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Abstract

Imperfect-Information Extensive-Form Games (IIEFGs) is a prevalent model for
real-world games involving imperfect information and sequential plays. The
Extensive-Form Correlated Equilibrium (EFCE) has been proposed as a natural
solution concept for multi-player general-sum IIEFGs. However, existing algo-
rithms for finding an EFCE require full feedback from the game, and it remains
open how to efficiently learn the EFCE in the more challenging bandit feedback
setting where the game can only be learned by observations from repeated playing.
This paper presents the first sample-efficient algorithm for learning the EFCE
from bandit feedback. We begin by proposing K-EFCE—a generalized definition
that allows players to observe and deviate from the recommended actions for
K times. The K-EFCE includes the EFCE as a special case at K = 1, and is
an increasingly stricter notion of equilibrium as K increases. We then design
an uncoupled no-regret algorithm that finds an ε-approximate K-EFCE within
Õ(maxiXiA

K
i /ε

2) iterations in the full feedback setting, whereXi andAi are the
number of information sets and actions for the i-th player. Our algorithm works by
minimizing a wide-range regret at each information set that takes into account all
possible recommendation histories. Finally, we design a sample-based variant of
our algorithm that learns an ε-approximate K-EFCE within Õ(maxiXiA

K+1
i /ε2)

episodes of play in the bandit feedback setting. When specialized to K = 1, this
gives the first sample-efficient algorithm for learning EFCE from bandit feedback.

1 Introduction

This paper is concerned with the problem of learning equilibria in Imperfect-Information Extensive-
Form Games (IIEFGs) [29]. IIEFGs is a general formulation for multi-player games with both
imperfect information (such as private information) and sequential play, and has been used for
modeling and solving real-world games such as Poker [23, 32, 7, 8], Bridge [39], Scotland Yard [37],
and so on. In a two-player zero-sum IIEFG, the standard solution concept is the celebrated notion of
Nash Equilibrium (NE) [35], that is, a pair of independent policies for both players such that no player
can gain by deviating. However, in multi-player general-sum IIEFGs, computing an (approximate)
NE is PPAD-hard and unlikely to admit efficient algorithms [12]. A more amenable class of solution
concepts is the notion of correlated equilibria [4], that is, a correlated policy for all players such that
no player can gain by deviating from the correlated play using certain types of deviations.

The notion of Extensive-Form Correlated Equilibria (EFCE) proposed by Von Stengel and Forges
[40] is a natural definition of correlated equilibria in multi-player general-sum IIEFGs. An EFCE is a
correlated policy that can be thought of as a “mediator” of the game who recommends actions to each
player privately and sequentially (at visited information sets), in a way that disincentivizes any player
to deviate from the recommended actions. Polynomial-time algorithms for computing EFCEs have
been established, by formulating as a linear program and using the ellipsoid method [24, 36, 26],
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min-max optimization [16], or uncoupled no-regret dynamics using variants of counterfactual regret
minimization [11, 20, 34, 2].

However, all the above algorithms require that the full game is known (or full feedback). In the more
challenging bandit feedback setting where the game can only be learned by observations from repeated
playing, it remains open how to learn EFCEs sample-efficiently. This is in contrast to other types of
equilibria such as NE in two-player zero-sum IIEFGs, where sample-efficient learning algorithms
under bandit feedback are known [30, 19, 28, 5]. A related question is about the structure of the
EFCE definition: An EFCE only allows players to deviate once from the observed recommendations,
upon which further recommendations are no longer revealed and the player needs to make decisions
on her own instead. This may be too restrictive to model situations where players can still observe the
recommendations after deviating [34]. It is of interest how we can extend the EFCE definition in a
structured fashion to disincentivize such stronger deviations while still allowing efficient algorithms.

This paper makes steps towards answering both questions above, by proposing stronger and more
generalized definition of EFCEs, and designing efficient learning algorithms under both full-feedback
and bandit-feedback settings. We consider IIEFGs with m players, H steps, where each player i has
Xi information sets and Ai actions. Our contributions can be summarized as follows.

• We propose K-EFCE, a natural generalization of EFCE, at which players have no gains when
allowed to observe and deviate from the recommended actions for K times (Section 3). At K = 1,
the K-EFCE is equivalent to the existing definition of EFCE based on trigger policies. For
K ≥ 1, the K-EFCE are increasingly stricter notions of equilibria as K increases.

• We design an algorithm K Extensive-Form Regret Minimization (K-EFR) which finds an ε-
approximate K-EFCE within Õ(maxiXiA

K∧H
i /ε2) iterations under full feedback (Section 4).

At K = 1, our linear in maxiXi dependence improves over the best known Õ(maxiX
2
i ) depen-

dence for computing ε-approximate EFCE. At K > 1, this gives a sharp result for efficiently
computing (the stricter) K-EFCE, improving over the best known Õ(maxiX

2
i A

K∧H
i /ε2) itera-

tion complexity of Morrill et al. [34].

