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Abstract

Machine learning technologies have been used in a wide range of practical systems.
In practical situations, it is natural to expect the input-output pairs of a machine
learning model to satisfy some requirements. However, it is difficult to obtain a
model that satisfies requirements by just learning from examples. A simple solution
is to add a module that checks whether the input-output pairs meet the require-
ments and then modifies the model’s outputs. Such a module, which we call a
concurrent verifier (CV), can give a certification, although how the generalizability
of the machine learning model changes using a CV is unclear. This paper gives a
generalization analysis of learning with a CV. We analyze how the learnability of a
machine learning model changes with a CV and show a condition where we can
obtain a guaranteed hypothesis using a verifier only in the inference time. We also
show that typical error bounds based on Rademacher complexity will be no larger
than that of the original model when using a CV in multi-class classification and
structured prediction settings.

1 Introduction

As machine learning technology matures, many systems have been developed that exploit machine
learning models. When developing a system that uses a machine learning model, a model with
merely small prediction error is not satisfactory due to real-field requirements. For example, an object
recognition model that is sensitive to slight noise would cause security issues [4} 26], or a model with
unexpected output would increase a system’s cost for dealing with it. Thus, we want the input-output
pairs of a machine learning model to satisfy some requirements. However, it is difficult to obtain a
model that satisfies the requirements by just learning from examples. Moreover, since the learned
models tend to be complex and the input domain tends to be quite large, it is unrealistic to certify that
every input-output pair satisfies the requirements. In addition, even if we find an input-output pair
that does not satisfy the requirements, modifying a model is difficult since we have to re-estimate it
from the training examples.

This paper considers a way to obtain a machine learning model whose input-output pairs satisfy the
required properties. We address the following assumptions for a situation where a machine learning
model is used. First, we can judge whether input-output pair (z, h(x)) satisfies the requirements,
where h : X — ) is a machine learning model or a hypothesis. As we show below, important use
cases fit this setting. Second, a machine learning model already exists whose prediction error is small
enough, although its input-output pairs are not guaranteed to satisfy the requirements. This second
assumption is also reasonable since modern machine learning models show sufficient prediction
accuracy in various tasks. Under these assumptions, a practical choice for addressing this problem
isn’t changing the machine learning model but adding a module that checks the input-output pairs of
machine learning model h. We call this module a concurrent verifier (CV). Fig.[l|shows the system
configuration of a machine learning model with a CV. The verifier checks whether the input-output
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Figure 1: Overview of a machine learning model with a concurrent verifier that checks whether
input-output pairs of a model satisfy requirements.

pair (z, h(x)) satisfies the required properties. If it satisfies the requirements, it outputs i (z). If not,
then it rejects h(z) and modifies or requests the learning model to modify its output. A machine
learning model and verifier pair can be seen as another machine learning model whose input-output
pairs are guaranteed to satisfy the required conditions.

Although a model with a verifier can guarantee that its input-output pairs satisfy requirements, its
effect on prediction error is unclear. This paper gives theoretical analyses of the generalization errors
of a machine learning model with a CV. We focus on how the learnability of the original model,
denoted as hypothesis class H, can change by using the verifier. First, we consider a situation where
we use a CV only in the inference phase. This setting corresponds to a case where the required
properties are unknown when we are in the training phase. If the hypothesis class is PAC-learnable,
we can obtain a guaranteed hypothesis using a verifier only in the inference time.

Second, we consider a situation where we know the requirements when learning the model. This
situation corresponds to viewing the learnability of hypothesis set ., which is obtained by modifying
every hypothesis i € H to satisfy the requirements. Hence we compare the generalization error upper
bounds of H,. with those of /. On the multi-class classification setting, we show that existing error
bounds [[13}[16] based on the Rademacher complexity of H are also bounds of modified hypothesis
‘H. for any input-output requirements. Moreover, we give similar analyses for a structured prediction
task, which is a kind of multi-class classification where set of classes ) can be decomposed into
substructures. It is worth analyzing the task since many works address the constraints in structured
prediction. Some works give error bounds for structured prediction tasks, which are tighter than
simply applying the bound for multi-class classification tasks [[14.16,[17]]. Similar to the case of multi-
class classification, we show that existing Rademacher complexity-based bounds for the structured
prediction of H are also the bounds for H..

