
Notations

Let [L] = {1, . . . , L}. For a vector v ∈ Rn, we denote its Euclidean norm by ∥v∥2 =
√
vTv, and

the infinity norm by ∥v∥∞ = maxi |vi|. For a matrix W ∈ Rm×n, we denote its Frobenius norm by
∥W ∥F =

√
trace(W TW ), the infinity norm by ∥W ∥∞ = max

1≤i≤m

∑n
j=1 |W |ij , and the spectral

norm by ∥W ∥2 = σmax(W ). For ease of exposition, we summarize the notations used throughout
the paper in Table 2.

Table 2: Summary of notations.

Notation Meaning

u, i, z The user, the item and the user-item pair.

y The label.

U , I,R,Z The sets of users, items, user-item interactions and user-item pairs.

R The user-item interaction matrix.

A, Ã The adjacency matrix and the corresponding normalized graph filter.

D The unknown data distribution.

d The dimension size.

Sm The training set.

S, Su The fixed set and testing set in transductive learning.

W l
1,W

l
2 The two weight matrices at layer l.

B1, B2 The l2-norm bounds of W l
1 and W l

2 .

xu,xi The input features of user u and item i.

Bu, Bi The l2-norm bounds of any xu and any xi.

eu, ei The learned embeddings of user u and item i.

hl
u,h

l
i The hidden states of user u and item i at layer l.

l, ϕ The loss function and the non-linear activation.

B The bound of loss function l.

Cl, Cϕ The lipschitz constant of l and ϕ.

Dmax, Dmin The maximum and minimum degrees of node in graph.

A Experiments

A.1 Hyper-parameter Settings

Following LightGCN, we use its default parameters in most cases. Specifically, unless otherwise
specified, the features are initialized using the Xavier method, and their sizes are fixed to 64. For the
number of layers, we learn the range from 1 to 3. The regularization factor is fixed to 1e− 4, and
the node dropout ratio is set to 0. For NGCF with hidden layer parameters, we set the hidden layer
size to 64 and use LeakyRelu as its default activation function. For the proposed strategy, only two
parameters, α and β about the beta distribution, both are set to 0.5. The learning rate of all models
was set to 0.002 and trained with Adam optimizer for 200 epochs. Additionally, an early stop strategy
is used during training.

A.2 Additional Experiments for Numerical Discussion

The Role of Normalized Graph. Fig. 6 shows the performance effect of different Normalized
graphs (left) and non-linear activation functions (right) in Yelp2018. Obviously, we can get a similar
conclusion to Section 5.1 of the main text.
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(a) The generalization effect of normalized graph (b) The generalization effect of activation function
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Figure 6: (a): the effect of normalized graph on Generalization Performance on Yelp2018. (b): the
effect of activation function on Generalization Performance on Yelp2018.
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Figure 7: The effect of Lipschitz constant on Generalization performance on Gowalla.

The Role of Non-linear Activation Function. In Section 5.1 of the main text, we explore the
impact of different non-linear activation functions on performance. To take a deeper look at how
the activation function affects the generalization performance, we consider non-linear activation
functions with different Lipschitz constants. Specifically, we multiply the LeakyReLU by different
weights, then compare their effects on generalization abilities. From Fig. 7, it can be observed that
the generalization gap significantly increases with the Lipschitz constants. These results once again
confirm our theoretical findings on the generalization error.

A.3 Performance Analysis on Non-GCN-based Models

Table 3: Overall evaluation on Non-GCN-based models. All models’ performance is imporved after
using Item Mixtures.

