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Abstract

Supervised learning with deep models has tremendous potential for applications in
materials science. Recently, graph neural networks have been used in this context,
drawing direct inspiration from models for molecules. However, materials are
typically much more structured than molecules, which is a feature that these models
do not leverage. In this work, we introduce a class of models that are equivariant
with respect to crystalline symmetry groups. We do this by defining a generalization
of the message passing operations that can be used with more general permutation
groups, or that can alternatively be seen as defining an expressive convolution
operation on the crystal graph. Empirically, these models achieve competitive
results with state-of-the-art on property prediction tasks.

1 Introduction

Deep learning has seen remarkable applications in computational chemistry, both on the side of
molecular property prediction and molecule generation. For small molecules, these methods are
close to a level of precision that would make them suitable for practical applications [46]. However,
less attention has been put to the problem of designing neural network architectures for the larger
assemblies of atoms that constitute materials. This is a crucial problem, as deep learning could
advantageously complement computationally demanding ab initio simulation methods like DFT
[38, 28].

In this paper, we address the problem of designing equivariant layers and use them for supervised
learning on materials. We focus on crystals, materials characterized by the ordered arrangement
of their atoms in lattices. Crystalline materials are largely present around us and essential in
technological applications, as they include a large number of metals, ceramics, and salts, among
others [3]. They can be described as the regular repetition of a set of atoms, called the unit cell, in
all directions of space. These patterns are analogous to wallpaper patterns, for which the repeated
structure is an image. Crystals are characterized by a high degree of symmetry which is fundamental
in understanding their physical properties. Consequently, we suggest that equivariant deep learning
provides an appropriate framework to design function approximators for crystals.

Graph Neural Networks (GNNs) have recently been proposed for supervised prediction tasks on
crystals [54, 70, 12]. We hypothesize here that these models may fall short in exploiting crystal
symmetry and that structural information is lost when mapping a crystal structure to a graph. In
particular, GNNs are equivariant to the permutation of atoms given as input to the model. This
condition is overly restrictive and amounts to forgetting about the ordered nature of a crystal. We
propose to use models equivariant to a product of groups G⇤ ⇥ SC , where G⇤ acts at the level of the
Bravais lattice, the underlying periodic grid of the crystal, and SC on the unit cells. We show that our
proposed equivariant architecture is more expressive than GNNs on this data structure.
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By using the crystal structure, our approach amounts to defining a group-equivariant convolution
kernel on the crystal in a way that is completely analogous to convolutional neural networks (CNNs).
This convolution is defined on a graph associated with a crystal structure. Our contributions are the
following: 1) We derive different equivariant models based on the group-theoretical properties of
crystals. 2) We show some of the limitations of GNNs for crystal data and propose an alternative
data structure to be used with our architecture. 3) We perform a rigorous analysis, cleaning, and
processing of the Materials Project database [33] and share the resulting processed dataset to serve
as a benchmark for materials applications. 4) We perform experimental tests of our models on the
Materials Project database and report results comparable to or better than baselines.

2 Related works

Equivariant neural networks It is well known that neural networks have to incorporate inductive
biases to be useful in practice [67, 7]. Using models that are invariant or equivariant to the symmetry
of the data has proven to be a particularly important inductive bias to promote generalization [8]. The
first notable application of this idea was the CNN, for which each convolution layer is equivariant to
translation [42]. An alternative parameter-sharing view also appears in early works [57]; while more
recent equivariant networks have used both convolutional [13, 40, 15, 19], and parameter-sharing view
[51, 24]. A few notable symmetries considered in recent years are rotation in image and volumetric
data [13, 68, 65], permutation symmetry in sets [72, 50] and graphs [39, 44], as well as Euclidean
[60, 10], and rotational symmetry [14, 2, 21, 55, 23]. In this work, we build on foundational work on
hierarchical symmetries [45, 64]