Our main contributions are as follows: a) We introduce a concurrent verifier, which is a model-
agnostic way to guarantee that machine learning models satisfy the required properties. Although a
similar mechanism was used in some existing models, our model gives a generalization analysis that
does not depend on a specific model. b) We show that if hypothesis class H is PAC-learnable, then
using a verifier at the inference time can give a hypothesis with a guarantee in its generalization error.
Interestingly, if H is not PAC-learnable, we might fail to obtain a guaranteed hypothesis even if the
requirements are consistent with distribution D. ¢) We show that if we use a CV in a learning phase
of multi-class classification tasks, then the theoretical error bounds of H based on the Rademacher
complexity will not increase with any input-output requirements. We also give similar results for
structured prediction tasks.

1.1 Use Cases of a Concurrent Verifier

The following are some typical use cases for CVs.

Error-sensitive applications: A typical situation where we want to use a verifier is that some
prediction errors might cause severe effects, which we want to avoid. For example, a recommender
system might limit the set of candidate items depending on user attributes. Although such a rule
might degrade the prediction accuracy, practically a safer model is preferable.

Controlling outputs of structured prediction: Constraints are frequently used in structured predic-
tion tasks for improving the performance or the controllability of the outputs. For example, some
works [21,15] exploited the constraints on sequence labeling tasks for reflecting background knowl-
edge to improve the prediction results. More recently, some works [9 2] exploited the constraints
in language generation tasks, including image captioning and machine translation, and restricted a



model to output a sentence that includes given keywords. Since the constraints used in this previous
work can be written as a logical formula, our CV model can represent them as requirements.

Robustness against input perturbations: If a machine learning model changes its output because
we modified its input from x to z’, which is very close to z, then the model is described as sensitive
against a small change [25]. It might be a security risk if a model is sensitive since its behavior
is unpredictable. Therefore, some methods evaluate and verify the robustness of neural networks
against small perturbations [26/ |4]. Existing verification methods check a machine learning model’s
robustness around input z by determining whether 2’ exists that is close to 2 and whether model
f gives different outputs, i.e., h(x) # h(a’), for verification samples x1, ..., z,. Although these
verification methods can test a model, they do not directly show how to obtain a robust model.

A CV can fix a model to achieve robustness around samples 1, . .., x, by setting a rule of form:
“h(z") must equal h(z;) if 2’ is close to z;.” Although this solution might not guarantee robustness
where samples are scarce, adding enough non-labeled verification samples is often a reasonable
choice.

2 Related Work

Machine learning models that can exploit constraints have been investigated in many research
fields, including statistical symbolic learning and structured prediction. For example, Markov logic
networks [20], Problogs [8]], and probabilistic circuit models [[11]] integrate statistical models with
symbolic logic formulations. Since these models can incorporate hard constraints represented by
symbolic logic, they can guarantee input-output pairs. However, previous research focused on their
practical performance and gave little theoretical analysis of their learnability when hard constraints
are used. Moreover, previous works integrated the ability to exploit constraints into specific models.
In contrast, our CV is model-agnostic and can be used in combination with a wide range of machine
learning models.

Recently, the verification of machine learning models has been gathering more attention. Attempts
have verfified whether a machine learning model has the desired properties [4, 26, 10, 24]. Exact
verification methods use integer programming (MIP) [26]], constraint satisfaction (SAT) [[18]], and
a satisfiable module theory (SMT) solver [10]] to assess the robustness of a neural network model
against input noise. These approaches aim to obtain models that fulfill the required properties.
However, verification methods cannot help modify the models if they do not satisfy the requirements.
If we want ML models to meet requirements, post-processing is needed as our concurrent verification
model.

Other methods can give upper bounds on generalization error, including VC-dimension [27] and its
extensions [[7,19], Rademacher complexity [3l [12], stability [23]], and PAC-Bayes [15, [1l]. We use
Rademacher complexity in the following analysis since it is among the most popular tools for giving
theoretical upper bounds on generalization error. Rademacher complexity also has some extensions,
including local Rademacher complexity [13]] and factor graph Rademacher complexity [6]. We can
provide theoretical guarantees on these extended measures.

3 Preliminaries

Our notation follows a previous work [22]. We first introduce the notations used in the following
sections. Let X denote the domain of the inputs, let ) be the domain of the labels, and let Z be the
domain of the examples defined as Z := X’ x ). Let ‘H be a hypothesis class, and let £ : H x Z — R
be a loss function. Training data S = (21, ..., z,,) € Z™ is a finite sequence of size m drawn i.i.d.
from a fixed but unknown probability distribution D on Z. Learning algorithm A maps training data
S to hypothesis h. We use notation A(S) to denote the hypothesis that learning algorithm A returns
upon receiving S. We represent set {1,..., K} as [K].

