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Abstract

We propose focal modulation networks (FocalNets in short), where self-attention
(SA) is completely replaced by a focal modulation module for modeling token
interactions in vision. Focal modulation comprises three components: (i) hierar-
chical contextualization, implemented using a stack of depth-wise convolutional
layers, to encode visual contexts from short to long ranges, (ii) gated aggrega-
tion to selectively gather contexts for each query token based on its content, and
(iii) element-wise modulation or affine transformation to fuse the aggregated
context into the query. Extensive experiments show FocalNets outperform the
state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with simi-
lar computational cost on the tasks of image classification, object detection, and
semantic segmentation. Specifically, FocalNets with tiny and base size achieve
82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-
22K, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution
2242 and 3842, respectively. When transferred to downstream tasks, FocalNets
exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base
trained with 1× outperforms the Swin counterpart by 2.1 points and already sur-
passes Swin trained with 3× schedule (49.0 v.s. 48.5). For semantic segmentation
with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats
Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and mask2former, we
achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO
Panoptic Segmentation. These results render focal modulation a favorable alter-
native to SA for effective and efficient visual modeling. Code is available at:
https://github.com/microsoft/FocalNet.

1 Introduction

Transformers [66], originally proposed for natural language processing (NLP), have become a
prevalent architecture in computer vision since the seminal work of Vision Transformer (ViT) [19]. Its
promise has been demonstrated in various vision tasks including image classification [63, 69, 74, 46,
87, 65], object detection [3, 97, 93, 15], segmentation [67, 72, 13], and beyond [38, 91, 4, 9, 68, 36].
In Transformers, the self-attention (SA) is arguably the key to its success which enables input-
dependent global interactions, in contrast to convolution operation which constrains interactions in a
local region with a shared kernel. Despite this advantages, the efficiency of SA has been a concern
due to its quadratic complexity over the number of visual tokens, especially for high-resolution inputs.
To address this, many works have proposed SA variants through token coarsening [69], window
attention [46, 65, 87], dynamic token selection [51, 81, 50], or the hybrid [79, 14]. Meanwhile, a
number of models have been proposed by augmenting SA with (depth-wise) convolutions to capture
long-range dependencies with a good awareness of local structures [74, 22, 78, 20, 18, 35, 7, 17].

In this work, we aim at answering the fundamental question: Is there a better way than (hybrid) SA to
model input-dependent long-range interactions? We start with an analysis on the current advanced
designs for SA. In Fig. 1(a), we show a window-wise attention between the red query token and
the surrounding orange tokens proposed in Swin Transformer [46]. With a simple window-shift
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(a) Window-wise SA (b) Focal Attention (c) Focal Modulation

Figure 1: Illustrative comparison among (a) Window-wise Self-Attention (SA) [46], (b) Focal Attention (FA) [79]
and (c) the proposed Focal Modulation. Given the query token , window-wise SA captures spatial context
from its surrounding tokens , FA additionally uses far-away summarized tokens , and Focal Modulation
first encodes spatial context at different levels of granularity into summarized tokens ( , , ), which are
then adaptively fused into the query token depending on the query content. Green and purple arrows represent
the attention interactions and query-dependent aggregations, respectively (we do not draw all arrows for clarity).
Both window-wise self-attention and focal attention involve heavy interaction and aggregation operations, while
our focal modulation turn both of them light-weight. Figures better viewed in color.

strategy, Swin attains superior performance to ResNets across various vision tasks. To enlarge the
receptive field, focal attention [79] is proposed to additionally aggregate summarized visual tokens far
away to capture coarse-grained, long-range visual dependencies, as shown in Fig. 1(b). To produce
the outputs, both methods involve heavy interactions (green arrows) followed by equally heavy
aggregations (purple arrows) between the query and a large number of spatially distributed tokens
(context features), which are extracted via either window partition or unfolding. In this work, we
take an alternative way by first aggregating contexts around each query and then modulating the
query with the aggregated context. This alteration still enables input-dependent token interaction, but
significantly eases the process by decoupling the aggregation from individual queries, hence making
the interactions light-weight upon a couple of features. As shown in Fig. 1(c), we can simply apply
query-agnostic aggregations (e.g., depth-wise convolution) to generate summarized tokens at different
levels of granularity. Afterwards, these summarized contexts are selectively aggregated depending
on the query content, and finally fused into the query vector. We call this new token interaction
mechanism focal modulation, with which we replace SA in Transformers to build a simpler and
attention-free architecture, called Focal Modulation Network, or FocalNet in short.

Finally, extensive experiments on image classification, object detection and segmentation, show that
our FocalNets consistently and significantly outperform the SoTA SA counterparts with comparable
costs. Notably, our FocalNet achieves 82.3% and 83.9% top-1 accuracy using tiny and base model
size, but with comparable and doubled throughput than Swin and Focal Transformer, respectively.
When pretrained on ImageNet-22K, our FocalNets achieve 86.5% and 87.3% in 2242 and 3842

resolution, respectively, which are comparable or better than Swin at similar cost. The advantage is
particularly significant when transferred to dense prediction tasks. For object detection on COCO [42],
our FocalNets with tiny and base model size achieve 46.1 and 49.0 box mAP on Mask R-CNN
1×, surpassing Swin with 3× schedule (46.0 and 48.5 box mAP). For semantic segmentation on
ADE20k [95], our FocalNet with base model size achieves 50.5 mIoU at single-scale evaluation,
outperforming Swin at multi-scale evaluation (49.7 mIoU). Using the pretrained large FocalNet,
we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic
Segmentation based on Mask2former [12]. Furthermore, we apply our focal modulation to monolithic
ViT and clearly demonstrate superior performance across different model sizes.