Deep learning for materials The increasing availability of large materials datasets from high-
throughput calculations [18, 33, 36, 47, 31, 11], makes deep learning more and more relevant
for materials science. Following the successes of GNNs on molecular data, similar models have
been proposed for materials as alternatives to methods based on feature engineering. Note that in
what follows, we refer to GNNs in a general sense that includes message passing neural networks
(MPNNs) [26].Many variants of GNNs exist [35, 62, 71, 44], the underlying idea being for each node
to aggregate features of neighboring nodes in a permutation invariant, or in the case of [39] in an
equivariant way. The CGCNN [70] and MEGNet models [12] rely on mapping crystal structures to
graphs and applying GNNs to obtain a prediction. For the SchNet model, the correspondence with
graphs is less explicit [54], but still present. Other approaches combine permutation equivariance
with E(3)-equivariance to design models for molecules and materials [5, 53].

3 Background on crystal symmetry

We first start by introducing some principles of crystallography that will be used to derive our main
results. A more comprehensive treatment can also be found in the references [20, 59], whereas basics
of group theory are covered in [52] for example.

Lattices A crystal can be described as the periodic and infinite repetition of a pattern in all directions
of space. Crystals are conveniently described using lattices as their underlying structures.

An n-dimensional lattice ⇤ can be defined as the set of integral combinations of the linearly indepen-
dent lattice basis vectors ai 2 Rn:

⇤
.
=

(
nX

i

miai | mi 2 Z
)
. (1)

The lattice is entirely specified by its basis vectors ai. A lattice is associated with a group of
translations T⇤ for which the multiplication rule is addition. This captures the translational symmetry
of a crystal. A lattice ⇤ also defines subsets of Rn called unit cells. These subsets have the property
of tilling the space when translated by lattice vectors. Of particular importance is the primitive cell U
for the basis ai:

U
.
=

(
nX

i

xiai | 0  xi < 1

)
. (2)
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In a material, the unit cell comprises a set of atomic positions S = {(Zi,xi) | xi 2 U}, where the
integer Zi is the atomic number and xi the position of the atom. S can contain an arbitrary number
of atoms and must not possess a particular structure. Together with the lattice ⇤, the atomic positions
provides a complete description of the crystal structure.

It is often useful to define the concept of a sublattice. A sublattice ⇤P of ⇤ is a lattice with basis
vectors bi such that ⇤P ⇢ ⇤. Correspondingly, the supercell CP is the unit cell associated with
the sublattice ⇤P , for which CP � U . The full lattice is generated by translations of the sublattice
by a set of centring vectors {0 . . .vs}. More formally, the sublattice is associated with a normal
subgroup T⇤P of lattice translations, which specifies a coset decomposition of the original lattice
T⇤ = (0+ T⇤P ) [ · · · [ (vs + T⇤P ). The centring vectors are coset representatives with respect to
that decomposition. It is clear that the centering vectors are also the set of lattice points contained in
the supercell CP .

Example 3.1 (Graphene) In graphene, carbon atoms are arranged in a two-dimensional crystal
with honeycomb structure. The underlying lattice ⇤ has basis vectors a1 = a
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Figure 1: Graphene crystal structure

In Fig.1, blue dots represent carbon atoms. Black and white dots identify points of lattice ⇤ with
unit cell U . Black points identify a sublattice ⇤P defined by basis vectors b1 and b2 and with
supercell UP . The centring vectors {0,a1} correspond to lattice points contained in the supercell.

Space groups Symmetry plays a major role in the description of crystals. This symmetry is often
directly visible through facets in naturally occurring crystals. Mathematically, it is described by a
space group G, the set of isometries that maps a crystal structure to itself. As isometries, space
groups are subgroups of the Euclidean group E (n). A space group element can be described as
a tuple (W, t), where W is the linear part of the transformation and t a translation. An element
maps a vector x 2 Rn to Wx + t. The multiplication of space group elements is therefore
given by (W1, t1) (W2, t2) = (W1W2,W2t1 + t2). The point group P of a space group is the
group obtained from linear part operations in G, which will in general be rotations and reflections.
Considering only elements in G for which the linear part is identity (I, t), we obtain the translation
subgroup of the space group T . It is a normal subgroup, which allows defining the factor group G/T
isomorphic to the point group P .