Dataset Gowalla Yelp2018

Method Recall@20 NDCG@20 Recall@20 NDCG@20

BPRMF 0.1338 0.1144 0.0402 0.0325
BPRMF-IMix 0.1402(+4.81%) 0.1190(+3.99%) 0.0430(+6.91%) 0.0345(+6.09%)

GRMF 0.1354 0.1151 0.0418 0.0335
GRMF-IMix 0.1393(+2.83%) 0.1191(+3.48%) 0.0504(+20.64%) 0.0402(+20.26%)

NGRMF 0.1317 0.1097 0.0408 0.0331
NGRMF-IMix 0.1403(+6.52) 0.1214(+10.65) 0.0432(+5.90%) 0.0349(+5.25%)

In theory, the proposed strategy is suitable for non-GCN recommendation models. We experiment on
three factorization-based recommendation models: (1) BPRMF is a traditional matrix decomposition
algorithm that decomposes the user-commodity interaction matrix into user embedding and commod-
ity embedding and uses BPR as the loss function. (2) GRMF is a smoothed version of BPRMF that
adds graph Laplacian regularization to the loss function. (3) NGRMF is a variant of GRMF that per-
forms normalization on graph Laplacian. Correspondingly, the models configured with the proposed
IMix are denoted as BPRMF-IMix, GRMF-IMix, and NGRMF-IMix, respectively. The comparison
results are shown in Table 3. As expected, IMix still works well on non-GCN-based models, with
an average improvement of 7.94% regarding Recall@20 and 8.29% regarding NDCG@20, which
reveals the potential of the proposed enhancement strategy.
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A.4 Loss Curve during Training
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(a) Gowalla (b) Yelp2018

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

ni
ng

 L
os

s

Method
LightGCN
LightGCN-IMix

0 25 50 75 100 125 150 175 200
Epochs

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Te
st

 L
os

s

Method
LightGCN
LightGCN-IMix

Figure 8: Training curves (training loss) and test curves (test loss) for 200 epochs of training.

Fig. 8 presents the model training and testing curves with and without IMix. During the whole
training process, the training loss of LightGCN-IMix converges faster, which indicates that the linear
and continuous processing of IMix is more suitable for the training data. Secondly, consistent with
the find observed in Fig. 3 of the main text, LightGCN has serious overfitting, while LightGCN-IMix
is much lighter, which confirms the positive role of IMix in alleviating overfitting. It is also the key
motivation to propose IMix. Furthermore, this observation also validates the theoretical analysis
in Section 4 of the main text; that is, IMix essentially adds a regularization term to ensure model
generalization.

A.5 Comparison of Transductive Learning and Inductive Learning
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Figure 9: Comparison of test curve (Recall@20 and NDCG@20) of transductive learning (LightGCN,
NGCF) and inductive learning (Pin-Sage).
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Figure 10: Performance comparison between transductive learning (LightGCN, NGCF) and inductive
learning (Pin-Sage) after training.

This section compares the GCN-based recommender systems under transductive and inductive
learning. In the recommendation field, typical models for these two settings are LightGCN [12] (and
NGCF [11]) and Pin-Sage [2], respectively. The difference in model structure makes them unable to
carry out a fair numerical analysis. therefore, we only compare their performance, and the results are
shown in Fig. 9 and Fig. 10.

In Fig. 9, we find that the performance of Pin-Sage with inductive learning is inferior to LightGCN
and NGCF throughout the training process, and this gap persists until the end of training, as shown in
Fig. 10. We reasonably suspect that in collaborative filtering, the recommendation results mainly
depend on historical interactions rather than node features [44], which reflects that the performance of
GCN-based models is more dependent on its neighbors. However, Pin-Sage uses neighbor sampling
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to ensure model’s flexibility and generalization, which loses a large part of valuable information and
damages the recommendation performance.