Given distribution D on Z, we denote by Lp(h) the generalization error and by Lg(h) the empirical
error of h over S, defined by

m

Lo(h)= E [(h2)], Ls(h) ::%ZK(h,zi). ()



PAC learnability: We introduce PAC learnability and agnostic PAC learnability as follows.

Definition 3.1. (Agnostic PAC learnability) Hypothesis class H is agnostic PAC-learnable if there
exists function my : (0,1)2 — N and learning algorithm A with the following property: For every
€,0 € (0,1) and distribution D over Z, if S consists of m > my (e, §) i.i.d. examples generated by
D, then with at least probability 1 — ¢, the following holds:

Lp(A(S)) < min Lp(h') +e. 2

Distribution D is realizable by hypothesis set H if h* € H exists such that Lp(h*) = 0. If D is
realizable by agnostic PAC-learnable hypothesis H, then H is PAC-learnable. If H is PAC-learnable,
then Eq. (2)) becomes Lp(A(S)) < € since miny ¢y Lp(h') = 0.

Rademacher complexity: In the following sections, we use Rademacher complexity for deriving the
generalization bounds. Given loss function £(h, z) and hypothesis class H, we denote G as

G=LoH={z—Ll(h,z): heH}.

Definition 3.2. (Empirical Rademacher complexity) Let G be a family of functions mapping from Z
toR, and let S = (zy,...,2my) € Z™ be the training data of size m. Then the empirical Rademacher
complexity of G with respect to .S is defined:

Rs(G) =E lsup > crig(zz')] ;

7 [9€9 =

where o = (01,...,0p,) € {£1}™ are random variables distributed i.i.d. according to Plo; =
1] = Plo; = —1] = 1/2. The Rademacher complexity of G is defined as the expected value of the
empirical Rademacher complexity:

Rm(g) = E [Rs(g)]

S~Dm
4 Concurrent Verifier

Next we give a formal definition of a CV. A CV works with a machine learning model, which is
function h : X — Y. If x is given to the model, which outputs h(z), then the verifier checks whether
(x, h(x)) satisfies the required property. We assume that the required property can be represented as
requirement function ¢ : (X x Y) — {0,1}. If ¢(x, h(z)) = 1, then the pair satisfies the property; if
¢(x, h(z)) = 0, then it does not. Requirement function ¢ can be represented by a set of deterministic
rules. For example, if ¥ = R and )V = {0, 1}, then the requirements can be in the following form:
“if x > 0, then y # 0.” We assume that for all possible input z € X, there exists y € ) such that
¢(x,y) = 1 for avoiding the situation where the requirements are unsatisfiable for any output y. This
assumption can be easily relaxed if we allow a machine learning model to reject unsatisfiable input x.

After checking the input-output pair, a verifier modifies output h(z) depending on the value of
c(x, h(z)). If ¢(z,h(z)) = 1, the verifier outputs h(zx) since it satisfies the requirements. If
¢(x, h(z)) = 0, then the verifier modifies h(z) to some y € ) that satisfies c(x,y) = 1. If we use a
verifier with a machine learning model that corresponds to h, then the combination of the model and
the verifier can be seen as function A, : X — ), defined as

hel() :_{ h(z) if e(z, h(x)) (1) 7 3)

Ye if c(z, h(z))

where y, € Y satisfies ¢(z, y.) = 1 and is selected deterministically. When ) = [K], an example for
selecting minimum ¢ € [K] satisfying ¢(z,7) = 1 as y. is a reasonable choice. When ) = [K|] and
h(z) is made by scoring functions h(z,y) : (X x Y) — R, it is also reasonable to select y* such that
Y* = argmax,cy .(zy)—1 h(zx,y). Learning a model corresponds to selecting hypothesis i from
hypothesis class H. Therefore, learning a model with a CV corresponds to choosing a hypothesis
from the modified hypothesis class: H. = {h. : h € H}. By definition, every hypothesis in H,.
satisfies the requirements, and thus we can guarantee that the model satisfies the condition if we select
a hypothesis from .. In the following sections, we analyze the learnability of /. by comparing it
with that of 7.



