
the pink agent executes
Go-Counter.

(m) After putting the
tomato on the cutting
board, the green agent ex-
ecutes Chop.

(n) The pink agent puts
the plate on the counter.
The blue agent executes
Go-Counter to get the
plate.

(o) The green agent
finishes chopping the
tomato, while the blue
agent puts chopped onion
on the plate.

(p) The green agent exe-
cutes Go-Cut-Board-2 to
make room for the blue
agent to merge the tomato
in to the plate.

(q) The blue agent exe-
cutes Get-Lettuce. The
green agent executes Go-

Cut-Board-1.

(r) After putting the let-
tuce on the plate, the blue
agent executes Deliver.

(s) The blue agent
successfully delivers the
tomato-lettuce-onion
salad.

Figure 29: Visualization of running decentralized policies learned by Mac-IAICC in Overcooked-B.

48



Map C: In this map, the best strategy is that the pink agent should take the advantage of the middle
counters to pass vegetables to the other agent. Our method learns a sub-optimal policy such that the
blue agent still crosses the narrow passage to get the vegetable at the right side of the map.

(a) The blue agent exe-
cutes Get-Lettuce. The
pink agent executes Get-

Onion. The green agent
executes Get-Tomato.

(b) After getting the
onion, the pink agent exe-
cutes Go-Cut-Board-2.

(c) The green agent gets
the tomato, and it exe-
cutes Go-Cut-Board-2.

(d) The blue agent gets
the lettuce, and it executes
Go-Cut-Board-1.

(e) After putting the onion
on the cutting board,
the pink agent executes
Chop.

(f) The pink agent fin-
ishes chopping the onion,
and then it executes Get-

Onion to pick it up.

(g) After picking up the
onion, the pink agent exe-
cutes Get-Plate-1.

(h) After putting the
tomato on the cutting
board, the green agent ex-
ecutes Chop.

(i) After putting the let-
tuce on the cutting board,
the blue agent executes
Chop.

(j) The pink agent puts
the onion on the plate,
and then executes Go-

Cut-Board-2. The blue
agent executes Go-Cut-

Board-2. The green agent
executes Go-Cut-Board-

1.

(k) The green agent exe-
cutes Get-Lettuce.

(l) After picking up the
lettuce, the green agent
executes Go-Counter.
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(m) The blue agent exe-
cutes Go-Cut-Board-1 to
make room for the pink
agent.

(n) The green agent puts
the lettuce on the counter

(o) After merging the
tomato into the plate, the
pink agent executes Get-

Lettuce. Meanwhile the
green agent steps away to
make room for the pink
agent.

(p) After getting the let-
tuce, the pink agent exe-
cutes Deliver.

(q) The pink agent
successfully delivers the
tomato-lettuce-onion
salad.

Figure 31: Visualization of running decentralized policies learned by Mac-IAICC in Overcooked-C.
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G.3 Warehouse Tool Delivery

Warehouse A:

(a) Initial State. (b) Mobile robots moves to-
wards the table by running Get-

Tool, and arm robot runs Search-

Tool(0) to find Tool-0.

(c) Mobile robots wait there and
arm robot keeps looking for Tool-
0.

(d) Arm robot executes Pass-to-

M(1) to pass Tool-0 to the blue
robot.

(e) Arm robot executes Search-

Tool(0) to find Tool-0, and blue
robot moves to workshop-1 by ex-
ecuting Go-W(1).

(f) Blue robot successfully deliv-
ers Tool-0 to workshop-1.

(g) Blue robot runs Get-Tool to
go back table, and arm robot exe-
cutes Pass-to-M(0) to pass Tool-0
to green robot.

(h) Green robot executes Go-

W(0) and arm robot runs Search-

Tool(1).

(i) Green robot successfully de-
livers Tool-0 to workshop-0.
Human-0 and human-1 finish
subtask-0 and start to do subtask-
1 with delivered Tool-0.

(j) Green robot runs Get-Tool to
go back table, and arm robot exe-
cutes Pass-to-M(1) to pass a Tool-
1 to blue robot.

(k) Blue robot executes Go-

W(1) and arm robot runs Search-

Tool(1).

(l) Blue robot successfully deliv-
ers a Tool-1 to workshop-1.
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(m) Arm robot executes Pass-to-

M(0) to pass Tool-1 to green robot.
Blue robot runs Get-Tool to go
back table.