2 Related Work

Self-attentions. Transformer [66] is first introduced to vision in Vision Transformer (ViT) [19] by
splitting an image into a sequence of visual tokens. The self-attention (SA) strategy in ViTs has
demonstrated superior performance to modern convolutional neural networks (ConvNets) such as
ResNet [27] when trained with optimized recipes [19, 63]. Afterwards, multi-scale architectures [5,
69, 78], light-weight convolution layers [74, 22, 39], local self-attention mechanisms [46, 87, 14, 79]
and learnable attention weights [84] have been proposed to boost the performance and support
high-resolution input. More comprehensive surveys are covered in [34, 24, 34]. Our focal modulation
significantly differs from SA by first aggregating the contexts from different levels of granularity
and then modulating individual query tokens, rendering an attention-free mechanism for token
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interactions. For context aggregation, our method is inspired by focal attention proposed in [79].
However, the context aggregation for focal modulation is performed at each query location instead of
target location, followed by a modulation rather than an attention. These differences in mechanism
lead to significant improvement of efficiency and performance as well. Another closely related work
is Poolformer [83] which uses a pooling to summarize the local context and a simple subtraction to
adjust the individual inputs. Though achieving decent efficiency, Poolformer lags behind popular
vision transformers like Swin on performance. As we will show later, capturing local structures at
different levels is essential for performance.

MLP architectures. Visual MLPs can be categorized into two groups: (i) Global-mixing MLPs,
such as MLP-Mixer [60] and ResMLP [62], perform global communication among visual tokens
through spatial-wise projections augmented by various techniques, such as gating, routing, and
Fourier transforms [44, 49, 58, 59]. (ii) Local-mixing MLPs sample nearby tokens for interactions,
using spatial shifting, permutation, and pseudo-kernel mixing [82, 29, 41, 8, 23]. Recently, Mix-
Shift-MLP [92] exploits both local and global interactions with MLPs, in a similar spirit of focal
attention [79]. Both MLP architectures and our focal modulation network are attention-free. However,
focal modulation with multi-level context aggregation naturally captures the structures in both short-
and long-range, and thus achieves much better accuracy-efficiency trade-off.

Convolutions. ConvNets have been the primary driver of the renaissance of deep neural networks
in computer vision. The field has evolved rapidly since the emerge of VGG [52], InceptionNet [56]
and ResNet [27]. Representative works that focus on the efficiency of ConvNets are MobileNet [30],
ShuffleNet [90] and EfficientNet [57]. Another line of works aimed at integrating global context to
compensate ConvNets such as SE-Net [32], Non-local Network [71], GCNet [2], LR-Net [31] and
C3Net [80], etc. Introducing dynamic operation is another way to augment ConvNets as demonstrated
in Involution [37] and DyConv [10]. Recently, ConvNets strike back from two aspects: (i) convolution
layers are integrated to SA and bring significant gains [74, 22, 39, 20] or the vice versa [64]; (ii)
ResNets have closed the gap to ViTs using similar data augmentation and regularization strategies [73],
and replacing SA with (dynamic) depth-wise convolution [25, 47] can also slightly surpass Swin.
Our focal modulation network also exploits depth-wise convolution as the micro-architecture but
goes beyond by introducing a multi-level context aggregation and input-dependent modulation. We
will show this new module significantly outperforms raw convolution networks.

3 Focal Modulation Network

3.1 From Self-Attention to Focal Modulation

Given a visual feature map X ∈ RH×W×C as input, a generic encoding process generates for
each visual token (query) xi ∈ RC a feature representation yi ∈ RC via the interaction T with its
surroundings X (e.g., neighboring tokens) and aggregation M over the contexts.

Self-attention. The self-attention modules use a late aggregation procedure formulated as
yi = M1(T1(xi,X),X), (1)

where the aggregation M1 over the contexts X is performed after the attention scores between query
and target are computed via interaction T1.

Focal modulation. In contrast, focal modulation generates refined representation yi using an early
aggregation procedure formulated as

yi = T2(M2(i,X),xi), (2)

where the context features are first aggregated using M2 at each location i, then the query interacts
with the aggregated feature based on T2 to form yi.

Comparing Eq. (1) and Eq. (2), we see that (i) the context aggregation of focal modulation M2

amortizes the computation of contexts via a shared operator (e.g., depth-wise convolution), while M1

in SA is more computationally expensive as it requires summing over non-shareable attention scores
for different queries; (ii) the interaction T2 is a lightweight operator between a token and its context,
while T1 involves computing token-to-token attention scores, which has quadratic complexity.

Based on Eq. (2), we instantiate our focal modulation to

yi = q(xi)⊙m(i,X), (3)
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Figure 2: Left: Comparing SA (a) and focal modulation (b) side by side. Right: Detailed illustration of context
aggregation in focal modulation (c).

where q(·) is a query projection function and ⊙ is the element-wise multiplication. m(·) is a context
aggregation function, whose output is called modulator. Fig. 2(a) and (b) compare self-attention and
focal modulation. The proposed focal modulation has the following favorable properties:

• Translation invariance. Since q(·) and m(·) are always centered at the query token i and no
positional embedding is used, the modulation is invariant to translation of input feature map X.

• Explicit input-dependency. The modulator is computed via m(·) by aggregating the local features
around target location i, hence our focal modulation is explicitly input-dependent.

• Spatial- and channel-specific. The target location i as a pointer for m(·) enables spatial-specific
modulation. The element-wise multiplication enables channel-specific modulation.

• Decoupled feature granularity. q(·) preserve the finest information for individual tokens, while
m(·) extracts the coarser context. They are decoupled but combined through modulation.

In what follows, we describe in detail the implementation of m(·) in Eq. (3).

3.2 Context Aggregation via m(·)

It has been proved that both short- and long-range contexts are important for visual modeling [79, 18,
47]. However, a single aggregation with larger receptive field is not only computationally expensive
in time and memory, but also undermines the local fine-grained structures which are particularly
useful for dense prediction tasks. Inspired by [79], we propose a multi-scale hierarchical context
aggregation. As depicted in Fig. 2 (c), the aggregation procedure consists of two steps: hierarchical
contextualization to extract contexts from local to global ranges at different levels of granularity and
gated aggregation to condense all context features at different granularity levels into the modulator.