The crystallographic restriction theorem guarantees that only certain finite groups are valid point
groups of space groups [17]. In particular, in 2 and 3 dimensions, only n-fold rotations with
n 2 {2, 3, 4, 6} are allowed. Two space groups G and G0 are said to belong to be of same type if they
can be related by a change of coordinate system. There are 17 space group types in 2 dimensions and
230 in 3 dimensions [59]. For a lattice ⇤, we call the Bravais group of the lattice P⇤ the set of linear
isometries that map ⇤ to itself. Bravais groups provide a way to classify lattices according to their
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symmetry. We say that two lattices ⇤ and ⇤0 belong to the same Bravais type if their Bravais groups
are the same matrix groups when written for suitable basis vectors of each lattice. The 5 Bravais
types in 2 dimensions and the 14 in 3 dimensions are enumerated in the Appendix. The full symmetry
group G⇤ of lattice a ⇤ is given by the semidirect product of its translation group with its Bravais
group : G⇤ = T⇤ o P⇤.

Consider the space group G a crystal structure with lattice ⇤ and unit cell U . From the definition of a
crystal structure, it is clear that the translation subgroup of G will be T⇤. However, the point group
of G will, in general, not be P = P⇤. This is because the unit cell may have less symmetry than the
underlying lattice, which will result in P ✓ P⇤ (see example 3.2). This is the reason why the number
of space groups is much larger than the number of Bravais lattices.

Example 3.2 (Wallpaper pattern) The wallpaper in Figure 2 is described by a square Bravais
lattice ⇤ and unit cell U with 4-fold rotational symmetry. The square lattice has a symmetry group
P4m, with D4 Bravais group. However, the unit cell reduces the symmetry of the overall pattern
since it does not have reflection axes. The symmetry group of the wallpaper is, therefore, P4, with
point group C4.

Figure 2: Egyptian wallpaper [34]

4 Limitations of GNNs

In this section, we examine some of the limitations of GNNs on crystalline data, motivating our model
by addressing these limitations. Typical models for crystalline data [70, 12] will build a graph from
atoms in the unit cell and assign a feature vector hi 2 Rn to each. Edge features encoding distance
might also be used. For convenience, this graph can be represented as a sparse tensor H 2 RN2⇥n,
where N is the number of atoms considered, and in which node and edge features are encoded on
diagonal and off-diagonal entries, respectively. A GNN is a function approximator f : RN2⇥n ! Y
that produce a prediction, by successive application of layers � : RN2⇥n` ! RN2⇥n`+1 , where ` is
the layer index.

Expressivity GNNs are usually stack of layers that are permutation equivariant
� ((P(g)⌦P(g))H) = (P(g)⌦P(g))� (H) , 8g 2 SN ,H 2 RN2⇥n, (3)

where P(g) is the permutation matrix associated with the group element g. While P(g) permutes
nodes, P(g)⌦P(g) permutes the vectorized adjacency matrix. Our use of Kronecker product is due
to the equality vec(PAP

>) = (P⌦P)vec(A) for A 2 RN⇥N .

This captures the fact that these models are designed to be insensitive to node ordering in H. The
material is, in a sense, treated as if it was a molecule. Much of the crystal structure is forgotten
because it cannot be captured by ordering the nodes in a specific way and is only encoded in positions
or distances. We argue that permutation equivariance is an overly strong requirement and was mainly
used for practical reasons. When possible, it should be more beneficial to use a model equivariant to
the actual symmetry of the data; in this case, the crystal space groups, which will, in general, be much
smaller than the symmetric group. Being equivariant to a smaller group results in less restrictive
parameter sharing and a more expressive model.