5 Inference Time Verification

We first analyze the change of the generalization errors when we use a verifier only in an inference
phase. In other words, requirements are unknown in the learning phase,and we estimate hypothesis
h = A(S) from hypothesis class H by using training data S and algorithm A. In the inference phase,
we use a CV to modify h to he. We call this setting the inference time verification (ITV). This
class of situations contains many exciting settings: 1) pre-trained machine learning models used in a
wide range of applications, and 2) models that are hard to replace, which might encounter different
requirements from those at the learning time in the long run.

In this section, we give analyses on a multi-class classification setting. We set Y = [K], and
hypothesis class H is set of mappings h : X — [K|. We also assume that loss function ¢ is 0-1 loss
defined as £o.1 (h, (z,y)) = 14(z)-y» Where 1 is an indicator function.

The following theorem shows a situation where ITV works well: a situation where the generalization
error of h. does not exceed that of the other hypotheses in . with high probability.

Theorem 5.1. [f Y = [K], and hypothesis class H is PAC-learnable with 0-1 loss (o 1, training
data S, and algorithm A, then suppose that h = A(S) is a hypothesis estimated form S satisfying
LD(fL) < € for some parameter ¢ € (0,1). Then for any requirement c, hypothesis h. obtained by
modifying h with a CV satisfies

Lp(he) < h?g{lc Lp(he) +e.

We give a proof in Appendix A. The proof bounds Ly (h.) using the fact that it is close to Lp(f.),
where f. is obtained by modifying f : X — ) to satisfy Lp(f) = 0. The theorem suggests that if
‘H is PAC-learnable, then inference time verification is sufficient to obtain a hypothesis with small
generalization error in H..

Note that the generalization error might increase with a verifier, and the amount of the increase is
always larger than Lp(f.). Therefore, Lp( f.) represents the discrepancy between data distribution
D and requirement ¢, which is consistent with f if c(x, f(x)) = 1 for all z. If ¢ is consistent with f,

then Lp(f.) = 0, and we can certify that Lp(h.) < e.

The above theorem shows that ITV works when H is PAC-learnable. However, this will not hold if D
is not realizable with H, i.e, H is not PAC-learnable.

Theorem 5.2. If Y = [K]|, the loss function is 0-1 loss £y.1 and hypothesis class H is not realizable
with D, and then there exists training data S, algorithm A, requirements c, and € € (0, 1) such that

h = A(S) satisfies Lp(h) < minpey Lp(h) 4 € but Lp(he) > miny,, ey, Lp(he) + €

We give in Appendix B a proof that shows a counterexample even if c is consistent with ground truth
f. The above theorems show that the realizability of # is the key factor that distinguishes among
the cases where ITV works well. Moreover, unlike the realizable case, Theorem [5.2] holds even if
requirement c is consistent with distribution D. Let fp : X — ) be defined as the Bayes optimal
predictor:
fo(z) =argmaxPly | z].
yey

The Bayes optimal predictor is optimal, in the sense that for every other classifier g : X — ),
Lp(fp) < Lp(g). Theorem[5.2]holds if ¢ is consistent with fp. These results show that existing
methods [9, 2] using constraints only in the inference time might fail to select the best hypothesis.

Running time analysis: Using a CV increases the time needed for inference. Suppose that a verifier
is an oracle that can answer the query about the value of ¢(z,y). To achieve a previously shown
modification procedure (3)), we need at most K queries.

6 Learning Time Verification

In Section [5] we show that if 7 is PAC-learnable with 0-1 loss, then modifying a hypothesis at
the inference time is sufficient to obtain a hypothesis with the smallest generalization error while



satisfying the requirements. If H is not PAC-learnable, then the ITV scheme might fail to obtain a
hypothesis with small generalization error. Here we show that the generalization error can be bounded
when we use a CV in the learning phase. We call this setting learning time verification (LTV).

Since the LTV scheme corresponds to a learning task where the hypothesis class is ., we analyze
the learnability of H. using the standard tools for generalization analyses. This paper provides
analyses based on Rademacher complexity since its a widely used tools that can give tight bounds for
both data-dependent and data-independent cases. Moreover, some previous work gives bounds of
structured prediction tasks using Rademacher complexity. In the literature, constraints are actively
used in structured prediction tasks, including language generation and sequence labeling. Therefore,
analyzing the generalization error is important when using a CV on structured prediction tasks.