A.6 Additional Experiments on GCN-based Recommendations

In addition to LightGCN and NGCF, we also use two other GCN-based models, SpectralCF [10] and
GCMC [9], to verify the effectiveness of our theoretical findings and the proposed IMix. Among
them, SpectralCF directly finds all possible connectivity between users and items from the spectral
domain of the user-item graph, while GCMC uses a graph auto-encoder to transmit messages on the
interaction graph to find the potential interests of users.
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(a) The generalization effect of normalized graph (b) The generalization effect of activation function
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Figure 11: Numerical analysis based on SpectralCF. (a): the generalization effect of normalized
graph on Gowalla. (b): the generalization effect of activation function on Gowalla.
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Figure 12: Numerical analysis based on GCMC. (a): the generalization effect of normalized graph on
Gowalla. (b): the generalization effect of activation function on Gowalla.

Numerical Discussion. We evaluate the role of normalized graph and non-linear activation function
on SpectralCF as well as GCMC, and the results are illustrated in Fig. 11 and Fig. 12. We can get
similar findings to Section 5.1 and A.2: (1) Graph normalization helps to improve recommendation
performance (Fig. 11 (a) and Fig. 12 (a)). (2) The activation function has little effect on the model
performance (Fig. 11 (b) and Fig. 12 (b)). This further supports the theoretical findings in Section
3.2.

Effectiveness of IMix. In Section 5.2, we have verified the effectiveness of IMIx on LightGCN and
NGCF. In this section, we further apply IMix to SpectralCF and GCMC (denoted as SpectralCF-IMix
and GCMC-IMix), and the results are shown in Table 4. It can be clearly found that the models’
recommendation performance equipped IMix can significantly outperform the original model under
different structures. Specifically, the average improvement on Recall@20 is 11.86%, while the
average improvement is 12.70% concerning NDCG@20. These encouraging results emphasize the
potential of IMix on GCN-based recommender systems.

A.7 Experiments on LastFM

In this section, we introduce LastFM to enhance our work. LastFM is a music recommendation
dataset consisting of 1,027,370 ratings for 4449 artists from 1892 user ratings collected from the
music website of Last.fm. The item is defined as an artist. The training, validation, and test sets are
randomly divided in a ratio of 7:1:2.

Numerical Discussion. We construct experiments on the effect of normalized graph and activation
function on recommendation performance, as shown in Fig. 13 (a) and Fig. 13 (b). We can get similar
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Table 4: Overall evaluation. SpectralCF and GCMC’s performance is improved after configured with
IMix.

Dataset Gowalla Yelp2018

Layer# Method Recall@20 NDCG@20 Recall@20 NDCG@20

1 layer SpectralCF 0.1424 0.1171 0.0496 0.0400
SpectralCF-IMix 0.1588(+11.52%) 0.1314(+12.21%) 0.0546(+10.08%) 0.0443(+10.75%)

2 layer SpectralCF 0.1435 0.1162 0.0501 0.0407
SpectralCF-IMix 0.1531(+6.69%) 0.1265(+8.86%) 0.0543(+8.38%) 0.0438(+7.62%)

3 layer SpectralCF 0.1395 0.1161 0.0493 0.0397
SpectralCF-IMix 0.1540(+10.39%) 0.1281(+10.34%) 0.0560(+13.59%) 0.0452(+13.85%)

1 layer GCMC 0.1328 0.1142 0.0484 0.0387
GCMC-IMix 0.1491(+12.27%) 0.1201(+5.16%) 0.0546(+12.81%) 0.0441(+13.95%)

2 layer GCMC 0.1324 0.1099 0.0472 0.0377
GCMC-IMix 0.1533(+15.79%) 0.1354(+23.20%) 0.0554(+17.37%) 0.0440(+16.71%)

3 layer GCMC 0.1443 0.1142 0.0480 0.0382
GCMC-IMix 0.1570(+8.80%) 0.1288(+12.78%) 0.0550(+14.58%) 0.0447(+17.02%)
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(a) The generalization effect of normalized graph (b) The generalization effect of activation function