Note that this requirement is different from that of E(3)-equivariance characteristic of some archi-
tectures [60, 53, 5]. In these models, the E(n) group only acts on the position xi 2 R3 part of each
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atom’s feature vector. By contrast, the symmetry group of a crystal structure maps the crystal to
itself, and its action is a permutation. It therefore offers an alternative to building more powerful
architectures for these systems that does not suppose that coordinate information is available. In
particular, this approach is more suitable for abstract condensed matter systems, like spin and free-
fermion lattice models, in which coordinates are not relevant. Moreover, space groups are subgroups
of the Euclidean group; equivariance to space groups is thus less restrictive. In this work, we choose
to concentrate on space group equivariance, but we still provide an E(n)-equivariant version of our
architecture, which is a straightforward extension of [53] in Appendix A.5. Note that equivariance
(and not only invariance) is important, as expressive invariant functions can be built by composing
equivariant layers with an output pooling layer. Equivariant functions can also be used to predict
local properties like magnetization and charge distribution for example.

Invariance and symmetry breaking Even if the arrangement of atoms in a crystal is symmetric,
this does not have to carry over to all local properties of the material. Spontaneous symmetry breaking
is common in materials and crucial to describing phenomena such as magnetism and superconductivity
[41, 6]. Building a graph only at the unit cell level does not allow to capture local properties that
differ across unit cells. Using a supercell of multiple unit cells does not suffice to solve this problem
since permutation equivariant models have the property that equal input elements will be mapped to
equal outputs elements [58, 73].

5 Input representation

Supercell Following the arguments of Section 4 we consider the set of atoms in a supercell instead
of only in the unit cell, and add explicity symmetry breaking to increase the representational power of
the model. Since this increases the computational complexity of the method, we choose to keep the
supercells small and define them with sublattice vectors bi = 2ai. The supercell is therefore 8 times
larger than the unit cell, with centring vectors

nP3
i miai | mi 2 {0, 1}

o
. For each atom, we build a

feature vector with a one-hot encoding of the atomic number and a one-hot encoding identification of
the unit cell it belongs to using the corresponding centering vector. We keep track of the index of each
atom within the unit cell, and the index of the atoms’ unit cell h(a,i) = [onehot (Zi) , onehot (a)],
where a 2 {1, . . . , 8} and i 2 C, where C is the number of atoms in the unit cell. The encoding of the
unit cell allows to break the symmetry between atoms mapped into each other by lattice translations.

Graph We construct a graph from atoms in the supercell, encoding relative distances between
atoms as edge features. Inspired by [54], an edge feature vector is built from the distance between
atoms dij = kxi � xjk as eij = exp

⇣
�� (dij �µµµ)2

⌘
. The vector of Gaussian centers µµµ and � are

hyperparameters. We use this approach to facilitate comparaison to previous works [54, 70], although
Bessel encondings [37] could also be considered. It can be seen as “soft" binning of interatomic
distances. Using this approach, we use only distance features in contrast to methods that use position
vectors. This has the benefit of simplicity while still allowing a complete description of the input
structure [66, 4, 63].

Sparsity has proven to be a useful inductive bias in graph representation learning [25], and it is also
beneficial in reducing computational complexity. However, atomic bonds are not unambiguously
defined in crystals [16, 1]. We choose to follow a similar approach to [32]: an edge is drawn between
atoms if they share a Voronoi face and if the distance between atoms is smaller than the sum of
atomic Cordero radii plus a cutoff � = 0.5Å. This approach has the advantage of being physically
sound and producing graphs that are relatively sparse. We provide more details on the graph-building
strategy and compute metrics on the resulting graphs in Appendix A.1.

To preserve translational invariance for atoms at the boundary of the supercell, edges are initially
also drawn to atoms outside the supercell. Then, if an edge points outside the supercell, its head is
mapped to the corresponding representative node inside the supercell. This is analogous to circular
padding in image processing.
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(a) Identification of the supercell. The sublattice
vectors are bi = 2ai

.