In the following, we first show the upper bounds of generation error based on the Rademacher
complexity of H. in a multi-class classification task (§6.1, 6.2) and a structured prediction setting
(§6.3). Our main finding is that the upper bounds based on the Rademacher complexity of . are
always less than or equal to those of H. Therefore, adding a CV to a machine learning model will not
degrade its learnability.

6.1 Multi-class Classification

We first give the Rademacher complexity-based error bounds on a multi-class classification task,
i.e., Y = [K]. In this section, we show that a standard upper bound [16] based on the Rademacher
complexity of H can be used as an upper bound of . for any requirement c. In the next section, we
show that a state-of-the-art error bound, based on local Rademacher complexity #, can also be used
as an upper bound of H..

Following previous works, let i : (X x ))) — R be a scoring function, and define hypothesis class
‘H as a set of scoring functions. A scoring function defines a mapping from X to ):

x +— argmax h(x,y) .
yey

Let pp,(z, y) be the margin of function of h:
pn (2, y) = h(w, y) — max h(z, )
y'#y

Hypothesis h misclassifies the labeled example (x,y) if pp(z,y) < 0. Thus, by using a margin
function, the 0-1 loss can be represented as £o.1(h, z) = 1,, (z,)<0- Since 0-1 loss is hard to handle
during learning, we use margin loss £,(h, (z,y)) = ®,(pn(x,y)), where ®,(t) is defined as

®,(t) = min(1, max(0,1 —¢/p)).

Function f : R — R is said to be p-Lipschitz if | f(t) — f(¢')| < p|t —t| forany ¢,¢' € R. @, is an
1/p-Lipschitz function. The empirical margin loss of hypothesis h is defined as

Ls)p(h) = % Z (bp(ph(mh yl)) :

Identical to the case of ITV, introducing a CV to a machine learning model corresponds to modifying
its corresponding hypothesis class H to hypothesis class .. that is consistent with requirement c. If
h is a score function, then we define consistent function h,.:

_ ] hlzy) ife(z,y) =1
hc(xay) - { -M if C(l‘,y) =0 (4)

where M is a positive constant satisfying M > | max, ,yez h(x,)|. As described in Section E], we
assume that there exists y € ) that satisfies ¢(xz, y) = 1 for all z € X. Therefore, we can guarantee
that pp_ (z,y) < 0if ¢(x,y) = 0.

The following are the main results of the general multi-class learning problem, which is based on the
margin bound shown in Theorem 9.2 of Mohri et al. [16]. Our main finding is that the generalization
error of any hypothesis, h., is bounded by the Rademacher complexity of hypothesis set H, which
suggests that if we have a tight bound for hypothesis class 7, then we can expect to find a good
hypothesis from H. under any requirements c.



Theorem 6.1. Let H C R¥*Y pe a hypothesis class with Y = [K, and let ¢ be a requirement. Fix
p > 0. Then for any § > 0, with probability at least 1 — 6, the following bound holds for all h, € H.:

Lo(he) < Ls,p(he) + %Rm(ﬂl(ﬂ)) +

where Iy (H) is defined as
ILi(H) ={z — h(z,y):y €Y, h € H}.

We give a proof in Appendix C. We obtain the results by showing that the upper bounds of the
Rademacher complexity of H,. are bounded by some upper bounds of the Rademacher complexity
of ‘H. All the proofs of the theorems in this section use similar techniques. Parameter p sets the
margin value. Following a previously shown technique [16], we obtain a generalized bound that
holds uniformly for all p > 0. The above theorem suggests that using a CV at a learning phase
does not worsen the error bound for any requirement c. Intuitively, the theorem seems reasonable
since requirements ¢ imposes a restriction on 4, and thus the complexity of H.. is not larger than H.
However, it is not so trivial since H. C H is not always true.

Running time analysis: We analyze the number of evaluations c(x, y) required for learning with
a CV. Let S; be a sub-sequence of training example S such that ¢(z;,y;) = 1, and let Sy be a
sub-sequence such that c(x;,y;) = 0. If we use a 0-1 loss function, then the empirical loss of
hypothesis h, is

1 3 |So]
LS(hc) = E 1hc(zl)7$y1 + m
(zi,9:)€S1

since every h. misclassifies the examples in Sy. Therefore, we need at most K|S1| + |So| queries
for the learning process. This is also true when we use a margin loss function. On the other hand,
the problem of estimating the best hypothesis might be more difficult than the original problem
depending on requirement c.