Step 1: Hierarchical Contextualization. Given input feature map X, we first project it into a new
feature space with a linear layer Z0 = fz(X) ∈ RH×W×C . Then, a hierarchical presentation of
contexts is obtained using a stack of L depth-wise convolutions. At focal level ℓ ∈ {1, ..., L}, the
output Zℓ is derived by:

Zℓ = f ℓ
a(Z

ℓ−1) ≜ GeLU(DW-Conv(Zℓ−1)) ∈ RH×W×C , (4)

where f ℓ
a is the contextualization function at the ℓ-th level, implemented via a depth-wise convolution

DW-Conv with kernel size kℓ followed by a GeLU activation function [28]. The use of depth-wise
convolution for hierarchical contextualization of Eq. (4) is motivated by its desirable properties.
Compared to pooling [83, 32], depth-wise convolution is learnable and structure-aware. In contrast to
regular convolution, it is channel-wise and thus computationally much cheaper.

Hierarchical contextualization of Eq. (4) generates L levels of feature maps. At level ℓ, the effective
receptive field is rℓ = 1 +

∑ℓ
i=1(k

ℓ − 1), which is much larger than the kernel size kℓ. To capture
global context of the whole input, which could be high-resolution, we apply a global average pooling
on the L-th level feature map ZL+1 = Avg-Pool(ZL). Thus, we obtain in total (L+1) feature maps
{Zℓ}L+1

ℓ=1 , which collectively capture short- and long-range contexts at different levels of granularity.
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Figure 3: Visualization of gating values G in Eq. (5) at last
layer of our FocalNet (L = 3) pretrained on ImageNet-1K.
The columns from left to right are input images, gating
maps at focal level 1,2,3 and global level.

Figure 4: Visualization of modulator values (cor-
responding to the right side of ⊙ in Eq. (6)) at
the last layer in FocalNet. The original modulator
map is upsampled for display.

Step 2: Gated Aggregation.

In this step, the (L+ 1) feature maps obtained via hierarchical contextualization are condensed into
a modulator. In an image, the relation between a visual token (query) and its surrounding contexts
often depends on the content itself. For example, the model might rely on local fine-grained features
for encoding the queries of salient visual objects, but mainly global coarse-grained features for the
queries of background scenes. Based on this intuition, we use a gating mechanism to control how
much to aggregate from different levels for each query. Specifically, we use a linear layer to obtain a
spatial- and level-aware gating weights G = fg(X) ∈ RH×W×(L+1). Then, we perform a weighted
sum through an element-wise multiplication to obtain a single feature map Zout which has the same
size as the input X,

Zout =

L+1∑
ℓ=1

Gℓ ⊙ Zℓ ∈ RH×W×C (5)

where Gℓ ∈ RH×W×1 is a slice of G for the level ℓ. When visualizing these gating maps in Fig. 3,
we surprisingly find our FocalNet indeed learns gathering the context from different focal levels
adaptively as we expect. As we can see, for a token on a small object, it focuses more on the
fine-grained local structure at low focal level, while a token in a uniform background needs to be
aware of much larger contexts from higher levels. Until now, all the aggregation is spatial. To enable
the communication across different channels, we use another linear layer h(.) to obtain the modulator
map M = h(Zout) ∈ RH×W×C . In Fig. 4, we visualize the magnitude of modulator M at the last
layer of our FocalNet. Interestingly, the modulators automatically pay more attention to the objects
inducing the category, which implies a simple way of interpreting FocalNets.

Focal Modulation. Given the implementation of m(·) as described above, focal modulation of Eq.(3)
can be rewritten at the token level as

yi = q(xi)⊙ h(

L+1∑
ℓ=1

gℓ
i · z

ℓ
i) (6)

where gℓ
i and zℓ

i are the gating value and visual feature at location i of Gℓ and Zℓ, respectively. We
summarize the proposed focal modulation in Pytorch-style pseudo code in Algorithm 1. As we can
see, it can be easily implemented with a few convolution and linear layers.

3.3 Complexity

In focal modulation as Eq. (6), there are mainly three linear projections q(·), h(·), and fz(·) for
Z0. Besides, it requires a lightweight linear function fg(·) for gating and L depth-wise convolution
f
{1,...,L}
a for hierarchical contextualization. Therefore, the overall number of learnable parameters

is 3C2 + C(L+ 1) + C
∑

ℓ(k
ℓ)2. Since L and (kℓ)2 are typically much smaller than C, the model

size is mainly determined by the first term as we will show in Sec. 4. Regarding the time complexity,
besides the linear projections and the depth-wise convolution layers, the element-wise multiplications
introduce O(C(L + 2)) for each visual token. Hence, the total complexity for a feature map is
O(HW × (3C2 + C(2L+ 3) + C

∑
ℓ(k

ℓ)2)). For comparison, a window-wise attention in Swin
Transformer with window size w is O(HW × (3C2 + 2Cw2)), where w is the window size.
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Algorithm 1: Pseudo code for Focal Modulation.
# Input/output shape: (B, H, W, C); Batchsize B; Feature map height H, width W, dim C
# Focal levels: L; Conv kernel size at level ℓ: kℓ

1 def init( ):
2 pj_in, pj_cxt = Linear(C, 2*C + (L+1)), Conv2d(C, C, 1)
3 hc_layers = [Sequential(Conv2d(C, C, kℓ, groups=C), GeLU()) for ℓ in range(L)]
4 pj_out = Sequential(Linear(C, C), Dropout())

5 def forward(x, m=0):
6 x = pj_in(x).permute(0, 3, 1, 2)
7 q, z, gate = split(x, (C, C, L+1), 1)
8 for ℓ in range(L):
9 z = hc_layers[ℓ](z) # Eq.(4), hierarchical contextualization