(b) Voronoï tessellation.

(c) Drawing edges between atoms that share
Voronoï faces. The additional condition related
to the Cordero radius is not relevant here.

(d) Periodization of the graph. Edges that point to
nodes outside the supercell are mapped back to the
corresponding atom inside the supercell. Markings
show identical atoms.

Figure 3: Building a graph for the graphene crystal structure from Example 3.1.

6 Equivariant crystal networks

Product groups Consider a crystal structure with space group G and in which each atom has a
feature vector hi. Then the space group acts as a permutation of the input atoms

gh(a,i) = h(⇡S
g (a),⇡U

g (i))8g 2 G, (4)

where ⇡S
g and ⇡U

g are the permutations associated with group element g on the supercells and within
the unit cells respectively.

If a dataset contains only samples that share the same crystal structure, then a model equivariant
with respect to G can readily be used. However, the case of a dataset with multiple different crystal
structures that would be used in a typical supervised learning setting is more challenging for two
reasons. First, samples may have different space groups, which would require different models, each
be trained with a fraction of the data. Second, the group action may be different even for the same
space group. This is because the unit cells may have different structures and numbers of atoms.

A solution to address these issues is to consider equivariance to a direct product of groups G⇤ ⇥ SC ,
where the symmetry group of the lattice G⇤ acts across unit cells and SC , the symmetric group, acts
within unit cells:

(g, h)h(a,i) = h(⇡S
g (a),⇡U

h (i))8g 2 G⇤, h 2 SC . (5)

In this way, differences in unit cell structures are dealt with by the symmetric group, where parameter-
sharing can handle variable-sized inputs [72]. We still have to accommodate 14 different group
actions G⇤ corresponding to the different Bravais lattices. To avoid using a different model for each
lattice, we propose two groups to deal with all the lattices. The first option is to consider the least
symmetric Bravais lattice of primitive triclinic type and use its symmetry group P 1̄ = T⇤ o C2.
This group is a subgroup of all the other lattice symmetry groups. The second option we consider
is to simply use the symmetric group S⇤ that is the symmetric group across unit cells, which is an
overgroup of all the lattice symmetry groups. This leaves us with a hierarchy of groups, with SN , the
symmetric group over all atoms of a supercell, being the largest :

P 1̄⇥ SC| {z }
P 1̄-model

✓ G⇤ ⇥ SC ✓ S⇤ ⇥ SC| {z }
S⇤-model

✓ SN . (6)

In our experiments, we use the two groups in this hierarchy for different levels of expressivity.
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Equivariant message passing Having defined the group action, we can now build the Equivariant
Crystal Network (ECN). We will seek to use the message passing framework, which has demonstrated
good performance on molecular data, and generalize it to obtain equivariance to other groups than
the symmetric group. The update equations for message passing framework are

mij = �e

�
h
t
i,h

t
j , eij

�
, (7)

mi =
X

j2Ni

mij ,

h
t+1
i = �h

�
h
t
i,m

t+1
i

�
.

The idea is to define parameter-sharing patterns for functions �e and �h, such that there can be
multiple versions while still retaining equivariance. Following [51], we first define the parameter-
sharing pattern of the set of input nodes N, with respect to group G as the colored bipartite graph
⌦ ⌘ (N,↵,�), with the edge-color function ↵ : N ⇥ N ! {1, . . . , Ce} and node-color function
� : N ! {1, . . . , Ch}. We also consider the action of the group G on edges ⌦ as g · (i, j) .

=
(⇡g (i) ,⇡g (j)) 8g 2 G. We define the orbit G · (i, j) of edge (i, j) as the set of edges in which it
can be moved to by the group action : G · (i, j) .

= {g · (i, j) | g 2 G}. A similar definition applies to
the orbit of a node, G · i .

= {⇡g (i) | g 2 G}.