(n) Green robot successfully
delivers Tool-1 to workshop-0.
Human-0 and human-1 finish
subtask-1 and start to do subtask-
2 with delivered Tool-1.

(o) Arm robot executes Pass-to-

M(1) to pass Tool-2 to blue robot.
Green robot runs Get-Tool to go
back table.

(p) Blue robot executes Go-W(1).
Arm robot runs Search-Tool(2).

(q) Blue robot successfully deliv-
ers Tool-2 to human-0.

(r) Arm robot executes Pass-to-

M(0) to pass Tool-2 to green robot.
Blue robot runs Get-Tool to go
back table.

(s) Green robot directly goes to
workshop-0 by running Go-W(0)

and finishes the last tool delivery
for human-0. The entire task is
done.
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Warehouse-B:.

(a) Initial State. (b) Green robot moves towards
the table by running Get-Tool.
Blue robot moves to workshop-
0 by executing Go-W(0). Arm
robot runs Search-Tool(0) to find
Tool-0.

(c) Green robot waits there and
arm robot keeps looking for Tool-
0.

(d) Blue robot reaches workshop-
0.

(e) Blue robot runs Get-Tool to go
back table.

(f) Arm robot executes Pass-to-

M(0) to pass Tool-0 to green robot.

(g) Arm robot runs Search-

Tool(0) to find the 2nd Tool-0.
(h) Arm robot executes Pass-to-

M(0) to pass the 2nd Tool-0 to
green robot.

(i) Arm robot runs Search-Tool(0)

to find the the 3rd Tool-0. Green
robot moves to workshop-1 by ex-
ecuting Go-W(1).

(j) Green robot successfully deliv-
ers Tool-0 to workshop-1.

(k) Arm robot executes Pass-to-

M(1) to pass the 3rd Tool-0 to
blue robot. Green robot moves
to workshop-0 by executing Go-

W(0).

(l) Arm robot runs Search-Tool(1)

to find Tool-1. Blue robot moves
to workshop-2 by executing Go-

W(2).
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(m) Green robot successfully de-
livers a Tool-0 to workshop-0.

(n) Blue robot successfully deliv-
ers a Tool-0 to workshop-2. Arm
robot runs Search-Tool(1) to find
another Tool-1.

(o) Blue robot runs Get-Tool to
go back table. All humans finish
subtask-0 and start to do subtask-
1.

(p)Arm robot executes Pass-to-

M(0) to pass a Tool-1 to green
robot.

(q) Arm robot executes Pass-to-

M(0) to pass another Tool-1 to
green robot.

(r) Green robot moves to
workshop-1 by executing
Go-W(1). Arm robot runs
Search-Tool(1) to find the 3rd
Tool-1.

(s) Green robot successfully deliv-
ers a Tool-0 to workshop-0.

(t) Green robot moves to
workshop-0 by executing Go-

W(0). Arm robot executes
Pass-to-M(1) to pass the 3rd
Tool-1 to blue robot.

(u) Arm robot runs Search-

Tool(2) to find Tool-2. Green
robot successfully delivers a Tool-
1 to workshop-0. Blue robot
moves to workshop-2 by execut-
ing Go-W(2).

(v) Green robot runs Get-Tool to
go back table.

(w) Arm robot runs Search-

Tool(2) to find another Tool-2.
Blue robot successfully delivers
a Tool-1 to workshop-2.

(x) Blue robot runs Get-Tool to
go back table.

(y) Arm robot executes Pass-to-

M(0) to pass a Tool-2 to green
robot.

(z) Arm robot executes Pass-to-

M(0) to pass another Tool-2 to
green robot. All humans finish
subtask-1 and start to do subtask-
2.

(A) Arm robot runs Search-

Tool(2) to find the 3rd Tool-2.
Green robot moves to workshop-1
by executing Go-W(1).
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(B) Green robot successfully de-
livers a Tool-2 to workshop-1.

(C) Arm robot executes Pass-to-

M(1) to pass the 3rd Tool-2 to
blue robot.

(D) Green robot successfully de-
livers a Tool-2 to workshop-0.
Blue robot moves to workshop-2
by executing Go-W(2).

(E) Blue robot successfully deliv-
ers a Tool-2 to workshop-2. Hu-
mans have received all tools, and
for robots, the task is done.
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Warehouse-C:

(a) Initial State. (b) Mobile robots move towards
the table by running Get-Tool.
Arm robot runs Search-Tool(0) to
find the 1st Tool-0.