10 m = m + z * gate[:, ℓ:ℓ+1] # Eq.(5), gated aggregation

11 m = m + GeLU(z.mean(dim=(2,3))) * gate[:,L:]
12 x = q * pj_cxt(m) # Eq.(6), focal modulation
13 return pj_out( x.permute(0, 2, 3, 1) )

3.4 Network Architectures

We use the same stage layouts and hidden dimensions as in Swin [46] and Focal Transformers [79],
but replace the SA modules with the focal modulation modules. We thus construct a series of Focal
Modulation Network (FocalNet) variants. In FocalNets, we only need to specify the number of focal
levels (L) and the kernel size (kℓ) at each level. For simplicity, we gradually increase the kernel
size by 2 from lower focal levels to higher ones, i.e., kℓ = kℓ−1 + 2. To match the complexities
of Swin and Focal Transformers, we design a small receptive field (SRF) and a large receptive
field (LRF) version for each of the four layouts by using 2 and 3 focal levels, respectively. We
use non-overlapping convolution layers for patch embedding at the beginning (kernel size=4 × 4,
stride=4) and between two stages (kernel size=2× 2, stride=2), respectively.

4 Experiment
4.1 Image Classification

We compare different methods on ImageNet-1K classification [16]. Following the recipes in [63,
46, 79], we train FocalNet-T, FocalNet-S and FocalNet-B with ImageNet-1K training set and report
Top-1 accuracy (%) on the validation set. Training details are described in the appendix.

To verify the effectiveness of FocalNet, we compare it with three groups of methods based on
ConvNets, Transformers and MLPs. The results are reported in Table 1. We see that FocalNets
outperform the conventional CNNs (e.g., ResNet [27] and the augmented version [73]), MLP
architectures such as MLP-Mixer [61] and gMLP [43], and Transformer architectures DeiT [63]
and PVT [69]. In particular, we compare FocalNets against Swin and Focal Transformers which
use the same architecture to verify FocalNet’s stand-alone effectiveness at the bottom part. We see
that FocalNets with small receptive fields (SRF) achieve consistently better performance than Swin
Transformer but with similar model size, FLOPs and throughput. For example, the tiny FocalNet
improves Top-1 accuracy by 0.9% over Swin-Tiny. To compare with Focal Transformers (FocalAtt),
we change to large receptive fields (LRF) though it is still much smaller than the one used in FocalAtt.
Focal modulation outperforms the strong and sophisticatedly designed focal attention across all model
sizes. More importantly, its run-time speed is much higher than FocalAtt by getting rid of many
time-consuming operations like rolling and unfolding.

Model augmentation. We investigate whether some commonly used techniques for vision transform-
ers can also improve our FocalNets. First, we study the effect of using overlapped patch embedding
for downsampling [22]. Following [74], we change the kernel size and stride from (4, 4) to (7, 4) for
patch embedding at the beginning, and (2, 2) to (3, 2) for later stages. The comparisons are reported
in Table 2. Overlapped patch embedding improves the performance for models of all sizes, with
slightly increased computational complexity and time cost. Second, we make our FocalNets deeper
but thinner as in [18, 96]. In Table 3, we change the depth layout of our FocalNet-T from 2-2-6-2 to
3-3-16-3, and FocalNet-S/B from 2-2-18-2 to 4-4-28-4. Meanwhile, the hidden dimension at first
stage is reduced from 96, 128 to 64, 96, respectively. These changes lead to smaller model sizes and
fewer FLOPs, but higher time cost due to the increased number of sequential blocks. It turns out that
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Model #Params.
(M)

FLOPs
(G)

Throughput
(imgs/s)

Top-1
(%)

ResNet-50 [27] 25.0 4.1 1294 76.2
ResNet-101 [27] 45.0 7.9 745 77.4
ResNet-152 [27] 60.0 11.0 522 78.3
ResNet-50-SB [73] 25.0 4.1 1294 79.8
ResNet-101-SB [73] 45.0 7.9 745 81.3
ResNet-152-SB [73] 60.0 11.6 522 81.8
DW-Net-T [25] 24.2 3.8 1030 81.2
DW-Net-B [25] 74.3 12.9 370 83.2

Mixer-B/16 [61] 59.9 12.7 455 76.4
gMLP-S [43] 19.5 4.5 785 79.6
gMLP-B [43] 73.4 15.8 301 81.6
ResMLP-S24 [62] 30.0 6.0 871 79.4
ResMLP-B24 [62] 129.1 23.0 61 81.0

DeiT-Small/16 [63] 22.1 4.6 939 79.9
DeiT-Base/16 [63] 86.6 17.5 291 81.8
PVT-Small [69] 24.5 3.8 794 79.8
PVT-Medium [69] 44.2 6.7 517 81.2
PVT-Large [69] 61.4 9.8 352 81.7
PoolFormer-m36 [83] 56.2 8.8 463 82.1
PoolFormer-m48 [83] 73.5 11.6 347 82.5

Swin-Tiny [46] 28.3 4.5 760 81.2
FocalNet-T (SRF) 28.4 4.4 743 82.1
Swin-Small [46] 49.6 8.7 435 83.1
FocalNet-S (SRF) 49.9 8.6 434 83.4
Swin-Base [46] 87.8 15.4 291 83.5
FocalNet-B (SRF) 88.1 15.3 280 83.7
FocalAtt-Tiny [79] 28.9 4.9 319 82.2
FocalNet-T (LRF) 28.6 4.5 696 82.3
FocalAtt-Small 51.1 9.4 192 83.5
FocalNet-S (LRF) 50.3 8.7 406 83.5
FocalAtt-Base [79] 89.8 16.4 138 83.8
FocalNet-B (LRF) 88.7 15.4 269 83.9
Table 1: ImageNet-1K classification comparison.