We then make the following claim:

Claim 6.1 The layer defined by the Ce functions �↵(i,j)
e and the Cn functions ��(i)

h

mij = �↵(i,j)
e

�
h
t
i,h

t
j , eij

�
, (8)

mi =
X

j2Ni

mij , (9)

h
t+1
i = ��(i)

h

�
h
t
i,m

t
i

�
, (10)

is G-equivariant if the parameter-sharing pattern ⌦ respects the equivariance condition:

↵ (i, j) = ↵ (k, l) () (k, l) 2 G · (i, j) , (11)
� (i) = � (j) () j 2 G · i. (12)

The proof of this claim follows in Appendix A.2. In words, the group action on the graph creates node
and edge orbits, and we use a different copy of �e and �h for each edge and node orbit, respectively.
The computational process for producing the pattern is to find the orbit of G-action on the edges
(nodes) [51], and the computational cost of this orbit-finding process grows linearly with the number
of edges (nodes) [30].

This layer generalizes both MPNNs and equivariant multilayer perceptrons, such as CNNs. The
MPNN is recovered with G = Sn and a standard CNN with circular convolution with G = T⇤,
�↵(i,j)
e

�
h
t
i,h

t
j , eij

�
= w

↵(i,j) · ht
i and ��(i)

h (ht
i,mi) = ReLU

�
m

t+1
i + b

�(i)
�

We now consider a product group G ⇥H , acting according to Eq. (5). From Claim 1 of [64], the
equivariant linear map for this group is the Kronecker product of equivariant maps for individual
groups; see also [45]. The reformulation for parameter-sharing patterns is the following. If parameters-
sharing patterns ⌦1 and ⌦2 satisfy the equivariance condition for G and H respectively, then the
parameter-sharing pattern ⌦ = (N⇥M,↵,�) satisfies the equivariant condition if

↵ : N⇥M⇥ N⇥M ! {1, . . . , Ce,1}⇥ {1, . . . , Ce,2} ,
↵ (a, i, b, j) = (↵1 (a, b) ,↵2 (i, j)) ,

and

� : N⇥M ! {1, . . . , Ch,1}⇥ {1, . . . , Ch,2} , (13)
� (a, i) = (�1 (a) ,�2 (i)) . (14)

This simply means that a new color is defined in the product pattern for each possible combination of
colors in the original patterns. Example 6.1 demonstrates this idea with a simple example.
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We use MLPs to build functions �↵(i,j)
e and ��(i)

h . The functions used in the experiments are detailed
in Appendix A.4. In addition, we add a weighting factor to the edge aggregation 9, as this as been
shown to be beneficial by [70, 53]:

mi =
X

j2Ni

eijmij , where eij = �a (mij) , (15)

and �a is simply a linear layer. This change does not affect the equivariance of the model.

Example 6.1 In our running example, the parameter-sharing pattern for the message passing is
produced by the Kronecker product of the pattern for the P2 group (see Appendix A.3 for a similar
example with the P6m group) and the pattern for the symmetric group S2 as shown in the figure
below (Top left). However, we only need to keep the colors for which there is a corresponding
edge (Top right). Message passing is used on the resulting edge/node colored graph where similar
colored nodes and edges use the same functions in message passing.

Figure 4: Equivariant message passing for graphene

7 Model implementation

Network architecture We aimed to keep the architecture of our ECN model as simple as possible.
The model receives crystal structure graphs as input, with one-hot encoded feature vectors for
each atom. We use 128-dimensional embeddings and keep the same dimension for hidden layers
throughout the network. The ECN consists of 6 layers of the equivariant message passing operation
6.1. This is followed by a mean-pooling operation over node embeddings of each graph and a
two-layer MLP that outputs the final prediction. Mean pooling is preferred to other options because
we only predict intensive physical quantities. These properties are "per-atom" and do not depend on
the choice of supercell. Therefore, selecting a pooling operation that respects this invariance makes
sense. If we were to predict extensive quantities, sum pooling would be the preferred option.