• We further design BalancedK-EFR—a sample-based variant ofK-EFR—for the more challenging
bandit-feedback setting (Section 5). Balanced K-EFR learns an ε-approximate K-EFCE within
Õ(maxiXiA

K∧H+1
i /ε2) episodes of play. This is the first line of results for learning EFCE and

K-EFCE from bandit feedback, and the linear in Xi dependence matches information-theoretic
lower bounds. Technically, our bandit-feedback result builds on a novel stochastic wide range
regret minimization algorithm SWRHEDGE, as well as sample-based estimators of counterfactual
loss functions using newly designed sampling policies, which may be of independent interest.

1.1 Related work

Computing Correlated Equilibria from full feedback The notion of Extensive-Form Correlated
Equilibria (EFCE) in IIEFGs is introduced in Von Stengel and Forges [40]. Huang and von Stengel
[24] design the first polynomial time algorithm for computing EFCEs in multi-player IIEFGs from
full feedback, using a variation of the Ellipsoid against hope algorithm [36, 26]. Farina et al. [16] later
propose a min-max optimization formulation of EFCEs which can be solved by first-order methods.

Celli et al. [11] and its extended version [20] design the first uncoupled no-regret algorithm for
computing EFCEs. Their algorithms are based on minimizing the trigger regret (first considered in
Dudik and Gordon [13], Gordon et al. [22]) via counterfactual regret decomposition [45]. Morrill
et al. [34] propose the stronger definition of “Behavioral Correlated Equilibria” (BCE) using general
“behavioral deviations”, and design the Extensive-Form Regret Minimization (EFR) algorithm to
compute a BCE by using a generalized version of counterfactual regret decomposition. They also
propose intermediate notions such as a “Twice Informed Partial Sequence” (TIPS) (and its K-shot
generalization) as an interpolation between the EFCE and BCE. Our definition of K-EFCE offers a
new interpolation between the EFCE and BCE that is different from theirs, as the deviating player
in K-EFCE does not observe and does not follow recommended actions after K deviations has
happened, whereas the deviator in K-shot Informed Partial Sequence resumes to following after
K deviations has happened. The iteration complexity for computing an ε-approximate correlated
equilibrium in both [20, 34] scales quadratically in maxi∈[m]Xi. Our K-EFR algorithm for the
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full feedback setting builds upon the EFR algorithm, but specializes to the notion of K-EFCE, and
achieve an improved linear in maxi∈[m]Xi iteration complexity.

Apart from the EFCE, there are other notions of (coarse) correlated equilibria in IIEFGs such as
Normal-Form Coarse-Correlated Equilibria (NFCCE) [45, 10, 9, 18, 44], Extensive-Form Coarse-
Correlated Equilibria (EFCCE) [17], and Agent-Form (Coarse-)Correlated Equilibria (AF(C)CE) [38,
40]; see [33, 34] for a detailed comparison. All above notions are either weaker than or incomparable
with the EFCE, and thus results there do not imply results for computing EFCE.

Learning Equilibria from bandit feedback A line of work considers learning Nash Equilibria
(NE) in two-player zero-sum IIEFGs and NFCCE in multi-player general-sum IIEFGs from bandit
feedback [30, 19, 15, 21, 43, 41, 28, 5]; Note that the NFCCE is weaker than (and does not imply
results for learning) EFCE. Dudík and Gordon [14] consider sample-based learning of EFCE in
succinct extensive-form games; however, their algorithm relies on an approximate Markov-Chain
Monte-Carlo (MCMC) sampling subroutine that does not lead to an end-to-end sample complexity
guarantee. To our best knowledge, our results are the first for learning the EFCE (and K-EFCE)
under bandit feedback.

2 Preliminaries
We formulate IIEFGs as partially-observable Markov games (POMGs) with tree structure and perfect
recall, following [28, 5]. For a positive integer i, we denote by [i] the set {1, 2, · · · , i}. For a finite set
A, we let ∆(A) denote the probability simplex over A. Let

(
n
m

)
denote the binomial coefficient (i.e.

number of combinations) of choosing m elements from n different elements, with the convention
that

(
n
m

)
= 0 if m > n. We use m ∧ n to denote min {m,n}.

Partially observable Markov game We consider an episodic, tabular, m-player, general-sum,
partially observable Markov game

POMG(m,S, {Xi}i∈[m], {Ai}i∈[m], H, p0, {ph}h∈[H], {ri,h}i∈[m],h∈[H]),

where S is the state space of size |S| = S; Xi is the space of information sets (henceforth infosets)
for the ith player, which is a partition of S (i.e., xi ⊆ S for all xi ∈ Xi, and S = ⊔xi∈Xixi where
⊔ stands for disjoint union) with size |Xi| = Xi, and we also use xi : S → Xi to denote the ith
player’s emission (observation) function; Ai is the action space for the ith player with size |Ai| = Ai,
and we let A = A1 × · · ·Am denote the space of joint actions a = (a1, . . . , am); H ∈ Z≥1 is
the time horizon; p0 ∈ ∆(S) is the distribution of the initial state s1; ph : S × A → ∆(S) are
transition probabilities where ph(sh+1|sh,ah) is the probability of transiting to the next state sh+1

from state-action (sh,ah) ∈ S ×A; and ri,h : S ×A → [0, 1] is the deterministic1 reward function
for the ith player at step h.