Model Overlapped
PatchEmbed

#Params.
(M)

FLOPs
(G)

Throughput
(imgs/s)

Top-1
(%)

FocalNet-T (SRF) 28.4 4.4 743 82.1
FocalNet-T (SRF) ✓ 30.4 4.4 730 82.4
FocalNet-S (SRF) 49.9 8.6 434 83.4
FocalNet-S (SRF) ✓ 51.8 8.6 424 83.4
FocalNet-B (SRF) 88.1 15.3 286 83.7
FocalNet-B (SRF) ✓ 91.6 15.3 278 84.0

Table 2: Effect of overlapped patch embedding.

Model Depth Dim. #Params. FLOPs Throughput Top-1

FocalNet-T (SRF) 2-2-6-2 96 28.4 4.4 743 82.1
FocalNet-T (SRF) 3-3-16-3 64 25.1 4.0 663 82.7
FocalNet-S (SRF) 2-2-18-2 96 49.9 8.6 434 83.4
FocalNet-S (SRF) 4-4-28-4 64 38.2 6.4 440 83.5
FocalNet-B (SRF) 2-2-18-2 128 88.1 15.3 280 83.7
FocalNet-B (SRF) 4-4-28-4 96 85.1 14.3 247 84.1

Table 3: Effect of deeper and thinner networks.

Model Img. Size #Params FLOPs Throughput Top-1

ResNet-101x3 [27] 3842 388.0 204.6 - 84.4
ResNet-152x4 [27] 4802 937.0 840.5 - 85.4
ViT-B/16 [19] 3842 86.0 55.4 99 84.0
ViT-L/16 [19] 3842 307.0 190.7 30 85.2
Swin-Base [46] 2242/2242 88.0 15.4 291 85.2
FocalNet-B 2242/2242 88.1 15.3 280 85.6
Swin-Base [46] 3842/3842 88.0 47.1 91 86.4
FocalNet-B 2242/3842 88.1 44.8 94 86.5
Swin-Large [46] 2242/2242 196.5 34.5 155 86.3
FocalNet-L 2242/2242 197.1 34.2 144 86.5
Swin-Large [46] 3842/3842 196.5 104.0 49 87.3
FocalNet-L 2242/3842 197.1 100.6 50 87.3

Table 4: ImageNet-1K finetuning results with mod-
els pretrained on ImageNet-22K. Numbers before and
after “/” are resolutions used for pretraining and fine-
tuning, respectively.

going deeper improves the performance of FocalNets significantly. These results demonstrate that
the commonly used model augmentation techniques developed for vision transformers can be easily
adopted to improve the performance of FocalNets.

ImageNet-22K pretraining. We investigate the effectiveness of FocalNets when pretrained on
ImageNet-22K which contains 14.2M images and 21K categories. Training details are described
in the appendix. We report the results in Table 4. Though FocalNet-B/L are both pretrained with
224× 224 resolution and directly transferred to target domain with 384× 384 image size, we can
see that they consistently outperform Swin Transformers.

4.2 Detection and Segmentation

Object detection and instance segmentation. We make comparisons on object detection with
COCO 2017 [42]. We choose Mask R-CNN [26] as the detection method and use FocalNet-T/S/B
pretrained on ImageNet-1K as the backbones. All models are trained on the 118k training images
and evaluated on 5K validation images. We use two standard training recipes, 1× schedule with
12 epochs and 3× schedule with 36 epochs. Following [46], we use the same multi-scale training
strategy by randomly resizing the shorter side of an image to [480, 800]. Similar to [79], we increase
the kernel size kℓ by 6 for context aggregation at all focal levels to adapt to higher input resolutions.
Instead of up-sampling the relative position biases as in [79], FocalNets uses simple zero-padding for
the extra kernel parameters. This expanding introduces negligible overhead but helps extract longer
range contexts. For training, we use AdamW [48] as the optimizer with initial learning rate 10−4 and
weight decay 0.05. All models are trained with batch size 16. We set the stochastic drop rates to 0.1,
0.2, 0.3 in 1× and 0.3, 0.5, 0.5 in 3× training schedule for FocalNet-T/S/B, respectively.

The results are shown in Table 5. We measure both box and mask mAP, and report the results for both
small and large receptive field models. Comparing with Swin Transformer, FocalNets improve the
box mAP (APb) by 2.2, 1.5 and 1.9 in 1× schedule for tiny, small and base models, respectively. In
3× schedule, the improvements are still consistent and significant. Remarkably, the 1× performance
of FocalNet-T/B (45.9/48.8) rivals Swin-T/B (46.0/48.5) trained with 3× schedule. When comparing
with FocalAtt [79], FocalNets with large receptive fields consistently outperform under all settings
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Backbone #Params FLOPs Mask R-CNN 1x Mask R-CNN 3x

(M) (G) AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

ResNet50 [27] 44.2 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small[69] 44.1 245 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Twins-SVT-S [14] 44.0 228 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Swin-Tiny [46] 47.8 264 43.7 66.6 47.7 39.8 63.3 42.7 46.0 68.1 50.3 41.6 65.1 44.9
FocalNet-T (SRF) 48.6 267 45.9 (+2.2) 68.3 50.1 41.3 65.0 44.3 47.6 (+1.6) 69.5 52.0 42.6 66.5 45.6
FocalAtt-Tiny [79] 48.8 291 44.8 67.7 49.2 41.0 64.7 44.2 47.2 69.4 51.9 42.7 66.5 45.9
FocalNet-T (LRF) 48.9 268 46.1 (+1.3) 68.2 50.6 41.5 65.1 44.5 48.0 (+0.8) 69.7 53.0 42.9 66.5 46.1