Input features Many choices to encode atomic features are possible and have been suggested in the
literature. We perform experiments over these variants. For each atom, we encode its type in a feature
vector. We consider two strategies, using only information available from the periodic table. The first
one is to use only the atomic number. The second one is to use the one-hot encoded group and period
numbers for each atom. The second strategy could benefit from promoting better generalization
since embeddings of atoms belonging to the same group or period will show a certain similarity.
Around 24% of the structures retained in the Materials Project dataset have been computed using
the Hubbard-U extension of DFT. Since this information can significantly influence the resulting
properties [61] it is added to the atomic feature vector as a binary feature.

Other details We implemented our model using Pytorch [49]. We use a sparse implementation
of the equivariant message-passing based on the Pytorch Scatter package [22]. We use the AdamW
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optimizer [43] with weight decay regularization. The full hyperparameter setup is provided in
Appendix A.7.

8 Experiments

Materials Project We perform experiments using the Materials Project dataset [33] 1. This standard
dataset of materials informatics comprises more than 120K materials with a complete specification of
their crystal structure and some important physical properties obtained with high-throughput DFT
calculations.

The Materials Project dataset has not been initially built to serve as a machine learning benchmark;
we perform some preprocessing to make it suitable. First, since multiple DFT calculations were
sometimes performed on close initial configurations, some samples only show marginal structure
differences and resulting properties. This is exemplified by the compound Li9Mn2Co5O16, which
appears 322 times in the database. Such duplicates can result in training-test leakage. To prevent
this, we consider two structures redundant if they have the same unit cell chemical formula and the
same space group. Amongst a set of duplicate structures, the one with the lowest formation energy is
chosen. Second, we filter out one-dimensional and two-dimensional materials from the dataset to
only keep three-dimensional materials. Finally, we remove materials for which the unit cell contains
more than 50 atoms. These are often associated with molecular and inorganic crystals with very
different properties than the other materials. Training, validation, and test splits are 80%, 10%, and
10% of the dataset. We provide statistics on the processed dataset in Appendix A.6.

Following previous work, we predict a few relevant energetic properties: the formation energy E,
the Fermi energy EF , and the band gap Eg for the subset of insulating materials. We also predict
the binary insulator or conductor character material. Finally, we also predict the magnetic moment
per atom M . This can be seen as a graph regression or classification task. For regression, training is
performed using the mean-squared error (MSE) loss function, but we report the mean-absolute error
(MAE). For classification, we use the cross-entropy loss function.

Table 1: Results on the Materials Project dataset.

Method
Property

E(eV/atom) EF (eV) M (µB /atom) Eg (eV) Metal precision Nonmetal precision

O
rig

in
al CGCNN 0.039 0.363 - 0.388 80% 95%

MEGNET 0.028 - - 0.33 78.9% 90.6%
SCHNET 0.041 - - - - -

O
ur

s

CGCNN 0.048 ± 0.0002 0.307 ± 0.001 0.111 ± 0.001 0.399 ± 0.006 81.2% ± 3.0 86.3% ± 3.0
MEGNET 0.056 ± 0.0002 0.365 ± 0.007 0.110 ± 0.001 0.434 ± 0.006 72.1% ± 3.0 81.6% ± 4.0

ECN-P 1̄ 0.052 ± 0.001 0.303 ± 0.004 0.108 ± 0.002 0.44 ± 0.02 80% ± 4.0 84% ± 4.0
ECN-S⇤ 0.046 ± 0.002 0.281 ± 0.007 0.106 ± 0.002 0.390 ±0.02 79.8% ± 2.0 83.2% ± 1.0

We compare the results obtained by our models to baselines [54, 70, 12]. Note that because these
papers used different training and test splits and preprocessing schemes (even between themselves),
our results cannot be directly compared. To alleviate that, we trained our own versions of two of the
baselines using our splits and a similar training procedure. We obtain slightly better or comparable
results to the baselines on all targets when evaluated on the same splits. The S⇤ version offers better
performance than the P 1̄ model overall, showing that it is more beneficial to lean on the side of
having slightly more symmetry than necessary at the cost of some expressivity. We provide additional
results for the model variants in Appendix A.8. The benefits of the increased expressivity on this
task is in the not crucial, which we think can be explained in part by the relatively small size of the
Materials Project dataset. In a larger data regime, we expect that the benefit of increased expressivity
will outweight the cost in generalization capability.