0 25 50 75 100 125 150 175 200
Epochs

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

R
ec

al
l@

20
Method
None
LeakyRelu
Relu
Sigmoid
Tanh

0 25 50 75 100 125 150 175 200
Epochs

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
D

C
G

@
20

Method
None
LeakyRelu
Relu
Sigmoid
Tanh

Figure 13: (a): the effect of normalized graph on Generalization Performance on LastFM. (b): the
effect of activation function on Generalization Performance on LastFM. Here the model is LightGCN.

but more obvious findings as in Gowalla (in Fig. 2) and Yelp2018 (in Fig. 6): (1) The performance on
the unnormalized graph is significantly worse than the other two normalized graphs, and it starts to
decline after 5 rounds. This underscores our point in Section 3.2 that the normalized graph can yield
generalization gains. (2) The effect of different activation functions on recommendation performance
is negligible. Therefore, it is proved that removing the activation function can simplify the model
without incurring a performance penalty, which is consistent with the findings in [12].

Table 5: Performance comparison with and without IMix in LastFM.

Last.fm LightGCN NGCF

Layer# Method Recall@20 NDCG@20 Recall@20 NDCG@20

1 layer Without IMix 0.2694 0.2068 0.2341 0.1746
With IMix 0.2731(+1.37%) 0.2108(+1.95%) 0.2635(+12.50%) 0.1986(+13.76%)

2 layer Without IMix 0.2731 0.2101 0.2299 0.1714
With IMix 0.2732(+0.04%) 0.2129(+1.28%) 0.2630(+14.41%) 0.1991(+16.15%)

3 layer Without IMix 0.2700 0.2090 0.2347 0.1738
With IMix 0.2585(-4.25%) 0.1986(-5.17%) 0.2549(+8.58%) 0.1915(+10.12%)

Effectiveness of IMix. We evaluate the performance of LightGCN and NGCF using IMix in LastFM.
Although on 3-layer-LightGCN, our method has a drop of about 5%, in other cases, the IMix models’
performance has improved, and the improvement is particularly obvious in NGCF, with an average
improvement is 11.83% concerning Recall@20.

A.8 Comparison with Mixup-based Methods

Differences from Recent Mixup-based Methods. More recently, some Mixup-based strategies
have been introduced in GNNs, but our work is quite different from them: (1) G-Mixup proposed in
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Figure 14: The performance comparison of LightGCN configured various Mixup strategies in Gowalla
and Yelp2018.

[45] studies graph classification tasks, while our recommendation task is essentially link prediction.
Besides, G-Mixup enhances the model by interpolating the graphon of different classes of graphs, but
we only mix the item embeddings of the same users; (2) [46] proposed to mix two-branch features
and used Mixup at each layer, while our IMix does not introduce additional convolution branches and
only performs item mixture on the last layer. In addition, we give the theoretical guarantee of IMix,
which is lacking in [46].

Performance Comparison with Mixup-based Methods. We compare IMix with the strategy in [46]
(two branch Mixup, denoted as TBMix) and UIMix (a variant of IMix that mixes both user and item
embeddings). Note that we do not consider the version that only mixes user embeddings, because it
must ensure that the positive and negative items are the same, i.e., ei = ej and ei′ = ej′ , otherwise, a
quintuple (ẽu, ei, ei′ , ej , ej′) instead of triplet (ẽu, ei, ei′). We apply these strategies on LightGCN,
denoted LightGCN-TBMix, and LightGCN-UIMix, respectively, and the results are shown in Fig.
14. First, although TBMix shows good performance on Yelp2018, it performs poorly on Gowalla,
even inferior to LightGCN. Second, the proposed IMix is the best among the compared methods.
Third, the performance of UIMix, which mixes both user and item embeddings, is not as good as
IMix, which only mixes item embeddings. One possible reason is that the recommender system has
two types of feature spaces: user space and item space. IMix mixes in the item space of the same
user (same user space), while UIMix mixes across spaces (different user space and different item
space), which may lead to confusion in learning.