ResNet101 [27] 63.2 336 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32x4d [77] 62.8 340 41.9 62.5 45.9 37.5 59.4 40.2 44.0 64.4 48.0 39.2 61.4 41.9
PVT-Medium [69] 63.9 302 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
Twins-SVT-B [14] 76.3 340 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
Swin-Small [46] 69.1 354 46.5 68.7 51.3 42.1 65.8 45.2 48.5 70.2 53.5 43.3 67.3 46.6
FocalNet-S (SRF) 70.8 356 48.0 (+1.5) 69.9 52.7 42.7 66.7 45.7 48.9 (+0.4) 70.1 53.7 43.6 67.1 47.1
FocalAtt-Small [79] 71.2 401 47.4 69.8 51.9 42.8 66.6 46.1 48.8 70.5 53.6 43.8 67.7 47.2
FocalNet-S (LRF) 72.3 365 48.3 (+0.9) 70.5 53.1 43.1 67.4 46.2 49.3 (+0.5) 70.7 54.2 43.8 67.9 47.4

ResNeXt101-64x4d [77] 102.0 493 42.8 63.8 47.3 38.4 60.6 41.3 44.4 64.9 48.8 39.7 61.9 42.6
PVT-Large[69] 81.0 364 42.9 65.0 46.6 39.5 61.9 42.5 44.5 66.0 48.3 40.7 63.4 43.7
Twins-SVT-L [14] 119.7 474 45.9 - - 41.6 - - - - - - - -
Swin-Base [46] 107.1 497 46.9 69.2 51.6 42.3 66.0 45.5 48.5 69.8 53.2 43.4 66.8 46.9
FocalNet-B (SRF) 109.4 496 48.8 (+1.9) 70.7 53.5 43.3 67.5 46.5 49.6 (+1.1) 70.6 54.1 44.1 68.0 47.2
FocalAtt-Base [79] 110.0 533 47.8 70.2 52.5 43.2 67.3 46.5 49.0 70.1 53.6 43.7 67.6 47.0
FocalNet-B (LRF) 111.4 507 49.0 (+1.2) 70.9 53.9 43.5 67.9 46.7 49.8 (+0.8) 70.9 54.6 44.1 68.2 47.2

Table 5: COCO object detection and instance segmentation results with Mask R-CNN [26].

Method Backbone #Param. FLOPs AP b AP b
50 AP b

75

C. Mask R-CNN [1]

R-50 [27] 82.0 739 46.3 64.3 50.5
DW-Net-T [25] 82.0 730 49.9 68.6 54.3
Swin-T [46] 85.6 742 50.5 69.3 54.9
FocalNet-T (SRF) 86.4 746 51.5 70.1 55.8
FocalAtt-T [79] 86.7 770 51.5 70.6 55.9
FocalNet-T (LRF) 87.1 751 51.5 70.3 56.0

Sparse R-CNN [55]

R-50 [27] 106.1 166 44.5 63.4 48.2
Swin-T [46] 109.7 172 47.9 67.3 52.3
FocalNet-T (SRF) 110.5 172 49.6 69.1 54.2
FocalAtt-T [79] 110.8 196 49.0 69.1 53.2
FocalNet-T (LRF) 111.2 178 49.9 69.6 54.4

ATSS [88]

R-50 [27] 32.1 205 43.5 61.9 47.0
Swin-T [46] 35.7 212 47.2 66.5 51.3
FocalNet-T (SRF) 36.5 215 49.2 68.1 54.2
FocalAtt-T [79] 36.8 239 49.5 68.8 53.9
FocalNet-T (LRF) 37.2 220 49.6 68.7 54.5

Table 6: A comparison of models with different object detection
methods, trained using the 3× schedule.

Backbone Crop Size #Param. FLOPs mIoU +MS

ResNet-101 [27] 512 86 1029 44.9 -
Twins-SVT-L [14] 512 133 - 48.8 50.2
DW-Net-T [25] 512 56 928 45.5 -
DW-Net-B [25] 512 132 924 48.3 -

Swin-T [46] 512 60 941 44.5 45.8
FocalNet-T (SRF) 512 61 944 46.5 47.2
FocalAtt-T [79] 512 62 998 45.8 47.0
FocalNet-T (LRF) 512 61 949 46.8 47.8
Swin-S [46] 512 81 1038 47.6 49.5
FocalNet-S (SRF) 512 83 1035 49.3 50.1
FocalAtt-S [79] 512 85 1130 48.0 50.0
FocalNet-S (LRF) 512 84 1044 49.1 50.1
Swin-B [46] 512 121 1188 48.1 49.7
FocalNet-B (SRF) 512 124 1180 50.2 51.1
FocalAtt-B [79] 512 126 1354 49.0 50.5
FocalNet-B (LRF) 512 126 1192 50.5 51.4

Table 7: Semantic segmentation on
ADE20K [95]. All models are trained
with UperNet [75]. MS means multi-scale
evaluation.

and cost much less FLOPs. For instance segmentation, we observe the similar trend as that of object
detection for FocalNets. To further verify the generality of FocalNets, we train three detection models,
Cascade Mask R-CNN [1], Sparse RCNN [55] and ATSS [88] with FocalNet-T as the backbone. We
train all models with 3× schedule, and report the box mAPs in Table 6. As we can see, FocalNets
bring clear gains to all three detection methods over the previous SoTA methods.

Semantic segmentation. We benchmark FocalNets on semantic segmentation, a dense prediction
task that requires fine-grained understanding and long-range interactions. We use ADE20K [95] for
our experiments and follow [46] to use UperNet [75] as the segmentation method. With FocalNet-
T/S/B trained on ImageNet-1K as the backbones, we train UperNet for 160k iterations with input
resolution 512×512 and batch size 16. For comparisons, we report both single- and multi-scale (MS)
mIoU. Table 7 shows the results with different backbones. FocalNet outperforms Swin and Focal
Transformer significantly under all settings. Even for the base models, FocalNet (SRF) exceeds Swin
Transformer by 2.1 and 1.4 at single- and multi-scale, respectively. Compared with Focal Transformer,
FocalNets outperform Focal Transformer, with a larger gain than that of Swin Transformer, and
consume much less FLOPs. These results demonstrate the superiority of FocalNets on the pixel-level
dense prediction tasks, in addition to the instance-level object detection task.