Tree structure and perfect recall assumption We use a POMG with tree structure and perfect re-
call to formulate imperfect information games23, following [28, 5]. We assume that the game has a tree
structure: for any state s ∈ S, there is a unique step h and history (s1,a1, . . . , sh−1,ah−1, sh = s)
to reach s. Precisely, for any policy of the players, for any realization of the game (i.e., trajec-
tory) (s′k,a

′
k)k∈[H], conditionally to s′l = s, it almost surely holds that l = h and (s′1, . . . , s

′
h) =

(s1, . . . , sh). We also assume perfect recall, which means that each player remembers its past informa-
tion sets and actions. In particular, for each information set (infoset) xi ∈ Xi for the ith player, there is
a unique history of past infosets and actions (xi,1, ai,1, . . . , xi,h−1, ai,h−1, xi,h = xi) leading to xi.
This requires that Xi can be partitioned to H subsets (Xi,h)h∈[H] such that xi,h ∈ Xi,h is reachable
only at time step h. We define Xi,h := |Xi,h|. Similarly, the state set S can be also partitioned into
H subsets (Sh)h∈[H]. As we mostly focus on the ith player, we use xh to also denote xi,h and use
them interchangeably.

1Our results can be directly extended to the case of stochastic rewards.
2We remark that POMGs with tree structure and perfect recall is a specific subclass of POMGs; General

POMGs could possess different challenges and are beyond the scope of this paper.
3Our definition of POMGs with tree structure and perfect recall can express any IIEFG satisfying an additional

mild condition called timeability [25]. Further, our algorithms and guarantees can be generalized directly to any
general IIEFG that is not necessarily timeable; see Appendix H.3 for discussions.
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For s ∈ S and xi ∈ Xi, we write s ∈ xi if infoset xi contains the state s. With an abuse of
notation, for s ∈ S, we let xi(s) denote the ith player’s infoset that s belongs to. For any h < h′,
xi,h ∈ Xi,h, xi,h′ ∈ Xi,h′ , we write xi,h ≺ xi,h′ if the information set xi,h′ can be reached from
information set xi,h by ith player’s actions; we write (xi,h, ai,h) ≺ xi,h′ if the infoset xi,h′ can
be reached from infoset xi,h by ith player’s action ai,h. For any h < h′ and xi,h ∈ Xi,h, we
let Ch′(xi,h, ai,h) := {x ∈ Xi,h′ : (xi,h, ai,h) ≺ x} and Ch′(xi,h) := {x ∈ Xi,h′ : xi,h ≺
x} = ∪ai,h∈AiCh′(xi,h, ai,h) denote the infosets within the h′-th step that are reachable from (i.e.
children of) xi,h or (xi,h, ai,h), respectively. For shorthand, let C(xi,h, ai,h) := Ch+1(xi,h, ai,h) and
C(xi,h) := Ch+1(xi,h) denote the set of immediate children.

Policies We use πi = {πi,h(·|xi,h)}h∈[H],xi,h∈Xi,h to denote a policy of the ith player, where each
πi,h(·|xi,h) ∈ ∆(Ai) is the action distribution at infoset xi,h. We say πi is a pure policy if πi,h(·|xi,h)
takes some single action deterministically for any (h, xi,h); in this case we let πi(xi,h) = πi,h(xi,h)
denote the action taken at infoset xi,h for shorthand. We use π = {πi}i∈[m] to denote a product policy
for all players, and let π−i = {πj}j∈[m],j ̸=i denote policies of all players other than the ith player.
We call π a pure product policy if πi is a pure policy for all i ∈ [m]. Let Πi denote the set of all
possible policies for the ith player and Π =

∏
i∈[m] Πi denote the set of all possible product policies.

Any probability measure π on Π induces a correlated policy, which executes as first sampling a
product policy π = {πi}i∈[m] ∈ Π from probability measure π and then playing the product policy
π. We also use π to denote this policy. A correlated policy π can be viewed as a mediator of the
game which samples π ∼ π before the game starts, and privately recommends action sampled from
πi(·|xi) to the ith player when infoset xi ∈ Xi is visited during the game.

Reaching probability With the tree structure assumption, for any state sh ∈ Sh and actions a ∈ A,
there exists a unique history (s1,a1, . . . , sh = s,ah = a) ending with (sh = s,ah = a). Given any
product policy π, the probability of reaching (sh,ah) at step h can be decomposed as

pπh(sh,a) = p1:h(sh)
∏
i∈[m] πi,1:h(sh, ai,h), (1)

where we define the sequence-form transitions p1:h and sequence-form policies πi,1:h as

p1:h(sh) := p0(s1)
∏h−1
h′=1 ph′(sh′+1|sh′ ,ah′), (2)

πi,1:h(sh, ai,h) := πi,1:h(xi,h, ai,h) :=
∏h
h′=1 πi,h′(ai,h′ |xi,h′), (3)

where (sh′ ,ah′)h′≤h−1 is the unique history of states and actions that leads to sh by the tree
structure; xi,h = xi(sh) is the ith player’s infoset at the h-th step, and (xi,h′ , ai,h′)h′≤h−1 is
the unique history of infosets and actions that leads to xi,h by perfect recall. We also define
πi,h:h′(xi,h′ , ai,h′) :=

∏h′

h′′=h πi,h′′(ai,h′′ |xi,h′′) for any 1 ≤ h ≤ h′ ≤ H .