A.9 Experiments on node-features-included Models

In collaborative filtering, due to the lack of rich features, random embeddings are generally used as
initial features and learned during training, which is especially common in GCN-based recommender
systems [2, 10, 12, 11]. In this section, however, we explore whether recommendation models using
raw features can achieve similar findings. To solve the misalignment of user and item features, we
use a Multilayer Perceptron to map them into the space with the same dimensionality and apply
LightGCN and NGCF on it (denoted as F-LightGCN and F-NGCF).
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Figure 15: Numerical analysis based on F-LightGCN. (a): the generalization effect of normalized
graph on Gowalla. (b): the generalization effect of activation function on Gowalla.

Numerical Discussion. We construct experiments on the effect of the normalized graph and activation
function based on F-LightGCN, as shown in Fig. 15. In Fig. 15 (a), we find that the performance
gap of whether the graph is normalized or not is much smaller than the model that does not use the
node features (Fig. 2). This may be that the node features weaken the high dependence on the graph
structure. But it is undeniable that our finding still holds that using graph normalization helps model
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generalization. Second, the performance of different activation functions is still indistinguishable.
This provides support for simplifying the removal of nonlinear layers in GCN-based recommender
systems.

Table 6: Performance comparison of node-features-included model configured IMix.

Dataset Gowalla Yelp2018

Layer# Methods Recall@20 NDCG@20 Recall@20 NDCG@20

1 layer F-NGCF 0.1060 0.0820 0.0338 0.0268
F-NGCF-IMix 0.1217(+14.81%) 0.0965(+17.69%) 0.0422(+24.85%) 0.0337(+25.75%)

2 layer F-NGCF 0.1056 0.0822 0.0337 0.0269
F-NGCF-IMix 0.1254(+18.75%) 0.0968(+17.76%) 0.0431(+27.89%) 0.0346(+28.62%)

3 layer F-NGCF 0.1046 0.0830 0.0376 0.0301
F-NGCF-IMix 0.1277(+22.08%) 0.1008(+21.45%) 0.0442(+17.55%) 0.0350(+16.28%)

1 layer F-LightGCN 0.1334 0.1124 0.0445 0.0361
F-LightGCN-IMix 0.1552(+16.34%) 0.1334(+18.68%) 0.0530(+19.10%) 0.0435(+20.50%)

2 layer F-LightGCN 0.1498 0.1273 0.0498 0.0403
F-LightGCN-IMix 0.1588(+6.01%) 0.1359(+6.76%) 0.0572(+14.86%) 0.0468(+16.13%)

3 layer F-LightGCN 0.1578 0.1348 0.0548 0.0450
F-LightGCN-IMix 0.1606(+1.77%) 0.1361(+0.96%) 0.0576(+5.11%) 0.0468(+4.00%)

Numerical Discussion. We use the proposed augmentation strategy IMix (denoted as F-NGCF-IMix
and F-LightGCN-IMix) on F-NGCF as well as F-LightGCN, and the results are shown in Table 6.
The performance of the models using IMix has been gratifyingly improved. Considering Recall@20,
the average improvement is 15.76%, and the maximum improvement is an astonishing 27.89%. These
results again validate the ability of IMix to enhance recommendations.

A.10 Visualization
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Figure 16: The t-SNE visualization of the embeddings of positive and negative items for a single user
with or without IMix.

To intuitively measure the quality of model learning, we use the t-SNE tool [47] to visualize the
embeddings of positive and negative items of the same user learned by NGCF and NGCF-IMix.
We experiment on Gowalla and randomly sample the same number of negative items as positive
items. The visualization results are shown in Fig. 16. Blue nodes denote the embeddings of positive
items, and orange items represent the embeddings of negative ones. We can observe that compared to
NGCF, NGCF-IMix can better distinguish positive and negative items, which indicates that using the
proposed IMix has more potential to learn user preferences.
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B Proof of Lemma 1

We first present a lemma according to the covering number of matrices with bounded spectral norm.
Lemma B.1 ([34]). Let G = {A ∈ Rd1×d2 : ∥A∥2 ≤ λ} be the set of matrices with bounded
spectral norm and ϵ ≥ 0 be given. The covering number N (G, ϵ, ∥ · ∥F ) is upper bounded by

N (G, ϵ, ∥ · ∥F ) ≤
(
1 + 2

min{
√
d1,

√
d2}λ

ϵ

)d1d2

Then we provide the proof of Lemma 1. For ease of understanding, we summarize the proof strategy
used in this section as follows.