(c) Mobile robots wait there and
arm robot keeps looking for the
1st Tool-0.

(d) Arm robot executes Pass-to-

M(0) to pass a Tool-0 to green
robot.

(e) Arm robot runs Search-

Tool(0) to find the 2nd Tool-0.
Green robot moves to workshop-0
by executing Go-W(0).

(f) Green robot successfully deliv-
ers the a Tool-0 to workshop-0.

(g) Green robot runs Get-Tool to
go back table. Arm robot executes
Pass-to-M(1) to pass a Tool-0 to
blue robot.

(h) Arm robot runs Search-

Tool(0) to find the 3rd Tool-0.
Blue robot moves to workshop-
1 by executing Go-W(1). Yellow
robot moves to workshop-0 by ex-
ecuting Go-W(0).

(i) Blue robot successfully deliv-
ers the a Tool-0 to workshop-1.
Yellow robot reaches workshop-
0 and observes that human-0 has
got Tool-0. Human-2 finishes
subtask-0 and waits for Tool-0.

(j) Arm robot executes Pass-to-

M(0) to pass a Tool-0 to green
robot. Yellow and blue robots run
Get-Tool to go back table.

(k) Arm robot runs Search-

Tool(1) to find the 1st Tool-1.
Green robot moves to workshop-0
by executing Go-W(0).

(l) Green robot reaches workshop-
0 and observes that human-0 does
not need Tool-0.
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(m) Green robot runs Get-Tool to
go back table.

(n) Arm robot executes Pass-to-

M(2) to pass a Tool-1 to yellow
robot.

(o) Arm robot runs Search-

Tool(1) to find the 2nd Tool-1.
Yellow robot moves to workshop-
0 by executing Go-W(0).

(p) Yellow robot successfully de-
livers the a Tool-1 to workshop-0.

(q) Yellow robot moves to
workshop-1 by executing Go-

W(1).

(r) Arm robot executes Pass-to-

M(0) to pass a Tool-1 to green
robot.

(s) Arm robot runs Search-

Tool(1) to find 3st Tool-1. Yel-
low robot runs Get-Tool to go
back table. Green robot moves
to workshop-0 by executing Go-

W(0).

(t) Green robot successfully deliv-
ers a Tool-1 to workshop-0.

(u) Green robot moves to
workshop-2 by executing Go-

W(2).

(v) Green robot successfully de-
livers the a Tool-0 to workshop-2.
Human-2 finishes subtask-0 and
starts to do subtask-1. Arm robot
executes Pass-to-M(1) to pass a
Tool-1 to blue robot.

(w) Green robot runs Get-Tool

to go back table. Arm robot
runs Search-Tool(2) to find the
1st Tool-2. Blue robot moves
to workshop-1 by executing Go-

W(1).

(x) Blue robot successfully deliv-
ers a Tool-1 to workshop-1.

(y) Blue robot runs Get-Tool to go
back table. Arm robot executes
Pass-to-M(2) to pass a Tool-2 to
yellow robot.

(z) Arm robot runs Search-

Tool(2) to find the 2nd Tool-2.
Yellow robot moves to workshop-
1 by executing Go-W(1).

(A) Yellow robot successfully
delivers a Tool-2 to workshop-
0. Human-0 and human-1 finish
subtask-1 and start to do subtask-
2.
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(B) Yellow robot moves to
workshop-1 by executing Go-

W(1).

(C) Arm robot executes Pass-to-

M(0) to pass a Tool-2 to green
robot. Yellow robot reaches
workshop-1 but it does not have
any tool.

(D) Arm robot runs Search-

Tool(2) to find the 3rd Tool-2.
Green robot moves to workshop-
0 by executing Go-W(0). Yellow
robot runs Get-Tool to go back ta-
ble.

(E) Green robot reaches
workshop-0 and observes that
human-0 does not need Tool-2.
Human-2 finishes subtask-1 and
starts to do subtask-2.

(F) Green robot moves to
workshop-2 by executing Go-

W(2).

(G) Green robot successfully de-
livers a Tool-2 to workshop-2.
Arm robot executes Pass-to-M(1)

to pass a Tool-2 to blue robot.

(H) Blue robot moves to
workshop-1 by executing Go-

W(1).