Value functions and counterfactual loss functions Let V πi := Eπ[
∑H
h=1 ri,h] denote the value

function (i.e. expected cumulative reward) for the ith player under policy π. By the product form
of the reaching probability in (1), the value function V πi admits a multi-linear structure over the
sequence-form policies. Concretely, fixing any sequence of product policies {πt}Tt=1 where each
πt = {πti}i∈[m], we have

V π
t

i =

H∑
h=1

∑
(sh,ah=(aj,h)j∈[m])∈Sh×A

p1:h(sh)

m∏
j=1

πtj,1:h(xj(sh), aj,h)ri,h(sh,ah).

For any sequence of policies {πt}Tt=1, we also define the counterfactual loss functions [45]
{Lti,h(xi,h, ai,h)}i,h,xi,h,ai,h as:

ℓti,h(xi,h, ai,h) :=
∑

sh∈xi,h,
a−i,h∈A−i

p1:h(sh)
∏
j ̸=i

πtj,1:h(xj(sh), aj,h)[1− ri,h(sh,ah)], (4)

Lti,h(xi,h, ai,h) := ℓti,h(xi,h, ai,h) +

H∑
h′=h+1

∑
xh′∈Ch′ (xi,h,ai,h),

ah′∈Ai

πti,(h+1):h′(xh′ , ah′)ℓti,h′(xh′ , ah′).

(5)
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Algorithm 1 Executing modified policy ϕ ⋄ πi
Input: K-EFCE strategy modification ϕ ∈ ΦK

i (0 ≤ K ≤ ∞), policy πi ∈ Πi for the ith player.
1: Initialize recommendation history b = ∅.
2: for h = 1, . . . , H do
3: Receive infoset xi,h ∈ Xi,h.
4: if b ∈ Ω

(I),K
i (xi,h) then

5: Observe recommendation bh ∼ πi,h(·|xi,h).
6: Take swapped action ah = ϕ(xi,h,b, bh).
7: Update recommendation history b← (b, bh) ∈ Ah

i .
8: else
9: // Must have b ∈ Ω

(II),K
i (xi,h), do not observe recommendation from πi

10: Take action ah = ϕ(xi,h,b).

Intuitively, Lti,h(xi,h, ai,h) measures the ith player’s expected cumulative loss (one minus reward)
conditioned on reaching (xi,h, ai,h), weighted by the (environment) transitions and all other players’
policies πt−i at all time steps, and the ith player’s own policy πti from step h + 1 onward. We will
omit the i subscript and use Lth to denote the above when clear from the context.

Feedback protocol We consider two standard feedback protocols for our algorithms: full feedback,
and bandit feedback. In the full feedback case, the algorithm can query a product policy πt =
{πti}i∈[m] in each iteration and observe the counterfactual loss functions {Lti,h(xi,h, ai,h)}i,h,xi,h,ai,h
exactly4. In the bandit feedback case, the players can only play repeated episodes with some policies
and observe the trajectory of their own infosets and rewards from the environment.

3 K Extensive-Form Correlated Equilibria

We now introduce the definition ofK Extensive-Form Correlated Equilibria (K-EFCE) and establish
its relationship with existing notions of correlated equilibria in IIEFGs.

3.1 Definition of K-EFCE

Intuitively, a K-EFCE is a correlated policy in which no player can gain if allowed to deviate
from the observed recommended actions K times, and forced to choose her own actions without
observing further recommendations afterwards. To state its definition formally, letting Ahi :=
{(b1, . . . , bh)|bh′ ∈ Ai, ∀h′ ≤ h}, we categorize all possible recommendation histories (henceforth
rechistories) at each infoset xi,h ∈ Xi,h (for the ith player) into two types, based on whether the
player has already deviated K times from past recommendations:

(1) A Type-I rechistory (≤ K−1 deviations happened) at xi,h is any action sequence b1:h−1 ∈ Ah−1
i

such that
∑h−1
k=1 1 {ak ̸= bk} ≤ K − 1, where (a1, . . . , ah−1) is the unique sequence of actions

leading to xi,h. Let Ω(I),K
i (xi,h) denote the set of all Type-I rechistories at xi,h.

(2) A Type-II rechistory (K deviations happened) at xi,h is any action sequence b1:h′ ∈ Ah′

i with
length h′ < h such that

∑h′−1
k=1 1 {ak ̸= bk} = K − 1 and ah′ ̸= bh′ , where (a1, . . . , ah−1) is

the unique sequence of actions leading to xi,h. Let Ω(II),K
i (xi,h) denote the set of all Type-II

rechistories at xi,h.

We now define a K-EFCE strategy modification (0 ≤ K ≤ ∞) for the ith player.