Perov-5 Finally, we perform experiments using the Perov-5 dataset [9] as provided by [69]. In
this dataset, all the materials share the same Perovskite crystal structure. The task considered is
the regression of the heat of formation computed through DFT. Results are shown on Table 2.The
improvement on this dataset is significantly more important for the proposed model compared to the

1We use version 2021.05 of the dataset

9



baselines than on the Materials Project dataset. We hypothesize that the fact that all the structures are
shared in this dataset allows the model to specialize more efficiently leading to better generalization.

Method
Property
Heat All

CGCNN 0.047 ± 0.000
MEGNET 0.059 ± 0.006
ECN-S⇤ 0.038 ± 0.004

Table 2: Perov-5 results

Conclusion

We have shown how to leverage crystal symmetry to build more
expressive and physically motivated neural networks for materials
data. This allows us to obtain a close equivalent of group equivariant
convolution on this data structure. These models show excellent
accuracy in supervised property prediction, which supports the idea
that symmetry is a useful inductive bias. Such models could be
used for other tasks on materials such as dynamics prediction, if the
dynamics approximately preserves the crystal structure. We also
think that these models have significant potential on more abstract
condensed matter systems such as spin models and free-fermion
models. We have also defined equivariant message passing, a generalization of the MPNN framework
that can potentially be used on any data structures for which a group can capture the symmetry in
sparse interactions between the basic elements. One limitation of this approach is that it is not clear
how to handle structures with different groups without using a larger group like S⇤. A potential
solution is drawing inspiration from the Natural Graph Neural Networks framework introduced
in [27]. Another area of future improvement is on the computational efficiency of the equivariant
message passing, which does not benefit from optimized algorithms available for convolutions.

Acknowledgments and Disclosure of Funding

We thank Mehran Shakerinava, Christopher Morris, Joey Bose, Simon Verret and the anonymous
reviewers for their valuable comments. This project is in part supported by the CIFAR AI chairs
program and NSERC Discovery. S.-O. K.’s research is also supported by IVADO and the DeepMind
Scholarship. Computational resources were provided by Mila and Compute Canada.

References
[1] Alvarez Santiago. A cartography of the van der Waals territories // Dalton Trans. 2013. 42.

8617–8636.

[2] Anderson Brandon, Hy Truong Son, Kondor Risi. Cormorant: Covariant molecular neural
networks // Advances in neural information processing systems. 2019. 32.

[3] Ashcroft Neil W, Mermin N David, others . Solid state physics. 1976.

[4] Bartók Albert P, Kondor Risi, Csányi Gábor. On representing chemical environments // Physical
Review B. 2013. 87, 18. 184115.

[5] Batzner Simon, Musaelian Albert, Sun Lixin, Geiger Mario, Mailoa Jonathan P., Kornbluth
Mordechai, Molinari Nicola, Smidt Tess E., Kozinsky Boris. E(3)-Equivariant Graph Neural
Networks for Data-Efficient and Accurate Interatomic Potentials. 2021.

[6] Beekman Aron, Rademaker Louk, Wezel Jasper van. An introduction to spontaneous symmetry
breaking // SciPost Physics Lecture Notes. 2019. 011.

[7] Bengio Y., Courville A., Vincent P. Representation Learning: A Review and New Perspectives //
IEEE Transactions on Pattern Analysis and Machine Intelligence. Aug 2013. 35, 8. 1798–1828.

[8] Bronstein Michael M, Bruna Joan, Cohen Taco, Velicković Petar. Geometric deep learning:
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