Given the superior results for FocalNets on segmentation tasks shown in Table 7, we further investigate
its effectiveness while scaling up. Particularly, to fairly compare with Swin-L pretrained on ImageNet-
22K with 384×384, we also pretrain our FocalNet-L on ImageNet-22K with 384×384 with 3 focal
levels and kernel sizes [3, 5, 7]. We use Mask2former [12] for semantic segmentation on ADE20K and
panoptic segmentation on COCO. As shown in Table 8, FocalNet-L achieves superior performance to
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Backbone Method #Param mIoU +MS

HRNet-w48 [54] OCRNet [85] 71M 45.7 -
ResNeSt-200 [86] DLab.v3+ [6] 88M 48.4 -

Swin-B [46] UperNet [75] 121M 48.1 49.7
Twins-SVT-L [14] UperNet [75] 133M 48.8 50.2
MiT-B5 [76] SegFormer [76] 85M 51.0 51.8
ViT-L/16† [19] SETR [94] 308M 50.3 -
Swin-L† [46] UperNet [75] 234M 52.1 53.5
ViT-L/16† [19] Segmenter [53] 334M 51.8 53.6
Swin-L† [46] K-Net [89] - - 54.3
Swin-L† [46] PatchDiverse [21] 234M 53.1 54.4
VOLO-D5 [84] UperNet [75] - - 54.3
Focal-L† UperNet [75] 240M 54.0 55.4
CSwin-L† UperNet [75] 208M 54.0 55.7

BEIT-L† UperNet [75] 441M 56.7 57.0
Swinv2-G‡ [45] UperNet [75] >3.0B 59.1 -
ViT-Adapter-L† [11] Mask2Former [12] 568M 58.3 59.0

Swin-L† Mask2Former [12] 216M 56.4 57.7
Swin-L-FaPN† Mask2Former [12] - 56.1 57.3
Swin-L-SeMask† [33] Mask2Former [12] - 57.0 58.2
FocalNet-L† (Ours) Mask2Former [12] 218M 57.3 58.5

Table 8: Systematic comparisons of semantic seg-
mentation on ADE20K validation set. † indicates
pretraining with ImageNet-22K and ‡ means using
extra data additionally.

Backbone Method #Param. PQ AP mIoU

ResNet-50 [27] DETR [3] - 43.4 - -
ResNet-50 [27] K-Net [89] - 47.1 - -

ResNet-50 [27] Panoptic
SegFormer [40] 47M 50.0 - -

ResNet-50 [27] Mask2Former [12] 44M 51.9 41.7 62.4

PVTv2-B5 [70] Panoptic
SegFormer [40] 101M 54.1 - -

Swin-T [46] MaskFormer [13] 42M 47.7 33.6 60.4
Swin-B [46] MaskFormer [13] 102M 51.1 37.8 62.6
Swin-T [46] Mask2Former [12] 47M 53.2 43.3 63.2
Swin-B [46] Mask2Former [12] 107M 55.1 45.2 65.1

Swin-L† [46] MaskFormer [13] 212M 52.7 40.1 64.8

Swin-L† [46] Panoptic
SegFormer [40] - 55.8 - -

Swin-L† [46] Mask2Former [13]
(200 queries) 216M 57.8 48.6 67.4

Focal-L† (Ours) Mask2Former [13]
(200 queries) 226M 57.9 48.4 67.3

Table 9: Panoptic segmentation on COCO [42]. † means
pretraining with ImageNet-22K. All models evaluated on
minival with single-scale. PQ, AP and mIoU are three
metrics for measuring the panoptic segmentation, instance
segmentation and semantic segmentation, respectively.

Model Formula #Param. FLOPs Throughput Top-1

FocalNet-T (LRF) yi = q(xi)⊙ h(
∑L+1

ℓ=1 gℓ
i · zℓ

i) 28.6 4.49 696 82.3

→ Depth-width ConvNet yi = q(GeLU(h(zL
i ))) 28.6 4.47 738 81.6 (-0.7)

→ Pooling Aggregator yi = q(xi)⊙ h(
∑L+1

ℓ=1 gℓ
i · Avg-Pool(zℓ−1

i )) 28.3 4.37 676 80.5 (-1.8)

→ Global Pooling Aggregator yi = q(xi)⊙ h(gi · Avg-Pool(fz(X))) 28.3 4.36 883 75.7 (-6.7)

→ Multi-scale Self-Attention (QKV first) yi = MHSA(xi,z
1
i , ..., z

L+1
i ), fz, q, h = Identity(·) 28.6 4.61 456 81.5 (-0.8)

→ Multi-scale Self-Attention (QKV later) yi = MHSA(xi,z
1
i , ..., z

L+1
i ), fz, q, h = Identity(·) 28.6 7.26 448 80.8 (-1.5)

→ Sliding-window Self-Attention yi = MHSA(xi,N (xi)), |N (xi)| = 7× 7− 1 28.3 4.49 103 81.5 (-0.8)

Table 10: Performance for different FocalNet model variants.

Swin-L with similar model size and same pretraining data. We note that the methods in gray font like
Swinv2-G and ViT-Adapter-L achieve better performance but use much more parameters and training
data. We leave the further scaling-up of our FocalNets as future work. In Table 9, we compare
different models for panoptic segmentation on COCO with 133 categories. Our FocalNet-L slightly
outperforms Swin-L on PQ, rendering a new state-of-the-art for panoptic segmentation. These results
clearly demonstrate the effectiveness of our FocalNets for various segmentation tasks.

4.3 Network Inspection

Model Variants. We compare in Table 10 six different model variants derived from FocalNet.

• Depth-wise ConvNet. It feeds the feature vectors at the top level L to a two-layer MLP. The
resultant model is close to DW-Net [25]. Although it can achieve 81.6%, surpassing Swin (81.3%),
it underperforms FocalNet by 0.7%. FocalNet uses depth-wise convolutions as a component but
differently for aggregating contexts, which is then used to modulate each individual tokens.