Definition 1 (K-EFCE strategy modification). AK-EFCE strategy modification ϕ (for the ith player)
is a mapping ϕ of the following form: At any infoset xi,h ∈ Xi,h, for any Type-I rechistory b1:h−1 ∈
Ω

(I),K
i (xi,h), ϕ swaps any recommended action bh into ϕ(xi,h, b1:h−1, bh) ∈ Ai; for any Type-II

rechistory b1:h′ ∈ Ω
(II),K
i (xi,h), ϕ directly takes action ϕ(xi,h, b1:h′) ∈ Ai.

4This is implementable (and slightly more general than) when the full game (transitions and rewards) is
known.
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Let ΦKi denote the set of all possible K-EFCE strategy modifications for any 0 ≤ K ≤ ∞. Formally,
for any ϕ ∈ ΦKi and any pure policy πi ∈ Πi, we define the modified policy ϕ ⋄ πi as in Algorithm 1.

We parse the modified policy ϕ ⋄ πi (Algorithm 1) as follows. Upon receiving the infoset xi,h at
each step h, the player has the rechistory b containing all past observed recommended actions. Then,
if b is Type-I, i.e. at most K − 1 deviations have happened (Line 4), then the player observes the
current recommended action bh = πi,h(xi,h), takes a potentially swapped action ah = ϕ(xi,h,b, bh)
(Line 6), and appends bh to the recommendation history (Line 7). Otherwise, (xi,h,b) is Type-II,
i.e. K deviations have already happened. In this case, the player does not observe the recommended
action, and instead takes an action ah = ϕ(xi,h,b), and does not update b (Line 10).

We now define K-EFCE as the equilibrium induced by the K-EFCE strategy modification set
ΦKi . With slight abuse of notation, we define ϕ ⋄ π for any correlated policy π to be the policy
(ϕ ⋄ πi)× π−i where π ∼ π is the product policy sampled from π.

Definition 2 (K-EFCE). A correlated policy π is an ε-approximate K Extensive-Form Correlated
Equilibrium (K-EFCE) if

K-EFCEGap(π) := maxi∈[m] maxϕ∈ΦKi

(
V ϕ⋄πi − V πi

)
≤ ε.

We say π is an (exact) K-EFCE if K-EFCEGap(π) = 0.

3.2 Properties of K-EFCE

The K-EFCE is closely related to various existing definitions of correlated equilibria in IIEFGs.
We show that the special case of K = 1 is equivalent to the existing definition of EFCE based
on trigger policies (Proposition C.1); The K-EFCE are indeed stricter equilibria as K increases
(Proposition C.2); The two extreme cases K = 0 and K = ∞ are equivalent to (Normal-Form)
Coarse Correlated Equilibrium and the “Behavioral Correlated Equilibria” of [34]5, respectively
(Proposition C.3). Due to the space limit, the full statements and proofs are deferred to Appendix C.

4 Computing K-EFCE from full feedback

Algorithm description We first present our algorithm for computing K-EFCE in the full-feedback
setting. Our algorithm K Extensive-Form Regret Minimization (K-EFR), described in Algorithm 2,
is an uncoupled no-regret algorithm aiming to minimize the following K-EFCE regret

RTi,K := maxϕ∈ΦKi

∑T
t=1

(
V
ϕ⋄πti×π

t
−i

i − V πti
)
. (6)

By standard online-to-batch conversion, achieving sublinear K-EFCE regret for every player implies
that the average joint policy over all players is an approximate K-EFCE (Lemma E.1).

At a high level, our Algorithm 2 builds upon the EFR algorithm of Morrill et al. [34] to minimize
the K-EFCE regret RTi,K , by maintaining a regret minimizer Rxi,h (using algorithm REGALG) at
each infoset xi,h ∈ Xi that is responsible for outputting the policy πti(·|xi,h) ∈ ∆Ai (Line 8) which
combine to give the overall policy πti for the t-th iteration.

Core to our algorithm is the requirement thatRxi,h ∼ REGALG should be able to minimize regrets
with time-selection functions and strategy modifications (also known as the wide range regret) [31, 6].
Specifically,Rxi,h needs to control the regret

maxφ∈Ψs
∑T
t=1

∏h−1
k=1 π

t
i(bk|xk)

(〈
πti,h(·|xi,h)− φ ⋄ πti,h(·|xi,h), Lti,h(xi,h, ·)

〉)
(7)

for all possible Type-I rechistories b1:h−1 ∈ Ω
(I),K
i (xi,h) simultaneously, where

∏h−1
k=1 π

t
i(bk|xk) =:

Stb1:h−1
is the time-selection function (i.e. a weight function) associated with this b1:h−1 (cf. Line 5),

and Ψs = {ψ : Ai → Ai} is the set of all swap modifications from the action set Ai onto itself.
(An analogous regret for Type-II rechistories is also controlled byRxi,h .) Controlling these “local"

5Up to a minor difference that our∞-EFCE only defines the equilibrium in terms of the overall game value,
where the BCE additionally requries similar equilibrium properties to hold in certain subgames.
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Algorithm 2 K-EFR with full feedback (ith player’s version)
Input: Algorithm REGALG for minimizing wide range regret; learning rates {ηxi,h}xi,h∈Xi .
1: Initialize regret minimizers {Rxi,h}xi,h∈Xi with REGALG and learning rate ηxi,h .
2: for iteration t = 1, . . . , T do
3: for h = 1, . . . , H do
4: for xi,h ∈ Xi,h do
5: Compute St

b1:h−1
=
∏h−1

k=1 π
t
i,k(bk|xk) for all b1:h−1 ∈ Ω

(I),K
i (xi,h).