• Investigate the change in recommendations predicted by models due to the change in weights.
(Step 1&Step 2&Step 3)

• Derive the covering numbers of weight matrices with bounded norms using Lemma B.1 and
yield final result. (Step 4)

Lemma 1 (Covering number bound). Under Assumptions, we further assume that ∥hl
u∥∞, ∥hl

i∥∞ ≤
b for any u ∈ U , i ∈ I, and l = [L], let γ = ∥Ã∥∞. Given a sample set S with size n, the covering
number of F over S with specific ϵ is bounded as

logN
(
F|S , ϵ, ∥ · ∥∞

)
≤ d2 log

(
1 +

4(γ + 1)MB1

√
d

ϵ

)(
1 +

4γbMB2

√
d

ϵ

)
.

Moreover, when ϵ ≤ 4M
√
dmax{(γ + 1)B1, γbB2},

logN
(
F|S , ϵ, ∥ · ∥∞

)
≤ 2d2 log

8M(γ + 1)
√
dB1B2b

ϵ
, where

M = CϕC2L−1(Bu +Bi)
2 (2C)L − 1

2C − 1
,

C = Cϕ[B1 + γ(B1 +B2b)].

Proof. Let f to be a GCN-based recommendation model defined in Section 2.2 with a set of
weight matrices {W1,W2}, and f ′ with {W ′

1,W
′
2}. For any user-item (u, i), we first perform

that the preference score predicted by f and f ′ can be bounded by parameters. Then we derive
the l −∞−covering number bound for the function class F . For convenience, we denote the user
representation for user u and the item representation for item w at layer l generated by model f as ul

and wl, and those generated by model f ′ as u′
l and w′

l.

Step 1: Max norm of user representation and item representation. We first bound the maximum
spectral norm of user embeddings at layer l.

Let nl =
∑

w∈Nu
ãuw (W1wl−1 +W2 (ul−1 ⊙wl−1)), since ϕ(0) = 0, we have

max
u∈U,w∈I

∥ul∥2 = max
u∈U,w∈I

∥ϕ (W1ul−1 + nl)∥2

= max
u∈U,w∈I

∥ϕ (W1ul−1 + nl)− ϕ(0)∥2

≤ Cϕ · max
u∈U,w∈I

∥∥∥∥∥W1ul−1 +
∑

w∈Nu

ãuw (W1wl−1 +W2 (ul−1 ⊙wl−1))

∥∥∥∥∥
2

≤ Cϕ · max
u∈U,w∈I

[
∥W1ul−1∥2 +

∑
w∈Nu

|ãuw| (∥W1wl−1∥2 + ∥W2 (ul−1 ⊙wl−1)∥2)

]
≤ Cϕ · max

u∈U,w∈I
∥W1∥2 ∥ul−1∥2

+ Cϕ ·

(
max
u∈U

∑
w∈Nu

|ãuw|

)
· max
u∈U,w∈I

(∥W1∥2 ∥wl−1∥2 + ∥W2∥2 ∥ul−1 ⊙wl−1∥2) .
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The first inequality is due to the activation function ϕ(·) is Cϕ − lipschitz. Since ∥W1∥2 ≤
B1, ∥W2∥2 ≤ B2 and

max
u∈U

∑
w∈Nu

|ãuw| = ∥R̃u∥∞ ≤ ∥Ã∥∞ = γ,

we have

max
u∈U,w∈I

∥ul∥2 ≤ Cϕ · max
u∈U,w∈I

[B1 ∥ul−1∥2 + γB1 ∥wl−1∥2 + γB2 ∥ul−1 ⊙wl−1∥2]

≤ Cϕ · max
u∈U,w∈I

[B1 ∥ul−1∥2 + γ (B1 +B2 ∥ul−1∥∞) ∥wl−1∥2] .