6.2 Tighter Bound Based on Local Rademacher Complexity

The bound for . shown in the previous section is relatively simple, and tighter bounds of H based
on the Rademacher complexity have been developed in the literature. In this section, we show that
the state-of-the-art error bound for H based on the local Rademacher complexity can be used as a
bound for H. for any requirements c.

Definition 6.2. Let G be a family of functions from Z to R, and let S be training data of size m.
Then for any r > 0, the empirical local Rademacher complexity of G is defined as

Rs(G;r) = Rs ({ag ca€0,1],9 € G,E[(ag)?] < r}) )

Li et al. [13] showed a tighter generalization bound for a multi-class classification problem using the
local Rademacher complexity when the hypothesis class is a £, norm hypothesis space with kernel «,
defined as

Hpri={h=((W1,0(x)), ..., (WK, 0(x))) : [W]2p 1,1 <p <2},

where h is represented as a vector valued function (hi,...,hg) with h;(z) = h(z,j),Vj =
1,...,K,and k : X x X — R is a Mercer kernel with associated feature map ¢, i.e., k(z,2') =

1
(p(z),p(z))). w = (wW1q,...,Wk), and |w|| = [Zfil HWH’Q’] " is the £, ,-norm. For any p > 1,

let ¢ be the dual exponent of p satisfying 1/p+1/q = 1. Let ® : R — R be a loss function satisfying
the following: 1) 1,<o(t) < ®(¢) for all ¢; 2) ®(¢) is decreasing and has zero point cg; 3) @ is
¢-smooth, that is, |®'(t) — ®'(¢')| < (|t — /.

Let H,, ., be the hypothesis class obtained by modifying hypothesis #,, ,, to satisfy requirements c,
and L. :={(z,y) — ®(pn,(z,y)) : he € Hp x.c}. The following theorem gives a bound of the local
Rademacher complexity of L..
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Figure 2: Example of factor graphs: (a) represents decomposition h(z,y) = hy, (x,y1,y2) +
hy,(x,y2,ys3) and (b) represents decomposition h(x,y) = hy, (z,y1,Y2) + hs, (T, Y1, Y2, Y3).

Theorem 6.3. Let H,, ;. . be the set of hypotheses obtained by modifying hypothesis h € H,, ., with
requirement c. For any § > 0, with probability at least 1 — 6, the following bound holds:

. Capt(K)\/Crlog?(m) = 4logt
Rin(Le;r) < NG + —

where ¥ = sup,ex (2, 2) < 00, d = sup,ep P(t) < 00, and Cy 9 is a constant. {(K) is

(K) = \/5(41082K1)1+f10151( ifg>2log K,
(2¢)" i K otherwise .

We give a proof in Appendix D. The bound equals that of R,,(L;r) (Theorem 1 of [13]]) for any
requirement ¢ and any hypothesis H,, . Therefore, the generalization error bounds based on Theorem
1 of Li et al. [13] holds for any requirement c.

6.3 Analyses of Structured Prediction

Structured prediction is a kind of multi-class classification task, where label set ) might be a set
of sequences, images, graphs, trees, or other objects admitting some possibly overlapping structure.
As mentioned in Section[I] previous works try to impose constraints on the output of structured
prediction tasks. Thus it is also useful to derive error bounds for structured prediction tasks when
we use a CV. In the following, we show that the Rademacher complexity-based generalization error
bounds derived in a seminal work of Cortes et al. [6] also hold if we use a CV. Although tighter
bounds are given in a more recent work [[17,[14], we give bounds based on Cortes et al. [6] due to
their simplicity.

We give some definitions for the structured prediction task. Following previous work, we assume that
Y is decomposable along with substructures: ) = )y x --- x Y. Here ), is a set of possible labels
that can be assigned to the k-th substructure. We denote by L : V) x Y — R a loss function that
measures the dissimilarity of two elements of output space V. L is definite, that is, L(y,y") = 0 iff
y = 7'. A typical definite loss function for a structured prediction task is the Hamming loss defined

l .
by L(y, /) = 7 > ey Lyuzy, forally = (yo,...,u) and y' = (45, .-, 9;), With yx, 4 € V.
Other typical examples of loss functions can be seen in Cortes et al. [6]]. Using loss function L, the
generalization and empirical error of h are defined:

m

1
JE . 7 2 L))
As with the multi-class classification task, hypothesis class H can be represented as a set of scor-
ing function h : X x Y — R. We use h(z) to represent the predictor defined by h € H:
h(z) == argmax, cy, h(x,y) for all z € X. Following the previous work, we assume that each
scoring function can be decomposed as a sum, and such decomposition follows a factor graph. Factor
graph G is a tuple G = (V, F, E), where V is a set of variable nodes, F is a set of factor nodes,
and FE is a set of undirected edges between a variable node and a factor node. Every node in V'
corresponds to a substructure index, where V' = {1,...,1}.