6: Compute St
b1:h′

=
∏h′

k=1 π
t
i,k(bk|xk) for all b1:h′ ∈ Ω

(II),K
i (xi,h).

7: Rxi,h .OBSERVE_TIMESELECTION({St
b1:h−1

}
b1:h−1∈Ω

(I),K
i (xi,h)

∪ {St
b1:h′
}
b1:h′∈Ω

(II),K
i (xi,h)

).

8: Set policy πt
i(·|xi,h)←Rxi,h .RECOMMEND().

9: Observe counterfactual losses
{
Lt

h(xi,h, ah)
}
h,xi,h,ah

(depending on πt
i and πt

−i; cf. (5)).
10: for all xi,h ∈ Xi do
11: Rxi,h .OBSERVE_LOSS(

{
Lt

h(xi,h, a)
}
a∈Ai

).

Output: Policies {πt
i}Tt=1.

regrets at each xi,h guarantees that the overall K-EFCE regret is bounded, by the K-EFCE regret
decomposition (cf. Lemma E.2).

To control this wide range regret, we instantiate REGALG as WRHEDGE (Algorithm 4; cf. Appendix
A.2), which is similar as the wide regret minimization algorithm in [27], with a slight modification of
the initial weights suitable for our purpose (cf. (11)). The learning rate is set as

ηxi,h =
√(

H
K∧H

)
XiAK∧H

i logAi/(H2T ) (8)

for all xi,h ∈ Xi. With this algorithm in place, at each iteration, Rxi,h observes all time selection
functions (Line 7), computes the policy for the current iteration (Line 8), and then observes the loss
vector Lti,h(xi,h, ·) (Line 9) that is useful for updating the policy in the next iteration.

Theoretical guarantee We are now ready to present the theoretical guarantee for K-EFR.
Theorem 3 (Computing K-EFCE from full feedback). For any 0 ≤ K ≤ ∞, ε ∈ (0, H], let all
players run Algorithm 2 together in a self-play fashion where REGALG is instantiated as Algorithm
4 with learning rates specified in (8). Let πt = {πti}i∈[m] denote the joint policy of all players at the
t’th iteration. Then the average policy π = Unif({πt}Tt=1) satisfies K-EFCEGap(π) ≤ ε, as long
as the number of iterations

T ≥ O
((

H
K∧H

)(
maxi∈[m]XiA

K∧H
i

)
ι/ε2

)
,

where ι = log(maxi∈[m]Ai) is a log factor and O(·) hides poly(H) factors.

In the special case of K = 1, Theorem 3 shows that K-EFR can compute an ε-approximate 1-EFCE
within Õ(maxi∈[m]XiAi/ε

2) iterations. This improves over the existing Õ(maxi∈[m]X
2
i A

2
i /ε

2) it-
eration complexity of Celli et al. [11], Farina et al. [20] by a factor ofXiAi. Also, compared with the it-
eration complexity of the optimistic algorithm of [3] which is at least Õ(maxi∈[m]X

4−δ
i A

4/3
i /ε4/3)6,

we achieve lower Xi dependence (though worse ε dependence).

For 1 < K ≤ ∞, Theorem 3 gives a sharp Õ(
(

H
K∧H

)
(maxi∈[m]XiA

K∧H
i )/ε2) iteration complex-

ity for computing K-EFCE. This improves over the Õ(
(

H
K∧H

)
(maxi∈[m]X

2
i A

K∧H
i )/ε2) rate

of EFR [34] instantiated to the K-EFCE problem. Also, note that although the term AK∧H
i

is exponential in K (for K ≤ H), this is sensible since it is roughly the same scale as the
number of possible recommendation histories, which is also the “degree of freedom" within a
K-EFCE strategy modification. Apart from learning equilibria, Algorithm 2 also achieves a low
K-EFCE regret when controlling the ith player only and facing potentially adversarial opponents:

6More precisely, Anagnostides et al. [3, Corollary 4.17] proves an Õ((Xi maxπi∈Πmax ∥πi∥21A/ε)4/3)
iteration complexity, which specializes to the above rate, as for any δ > 0 a game with maxπi∈Πmax ∥πi∥1 ≥
X1−δ

i can be constructed.
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Algorithm 3 Loss estimator for Type-II rechistories via Balanced Sampling (ith player’s version)
Input: Policy πt

i , πt
−i. Balanced exploration policies {π⋆,h

i }h∈[H].
1: for K ≤ h′ < h ≤ H , W ⊆ [h′] with |W | = K and ending in h′ do
2: Set policy π

t,(h,h′,W )
i ← (π⋆,h

i,k )k∈W∪{h′+1,...,h} · (πt
i,k)k∈[h′]\W · πt

i,(h+1):H .

