
A Appendix

Table 3: Bravais lattices in 2 and 3 dimensions.

BRAVAIS TYPE SYMMETRY GROUP ABSTRACT POINT GROUP

2 dimensions
Oblique P2 C2

Rectangular Pmm D2

Centered rectangular Cmm D2

Square P4m D4

Hexagonal P6m D6

3 dimensions
Primitive triclinic P 1̄ C2

Primitive monoclinic P2/m C2h

Base-centered monoclinic C2/m C2h

Primitive orthorhombic Pmmm D2h

Base-centered orthorhombic Cmmm D2h

Body-centered orthorhombic Immm D2h

Face-centered orthorhombic Fmmm D2h

Primitive tetragonal P4/mmm D4h

Body-centered tetragonal C4/mmm D4h

Rhombohedral R3̄m D3d

Hexagonal P6/mmm D6h

Primitive cubic Pm3̄m Oh

Body-centered cubic Im3̄m Oh

Face-centered cubic Fm3̄m Oh

A.1 Graph-building strategies

The graphs were built using the IsayevNN class from the pymatgen [48] package. It implements
the commonly used Voronoi tessalation to define neighbors. Two atoms are considered bonded if
they share a face in the Voronoi tessalation of the supercell and their distance is less than the sum of
the atomic Cordero radii (a measure of the atomic radius) plus a cutoff � = 0.5Å. This value of the
cutoff was increase compared to [32] to reduce the number of disconnected graphs.

We provide statistics for the graphs obtained by the method described in Section 5. A hard cutoff on
atomic distances of 6Å is also imposed on atomic distances.

Figure 5: Histogram of the number of primitive cell sites per material in the processed Materials
Project dataset.
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Figure 6: Degree distribution for all graphs.

A.2 Proof of Claim 6.1

We prove that the function defined by
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is G-equivariant by proving the equivariance of every step and using the fact that function composition
preserves equivariance.

First, we need to show equivariance of the message function on Equation (16)
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Using Equation (19), we have
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The right-hand side is equal to m⇡g(i),⇡g(j) by definition.

The message aggregation step at Equation (17) is permutation equivariant
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Finally, we need to show that the node function on Equation (18) is also equivariant
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Using Equation (20), we find
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by definition.
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A.3 Parameter sharing patterns

The parameter sharing patterns are computed using a group-theoretical orbit finding algorithm that
has linear complexity in the number of size of the generating sets of a group and in the number of
edges in the coloured bipartite graphs [29, 56].

We show the parameter sharing patterns for the different Bravais lattice groups (Figure 7 and Figure 8).
For the 2-dimensional groups, we use a 2⇥ 2 supercell and for the 3-dimensional groups a 2⇥ 2⇥ 2
supercell. Note that the numbering of the unit cells within the supercell is chosen by convention and
can vary for different lattices.

Notice that the parameter-sharing patterns for different groups can be the same. This is because, for
different groups, the group action can induce the same orbits on the bipartite graph. In particular, for
some groups (Figure 7c), the pattern collapses to that of the symmetric group. This can be undesirable
since it reduces expressivity. This can be alleviated by using larger supercells or eliminated by
considering the group acting on itself instead of on supercells, as done in [13].

(a) Pattern for groups P2
and Pmm

(b) Pattern for group Cmm (c) Pattern for groups P4m
and P4m and S4

Figure 7: Parameter sharing patterns for 2-dimensional Bravais lattices groups

(a) Pattern for group P 1̄,
P2/m, Pmmm

(b) Pattern for group C2/m,
Cmmm, P4/mmm

(c) Pattern for group
Immm

(d) Pattern for group
Fmmm

(e) Pattern for group
C4/mmm

(f) Pattern for group R3̄m,
P6/mmm and Pm3̄m

(g) Pattern for group Im3̄m (h) Pattern for group
Fm3̄m

Figure 8: Parameter sharing patterns for 3-dimensional Bravais lattices groups
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A.4 Node and edge functions details

For the node functions ��(i)
h , implementation is facilitated by the fact that for all the group we

consider, the group action is transitive. Therefore, for all i, j 2 N, j 2 G · i. This implies that for all
i, j 2 N, � (i) = � (j). There is thus only one node function, which we implement with two-layer
MLP with a residual connection.

For the edge functions �↵(i,j)
h , we do not explicitly build the parameter-sharing patterns. This would

be computationally expensive in a dataset in which sample have different unit cell sizes like Materials
Project because it would require to build patterns for each unit cell size. Instead, we use an approach
inspired by [45]. Let the group be G⇤ ⇥ SC and each node be represented by the embedding h(a,i)
where the first index encodes the unit cell within the supercell and the second index encodes the
identity of the atom within the unit. Using Theorem 1 of [45], we can define the edge function as
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where ↵G⇤ is obtained from the parameter-sharing pattern of the group ↵G⇤ , which is shared for all
the dataset.

In our implementation, �↵G⇤
(i,j)

1 and �
↵G⇤
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2 are built explicitly for as two-layer MLPs for all

possible values of ↵G⇤ (i, j).

A.5 E(n)-equivariant version of ECN

Our architecture can be made E(n)-equivariant instead of E(n)-invariant. The basic idea is that
multiple edge functions can always be introduced using the parameter sharing pattern. Using a simple
generalization of the EGNN model [53], we can define the following layer
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A.6 Materials Project dataset

We hereafter report the number of samples in the Materials Project dataset at different levels of the
preprocessing scheme :

(a) Full dataset
(b) No duplicates
(c) No duplicates and unit cell size constraint
(d) No duplicates, unit cell size constraint and 3D materials
(e) No duplicates, unit cell size constraint, 3D materials and valid graphs
(f) Insulators, no duplicates, unit cell size constraint, 3D materials and valid graphs

Table 4: Number of entries in the Materials Project dataset with processing

(a) (b) (c) (d) (e) (f)
126126 114605 96315 82229 78649 33971

We also report the mean and standard deviation of each target for the processed dataset
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Table 5: Targets

Property E(eV/atom) EF (eV) M (µB /atom) Eg (eV)
Mean -1.42 3.77 0.16 2.02

Std. dev. 1.13 2.63 0.44 1.56

A.7 Hyperparameters

We use the same training setup for all the models. The learning rate is initialized at 1⇥ 10�3 with a
scheduler halving it after each 25 epoch plateau on the validation loss. Training is perfomed for 1000
epochs or until the learning rate reaches 1⇥ 10�6. We performed sweeps over learning rates for all
the models to verify that this is indeed a setup in which all models train well.

For the ECN models, we optimized the number of layers, the embedding dimension, the weight
decay parameter and dropout (without noticing significant improvement). We use 6 layers of message
passing operations. The �↵(i,j)

e and ��(i)
h functions are 1-hidden layer MLPs. For the �↵(i,j)

e

functions, the weights for the hidden layer and output layers are shared across all ↵ (i, j). This was
found to perform slightly better. The SWISH activation function is used. The feature dimension of
node embeddings is 100 across all the network. For edge embeddings, the dimension is set at 20.

For the CGCNN model, we used the same embedding sizes (they were not specified in the original
paper) and 2 convolution layers. For MEGNet, we used the same architecture setup as in the original
paper.

A.8 Supplementary results

Method
Property

E(eV/atom) EF (eV) M (µB /atom) Eg (eV) Metal precision Nonmetal precision

ECN-S⇤ Hubbard 0.052 0.290 0.109 0.368 81.2% 82.9%
ECN-S⇤ Group+Period 0.051 0.295 0.109 0.386 77.6% 85.6%

Table 6: Results for model variants on Materials Project
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