For any factor node f, we denote by N/ (f) € V aset of variable nodes connected to f and define Yy
as substructure set cross-product Yy = [, . N(F) Y. Then h admits the following decomposition as



a sum of functions h ¢, each taking as an argument a pair of (z,yy) € X x Vy:

x,y) = Z hy(x,yy). 5)

feF

Figure [2] shows examples of decompositions based on factor graphs. We conventionally assume
that the structure of the factor graphs may change depending on a particular example (z;,y;):
G(zi,y;) = G = ([li], Fi, E;). A special case of this setting is when size I; of each example is
allowed to vary. In such a case, the number of possible labels ) is potentially infinite.

Following multi-class classification, our CV maps hypothesis h to h. to satisfy the requirements. The
definition of h, follows Eq. {@). This definition does not require A, to have a factored representation.

For analyzing the complexity, Cortes et al. [6] introduced empirical factor graph Rademacher
complexity RS (H) of hypothesis class H for S = (21, .., ,,) and factor graph G:

m

R§(H) = —E sup Y > Y VIFleipyhy(iy) |

€
heM 21 feF; yeys

where € = (€i 1.y )ie(m],feF, ycy, and every €y, is i.i.d. a Rademacher random variable. Factor
graph Rademacher complexity of # for factor graph G is defined as expectation

RG(H):= B [RE(H)).

By using the factor graph Rademacher complexity, Cortes et al. [6] gives bounds for a structured
prediction task with the following additive and multiplicative empirical losses:

L4 nl%i [ (max Ly, y:) — ; (W4, y;) — h(xi,y/))ﬂ
L (h) -:% i [ (;njx Ly, i) (1 - % (h(zi, yi) — h(zi, o »)ﬂ )

=1

where ®*(t) = min(B, max(0,t)) for all ¢, with B = max, ,» L(y,y’). As shown in [6], these loss
functions cover typical surrogate loss functions used in structured prediction tasks. We show the
following bound for structured predictions.

Theorem 6.4. Fix p > 0. For any § > 0 and requirement c, with probability at least 1 — § over the
draw of sample S of size m from distribution D, the following holds for all h. € H.:

4+/2 log 1
Lo(he) < L9 (h,) < L9 (h,) + —ng(H) 4 By 85
P 2m
428 log &
mul mul G 9
Lp(he) < LD’pt(hc) < Ls’pt(hc) + 7;) R (H)+ B o

We give a proof in Appendix E. p is a parameter that determines the margin. Similar to the case
of multi-class classification, we can derive a bound that holds for any p > 0 following a previous
derivation [[6]. The above result indicates that the bound will not change if we use a CV for any
requirement c. This is interesting since the above result holds even if we do not have a factored
representation of h.(x,y), similar to Eq. , although the derived bound depends on the factor graph
Rademacher complexity, which depends on the factored representation of h(x, y).

We analyzed the overhead of the running time for evaluating loss function Ladd(h ) and Lm““(hc)
for hypothesis h.. Different from the multi-class classification case, both the number of queries and
the overhead of the running time for the loss evaluation when we use a CV depend on the model and
the type of requirements for structured predictions. This result is consistent with the literature, which
reports that for structured prediction tasks, original tractable optimization problems can be intractable
if we put additional constraints [21].



7 Conclusion

This paper gives a generalization analysis when there are requirements that the input-output pairs of a
machine learning model must satisfy. We introduce a concurrent verifier, a simple module that enables
us to guarantee that the input-output pairs of a machine learning model satisfy the requirements. We
show a situation where we can obtain a hypothesis with small error when we use a verifier only in
the inference phase. Interestingly, if H is not PAC-learnable, we might fail to obtain a guaranteed
hypothesis even if the requirements are consistent with distribution D. We also give the generalization
bounds based on Rademacher complexity when we use a verifier in a learning phase and find that
the obtained bounds are less than or equal to the existing ones, independent of the machine learning
model and the type of requirements.
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proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss conditions a verifier
does not work well in Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] We give proof in
Appendix
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [IN/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |
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