3: Play π
t,(h,h′,W )
i × πt

−i for one episode, observe trajectory

(x
t,(h,h′,W )
i,1 , a

t,(h,h′,W )
i,1 , r

t,(h,h′,W )
i,1 , . . . , x

t,(h,h′,W )
i,H , a

t,(h,h′,W )
i,H , r

t,(h,h′,W )
i,H ).

4: for all (xi,h, b1:h′) ∈ Ω
(II),K
i do

5: Find (xi,1, a1) ≺ · · · ≺ (xi,h−1, ah−1) ≺ xi,h.
6: Set W ← {k ∈ [h′] : bk ̸= ak}
7: Construct loss estimator for all a ∈ Ai

L̃t
(xi,h,b1:h′ )

(a)←
1
{
(x

t,(h,h′,W )
i,h , a

t,(h,h′,W )
i,h ) = (xi,h, a)

}
π
t,(h,h′,W )
i,1:h (xi,h, a)

·
H∑

h′′=h

(
1− r

t,(h,h′,W )

i,h′′

)
. (9)

Output: Loss estimators
{
L̃t

(xi,h,b1:h′ )
(·)
}

(xi,h,b1:h′ )∈Ω
(II),K
i

.

RTi,K ≤ Õ(
√(

H
K∧H

)
XiAK∧H

i T ) (Corollary F.1). In particular, the Õ(
√
XiT ) scaling is optimal up

to log factors, due to the fact that RTi,K ≥ RTi,0 (i.e. the vanilla regret) and the known lower bound
RTi,0 ≥ Ω(

√
XiT ) in IIEFGs [42].

Proof overview Our Theorem 3 follows from a sharp analysis on the K-EFCE regret of Algo-
rithm 2, by incorporating (i) a decomposition of the K-EFCEGap into local regrets at each infoset
with tight leading coefficients (Lemma E.2), and (ii) loss-dependent upper bounds for the wide
range regret of WRHEDGE (Lemma A.2), which when plugged into the aforementioned regret
decomposition yields the improved dependence in (XiA

K∧H
i ) over the analysis of Morrill et al. [34]

(Lemma F.1 & F.2), and also the XiAi factor improvement over the results of [11, 20] in the special
case of K = 1. The full proof can be found in Appendix F.

5 Learning K-EFCE from bandit feedback

We now present Balanced K-EFR, a sample-based variant of K-EFR that achieves a sharp sample
complexity in the more challenging bandit feedback setting. Our algorithm relies on the following
balanced exploration policy [19, 5]. Recall that |Ch(xi,h′ , ai,h′)| is the number of descendants of
(xi,h′ , ai,h′) within the h-th layer of the ith player’s game tree (cf. Section 2).

Definition 4 (Balanced exploration policy). For any 1 ≤ h ≤ H , we define π⋆,hi , the (ith player’s)
balanced exploration policy for layer h as

π⋆,hi,h′(ah′ |xh′) := |Ch(xi,h′ , ai,h′)|/|Ch(xi,h′)| for all (xi,h′ , ai,h′) ∈ Xi,h′ ×Ai, h′ ≤ h− 1,

and π⋆,hi,h′(ai,h′ |xi,h′) := 1/Ai for h′ ≥ h.

Note that there are H such policies, one for each layer h. We remark that the construction of π⋆,hi
requires knowledge about the descendant relationships among the ith player’s infosets, which is a
mild requirement (e.g. can be efficiently obtained from one traversal of the ith player’s game tree; see
Appendix H.2 for a detailed discussion about this requirement).

Algorithm description (sampling part) Our Balanced K-EFR (deferred to Algorithm 7) builds
upon the full feedback version ofK-EFR (Algorithm 2). The main new ingredient within Algorithm 7
is to use sample-based loss estimators obtained by two balanced sampling algorithms (Algorithm 3
& 6), one for each type of rechistories. Here we present the sampling algorithm for Type-II rechis-
tories in Algorithm 3; The sampling algorithm for Type-I rechistories (Algorithm 6) is designed
similarly and deferred to Appendix G.1 due to space limit. Algorithm 3 performs two main steps:
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• Line 1-3 (Sampling): Construct policies {πt,(h,h
′,W )

i } that are interlaced concatenations of the
current πti and the balanced policy π⋆,hi , and play one episode using each policy against πt−i.

• Line 7: Construct loss estimators {L̃xi,h,b1:h′ (a)}xi,h,b1:h′ ,a by (9), which for each xi,h and
b1:h′ ∈ Ω

(II),K
i (xi,h) is an unbiased estimator of counterfactual losses {Lth(xi,h, a)}a∈Ai that

will be used by Algorithm 7 to be fed into the regret minimization algorithm REGALG.