(I) Blue robot successfully deliv-
ers a Tool-2 to workshop-1. Hu-
mans have received all tools, and
for robots, the task is done.
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Warehouse-D:

(a) Initial State. (b) Green and yellow robots move
towards the table by running
Get-Tool. Blue robot moves
to workshop-3 by executing Go-

W(3). Arm robot runs Search-

Tool(0) to find the 1st Tool-0.

(c) Blue robot reaches workshop-
3.

(d) Blue robot moves to
workshop-1 by executing Go-

W(1).

(e) Blue robot reaches workshop-
1. Arm robot executes Pass-to-

M(2) to pass a Tool-0 to yellow
robot.

(f) Arm robot runs Search-

Tool(0) to find the 2nd Tool-0.
Blue robot runs Get-Tool to go
back table. Yellow robot moves
to workshop-1 by executing Go-

W(1).

(g) Yellow robot successfully de-
livers a Tool-0 to workshop-0.

(h) Arm robot executes Pass-to-

M(0) to pass a Tool-0 to green
robot. Yellow robot runs Get-Tool

to go back table.

(i) Arm robot runs Search-Tool(0)

to find the 3rd Tool-0. Green
robot moves to workshop-1 by ex-
ecuting Go-W(1).

(j) Green robot successfully de-
livers the a Tool-0 to workshop-1.
Arm robot executes Pass-to-M(2)

to pass a Tool-0 to yellow robot.

(k) Arm robot runs Search-

Tool(1) to find the 1st Tool-1. Yel-
low robot moves to workshop-2
by executing Go-W(2). Green
robot runs Get-Tool to go back
table.

(l) Yellow robot successfully de-
livers a Tool-0 to workshop-2.
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(m) Yellow robot runs Get-Tool to
go back table. Arm robot executes
Pass-to-M(1) to pass the a Tool-1
to blue robot. Human-0, human-1
and human-2 finish subtask-0 and
start to do subtask-1.

(n) Arm robot runs Search-

Tool(1) to find the 2nd Tool-1.
Blue robot moves to workshop-1
by executing Go-W(1).

(o) Blue robot successfully deliv-
ers a Tool-1 to workshop-1.

(p)Arm robot executes Pass-to-

M(2) to pass a Tool-1 to yellow
robot. Blue robot runs Get-Tool

to go back table.

(q) Arm robot runs Search-

Tool(0) to find 4th Tool-0. Yellow
robot moves to workshop-0 by ex-
ecuting Go-W(0).

(r) Yellow robot successfully de-
livers a Tool-1 to workshop-0.

(s) Yellow robot runs Get-Tool to
go back table. Arm robot executes
Pass-to-M(0) to pass a Tool-0 to
green robot.

(t) Arm robot runs Search-Tool(1)

to find the 3rd Tool-1. Green
robot moves to workshop-1 by ex-
ecuting Go-W(1).

(u) Green robot reaches
workshop-1 and observes that
human-1 does not need Tool-0
and it moves to workshop-3 by
executing Go-W(3). Arm robot
executes Pass-to-M(2) to pass a
Tool-1 to yellow robot.

(v) Arm robot runs Search-

Tool(1) to find the 4th Tool-1.
Green robot successfully delivers
a Tool-0 to workshop-3. Human-
3 finishes subtask-0 and starts to
do subtask-1. Yellow robot moves
to workshop-2 by executing Go-

W(2).

(w) Yellow robot successfully de-
livers a Tool-1 to workshop-2.
Green robot runs Get-Tool to go
back table.

(x) Arm robot executes Pass-to-

M(1) to pass a Tool-1 to blue
robot. Yellow robot runs Get-Tool

to go back table.
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(y) Arm robot runs Search-

Tool(2) to find the 1st Tool-2.
Blue robot moves to workshop-1
by executing Go-W(1).

(z) Blue robot reaches workshop-
1 and observes that human-1 does
not need Tool-1.

(A) Arm robot executes Pass-to-

M(2) to pass a Tool-2 to yel-
low robot. Blue robot moves
to workshop-3 by executing Go-

W(3).

(B) Arm robot runs Search-

Tool(2) to find the 2nd Tool-2.
Blue robot successfully delivers
a Tool-1 to workshop-3.

(C) Blue robot moves to
workshop-1 by executing Go-

W(1).

(D) Blue robot reaches workshop-
1.

(E) Blue robot runs Get-Tool to
go back table.