• Pooling Aggregator. It replaces the depth-wise convolution module with average pooling, and
is similar to MetaFormer [83] in terms of token aggregation. Average pooling has slightly lower
complexity but leads to a significant drop of accuracy by 1.8%. Compared with depth-wise
convolution, pooling is permutation-invariant and thus incapable of capturing visual structures.

• Global Pooling Aggregator. It removes local aggregations at all levels and only keeps the global
one (ZL+1). This variant resembles SENet [32]. It turns out that global context alone is insufficient
for visual modeling, leading to a significant 6.7% drop.

• Multi-scale Self-Attention. Given the summarized tokens at different levels, a straightforward
way to combine them is performing a SA among all of them. We have developed two SA methods:
computing q, k, v before and after aggregation, respectively. Both methods result in visible
performance drop and increase the run time latency, compared to FocalNet.

• Sliding-window Self-Attention. Finally, we apply a sliding-window SA for each visual token
within a window. Since it involves dense interactions for each fine-grained tokens, the time and
memory cost explodes, and the performance is worse than FocalNet.
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Model FLOPs Throughput Top-1 APb APm

FocalNet-T (LRF) 4.48 696 82.3 46.2 41.6

Additive 4.49 670 81.5 (-0.8) 45.6 (-0.6) 41.1 (-0.5)

No global pool 4.48 683 82.0 (-0.3) 45.8 (-0.4) 41.2 (-0.4)

Top-only 4.49 698 81.9 (-0.4) 45.7 (-0.5) 41.2 (-0.4)

No gating 4.48 707 81.9 (-0.4) 45.6 (-0.6) 41.1 (-0.5)

Table 11: Component analysis for focal modulation.
Four separate changes are made to the original FocalNet.
Throughput is reported on image classification. All variants
have almost the same size (28.6M) as the default model.

Levels (Kernels) Receptive
Field #Param. FLOPs Throughput Top-1

2 (3-5) 7 28.4 4.41 743 82.1
3 (3-5-7) 13 28.6 4.49 696 82.3

0 (n/a) 0 28.3 4.35 883 75.7
1 (3) 3 28.3 4.37 815 82.0
4 (3-5-7-9) 21 29.0 4.59 592 82.2

1 (13) 13 28.8 4.59 661 81.9

Table 12: Model performance with number of fo-
cal levels L. “Receptive Field” refers to effective
receptive field at the top level regardless of the
global average pooling.

Component Analysis. Here we ablate FocalNet to study the relative contribution of each component.
The result is reported in Table 11, where we investigate the impact of the following model architecture
changes on model performance:

• Replacing Multiplication with Addition: we change the element-wise multiplication to addition
in Eq. (6), which converts the modulator into a bias term. This leads to 0.7% accuracy drop, which
indicates that element-wise multiplication is a more powerful way of modulation than addition.

• No Global Aggregation: we remove the top global average pooling in focal modulation. It hurts
the performance by 0.3%. Even though the hierarchical aggregation already covers a relatively
large receptive field, global information (ZL+1) is still useful for capturing global context.

• Top-only Aggregation: Instead of aggregating the feature maps from all focal levels, we only
use the top level map. In this case, the features at lower levels that are more “local” and “fine-
grained” are completely discarded. This change leads to 0.4% performance drop, which verifies
our hypothesis that features at different levels and spatial scopes compensate each other.

• None-gating Aggregation: We remove the gating mechanism when aggregating the multiple
levels of feature maps. This causes 0.4% drop. As we discussed earlier, the dependencies between
visual token (query) and its surroundings differ based on the query content. The proposed gating
mechanism helps the model to adaptively learn where and how much to gather.

In Table 12, we study the effect of varying the focal level (i.e. the number of depth-wise convolution
layers L). In our experiments reported above, the results show that large receptive field in general
achieves better performance (LRF v.s. SRF). Here, we investigate by further altering L. In additional
to setting L = 2 and 3, we also try L = 0, L = 1, and L = 4. Accordingly, increasing L brings
slight improvement and finally reaches a plateau. Surprisingly, a single level with kernel size 3 can
already obtain a decent performance. When we increase the single-level kernel size from 3 to 13,
there is a slight 0.1% drop, and a 0.4% gap to the one with three levels but same size of receptive field
(second row). This indicates that simply increasing the receptive field does not necessarily improve
the performance, and a hierarchical aggregation for both fine- and coarse-grained contexts is crucial.

Model Dim #Param. FLOPs Th. (imgs/s) Top-1

ViT-T/16 192 5.7 1.3 2834 72.2
FocalNet-T/16 192 5.9 1.1 2334 74.1 (+1.9)
ViT-S/16 384 22.1 4.6 1060 79.9
FocalNet-S/16 384 22.4 4.3 920 80.9 (+1.0)
ViT-B/16 768 86.6 17.6 330 81.8
FocalNet-B/16 768 87.2 16.9 300 82.4 (+0.6)

Table 13: Comparisons between FocalNet and
ViT both with monolithic architectures.

At last, we study whether our focal modulation can fit
the monolithic architectures like ViTs. We replace all
SA modules in ViTs with focal modulation to construct
monolithic FocalNet-T/S/B. We use patch size 16 and
three focal levels with kernel sizes 3,5 and 7, so that the
effective receptive field is close to the global SA in ViT.
As shown in Table 13, FocalNets consistently outperform
ViTs, with comparable FLOPs and inference speed.

5 Conclusion

We have proposed focal modulation, a new mechanism that enables input-dependent token interactions
for visual modeling. It consists of a hierarchical contextualization to gather for each query token its
contexts from short- to long-ranges, a gated aggregation to adaptively gather contexts based on the
query content, followed by a simple modulation. With focal modulation, we built a series of simple
attention-free Focal Modulation Networks (FocalNets). Extensive experiments show that FocalNets
significantly outperform the SoTA SA counterparts (e.g., Swin and Focal Transformer) with similar
time-/memory-cost on the tasks of image classification, object detection and semantic segmentation.
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