We remark that the sampling policies {πt,(h,h
′,W )

i } in Algorithm 3 are interlaced concatenations
of πti and π⋆,hi along time steps h, where the policy to take at each h is determined by W . These
policies are generalizations of the sampling policies in the Balanced CFR algorithm of Bai et al. [5]
(which can be thought of as a simple non-interlacing concatenation). They allow time-selection aware
sampling: Each loss estimator L̃t(xi,h,b1:h′ )(·) achieves low variance relative to the corresponding
time selection function Stb1:h′ . Further, there is an efficient sharing of sampling policies, as here
roughly

(
H

K∧H
)
XiA

K∧H
i loss estimators (one for each (xi,h, b1:h′)) are constructed using only (a

much lower number of) H
(

H
K∧H

)
policies.

Stochastic wide-range regret minimization Algorithm 7 requires the wide-range regret minimiza-
tion algorithm REGALG to additionally handle the stochastic setting, i.e. minimize the wide-range
regret (e.g. (7)) when fed with our sample-based loss estimators. Here, we instantiate REGALG to be
SWRHEDGE (Algorithm 5), a stochastic variant of WRHEDGE, with hyperparameters

ηxi,h =
√(

H
K∧H

)
XiA

K∧H+1
i log(8

∑
i∈[m]XiAi/p)/(H3T ), L = H. (10)

SWRHEDGE is a non-trivial extension of WRHEDGE to the stochastic setting, as in each round it
admits multiple sample-based loss estimators, one for each time selection function, with the same
mean (cf. Line 8). This is needed since Algorithm 3 uses different sampling policies to construct the
loss estimator L̃txi,h,b1:h′ (·) for each b1:h′ ∈ Ω

(II),K
i (xi,h) (cf. (9)).

Theoretical guarantee We now present our main result for the bandit feedback setting.
Theorem 5 (Learning K-EFCE from bandit feedback). For any 0 ≤ K ≤ ∞, ε ∈ (0, H] and
p ∈ [0, 1), letting all players run Algorithm 7 together in a self-play fashion for T iterations, with
REGALG instantiated as SWRHEDGE (Algorithm 5) with hyperparameters in (10). Let πt =
{πti}i∈[m] denote the joint policy of all players at the t’th iteration. Then, with probability at
least 1 − p, the correlated policy π = Unif({πt}Tt=1) satisfies K-EFCEGap(π) ≤ ε, as long as
T ≥ O(H3

(
H

K∧H
)
(maxi∈[m]XiA

K∧H+1
i )ι/ε2). The total number of episodes played is

3mH
(

H
K∧H

)
· T = O

(
m
(

H
K∧H

)2(
maxi∈[m]XiA

K∧H+1
i

)
ι/ε2

)
,

where ι = log(8
∑
i∈[m]XiAi/p) is a log factor and O(·) hides poly(H) factors.

To our best knowledge, Theorem 5 provides the first result for learning K-EFCE under bandit
feedback. The sample complexity Õ(

(
H

K∧H
)2

maxi∈[m](XiA
K∧H+1
i )/ε2) (ignoring m, H factors)

has only an
(

H
K∧H

)
Ai additional factor over the iteration complexity in the full feedback setting

(Theorem 3), which is natural—The
(

H
K∧H

)
comes from the number of episodes sampled within

each iteration (Lemma G.1), and the Ai arises from estimating loss vectors from bandit feedback. In
particular, the special case ofK = 1 provides the first result for learning EFCEs from bandit feedback,
with sample complexity Õ(maxi∈[m]XiA

2
i /ε

2). We remark that the linear in Xi dependence at all
K ≥ 0 is optimal, as the sample complexity lower bound for the K = 0 case (learning NFCCEs)
is already Ω(maxi∈[m]XiAi/ε

2) [5]7. Also, the policies {πti}Tt=1 maintained in Algorithm 7 also
achieves sublinear K-EFCE regret. However, strictly speaking, this is not a regret bound of our
algorithm, as the sampling policies πt,(h,h

′,W )
i actually used are not πti .

Proof overview The proof of Theorem 5 builds on the analysis in the full-feedback case, and
further relies on several new techniques in order to achieve the sharp linear in maxi∈[m]Xi sample

7The sample complexity lower bound in [5] is stated for learning Nash Equilibria in two-player zero-sum
IIEFGs, but can be directly extended to learning NFCCEs in multi-player general-sum IIEFGs.
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complexity: (1) A regret bound for the SWRHEDGE algorithm under the same-mean condition
(Lemma A.3), which may be of independent interest; (2) Crucial use of the balancing property
of π⋆,hi (Lemma B.4) to control the variance of the loss estimators L̃t(xi,h,b1:h′ )(·), which in turn
produces sharp bounds on the regret terms and additional concentration terms (Lemma G.4-G.9). The
full proof can be found in Appendix G.3.

6 Conclusion

This paper proposes K-EFCE, a generalized definition of Extensive-Form Correlated Equilibria
in Imperfect-Information Games, and designs sharp algorithms for computing K-EFCE under full
feedback and learning a K-EFCE under bandit feedback. Our algorithms perform wide-range regret
minimization over each infoset to minimize the overall K-EFCE regret, and introduce new efficient
sampling policies to handle bandit feedback. We believe our work opens up many future directions,
such as accelerated techniques for computing K-EFCE from full feedback, learning other notions of
equilibria from bandit feedback, as well as empirical investigations of our algorithms.
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