(F) Arm robot executes Pass-to-

M(2) to pass the a Tool-2 to yel-
low robot.

(G) Arm robot runs Search-

Tool(2) to find the 3rd Tool-2. Yel-
low robot moves to workshop-1
by executing Go-W(1).

(H) Yellow robot reaches
workshop-0 and observes that
human-0 has got a Tool-2.

(I) Yellow robot moves to
workshop-2 by executing Go-

W(2).

(J) Yellow robot successfully de-
livers a Tool-2 to workshop-2.

(K) Arm robot executes Pass-to-

M(0) to pass a Tool-2 to green
robot. Yellow robot runs Get-Tool

to go back table.

(L) Arm robot runs Search-

Tool(2) to find the 4th Tool-2.
Green robot moves to workshop-1
by executing Go-W(1).

(M) Arm robot executes Pass-to-

M(2) to pass a Tool-2 to yellow
robot. Green robot successfully
delivers a Tool-2 to workshop-1.
Human-0, human-1 and human-2
finish subtask-2 and starts to do
subtask-3.
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(N) Yellow robot moves to
workshop-0 by executing Go-

W(0). Green robot moves to
workshop-3 by executing Go-

W(3).

(O) Yellow robot reaches
workshop-0 and observes that
human-0 does not need Tool-2.

(P) Yellow and green robot move
to workshop-3 by executing Go-

W(3).

(Q) Yellow robot successfully de-
livers a Tool-2 to workshop-3. Hu-
mans have received all tools, and
for robots, the task is done.
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Warehouse-E:

(a) Initial State. (b) Mobile robots moves to-
wards the table by running Get-

Tool, and arm robot runs Search-

Tool(0) to find Tool-0.

(c) Mobile robots wait there and
arm robot keeps looking for Tool-
0.

(d) Arm robot executes Pass-to-

M(1) to pass Tool-0 to the blue
robot.

(e) Arm robot runs Search-

Tool(1) to find Tool-1. Blue
robot executes Go-W(0) to go to
workshop-0.

(f) Blue robot successfully deliv-
ers Tool-0 to workshop-0.

(g) Blue robot runs Get-Tool to
go back table. Human-0 finishes
subtask-0 and starts to do subtask-
1.

(h) Arm robot executes Pass-to-

M(0) to pass Tool-1 to green robot.
(i) Arm robot runs Search-Tool(0)

to find Tool-0. Green robot moves
to workshop-0 by executing Go-

W(0).

(j) Green robot successfully deliv-
ers Tool-1 to workshop-0.

(k) Arm robot executes Pass-to-

M(1) to pass Tool-0 to blue robot.
Green robot runs Get-Tool to go
back table.

(l) Arm robot runs Search-Tool(2)

to find Tool-2. Blue robot moves
to workshop-1 by executing Go-

W(1). Human-0 finishes subtask-1
and starts to do subtask-2.
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(m) Blue robot successfully deliv-
ers Tool-0 to workshop-1.

(n) Arm robot executes Pass-to-

M(0) to pass Tool-2 to green robot.
Blue robot runs Get-Tool to go
back table.

(o) Arm robot runs Search-

Tool(1) to find Tool-1. Green
robot moves to workshop-0 by ex-
ecuting Go-W(0).

(p) Green robot successfully de-
livers Tool-2 to workshop-0.

(q) Green robot moves to
workshop-1 by executing Go-

W(1) to observe human-1’s status.
Human-0 finishes subtask-2 and
starts to do subtask-3.

(r) Green robot reaches workshop-
1.

(s) Arm robot executes Pass-to-

M(1) to pass Tool-1 to blue robot.
Green robot runs Get-Tool to go
back table.

(t) Arm robot runs Search-Tool(2)

to find Tool-2. Blue robot moves
to workshop-1 by executing Go-

W(1).

(u) Blue robot successfully deliv-
ers Tool-1 to workshop-1.

(v) Blue robot runs Get-Tool to
go back table. Arm robot exe-
cutes Pass-to-M(0) to pass Tool-2
to green robot. Blue robot runs
Get-Tool to go back table.

(w) Green robot moves to
workshop-1 by executing Go-

W(1).

(x) Human-1 finishes subtask-1
and start to do subtask-2.

(y) Green robot successfully de-
livers Tool-2 to workshop-1. Hu-
mans have received all tools, and
for robots, the task is done.
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