The last inequality is due to ∥a⊙b∥2 ≤ ∥a∥2∥b∥∞ for any a, b ∈ Rd. Together with the assumption
about the infinity norm bound of node representation at any layer, which means ∥ul−1∥∞ ≤ b, we
can get

max
u∈U,w∈I

∥ul∥2 ≤ Cϕ · max
u∈U,w∈I

[B1 ∥ul−1∥2 + γ (B1 +B2b) ∥wl−1∥2] . (7)

Similarly,

max
u∈U,w∈I

∥wl∥2 ≤ Cϕ · max
u∈U,w∈I

[B1 ∥wl−1∥2 + γ (B1 +B2b) ∥ul−1∥2] . (8)

Combining Eq. (7) and Eq. (8), we have

Tl = max
u∈U,w∈I

(∥ul∥2 + ∥wl∥2) ≤ CϕTl−1 [(γ + 1)B1 + γB2b] .

Let Tl ≤ CTl−1, where C = Cϕ [(γ + 1)B1 + γB2b]. Since we assume that max
u∈U

∥xu∥2 ≤ Bu and

max
i∈I

∥xi∥2 ≤ Bi, then we have

T0 = max
u∈U,w∈I

(∥u0∥2 + ∥w0∥2) = max
u∈U,i∈I

(∥xu∥2 + ∥xi∥2) ≤ Bu +Bi,

and expanding the recursion Tl ≤ CTl−1, we get

Tl = max
u∈U,w∈I

(∥ul∥2 + ∥wl∥2) ≤ ClT0 ≤ Cl(Bu +Bi). (9)

Step 2: Max change of user representation and item representation. We first bound the maximum
difference between user representations at layer l generated by f and f ′.

Let nl =
∑

w∈Nu
ãuw (W1wl−1 +W2 (ul−1 ⊙wl−1)), then we have

max
u∈U,w∈I

∥ul − u′
l∥2 = max

u∈U,w∈I

∥∥ϕ (W1ul−1 + nl)− ϕ
(
W ′

1u
′
l−1 + n′

l

)∥∥
2

≤ Cϕ · max
u∈U,w∈I

∥∥(W1ul−1 + nl)−
(
W ′

1u
′
l−1 + n′

l

)∥∥
2

≤ Cϕ · max
u∈U,w∈I

(∥∥W1ul−1 −W ′
1u

′
l−1

∥∥
2
+ ∥nl − n′

l∥2
)
. (10)

Here the first inequality is due to the activation function ϕ(·) is Cϕ − lipschitz. Then we proceed to
bound the two terms in Eq. (10).∥∥W1ul−1 −W ′

1u
′
l−1

∥∥
2
≤ ∥W1ul−1 −W ′

1ul−1∥2 +
∥∥W ′

1ul−1 −W ′
1u

′
l−1

∥∥
2

≤ ∥W1 −W ′
1∥2 ∥ul−1∥2 + ∥W ′

1∥2
∥∥ul−1 − u′

l−1

∥∥
2

≤ ∥W1 −W ′
1∥2 ∥ul−1∥2 +B1

∥∥ul−1 − u′
l−1

∥∥
2
. (11)

The last inequality is due to ∥W1∥2 ≤ B1.

max
u∈U,w∈I

∥nl − n′
l∥2

≤ max
u∈U,w∈I

∑
w∈Nu

|ãuw|
∥∥(W1w

′
l−1 −W ′

1w
′
l−1

)
+
(
W2 (ul−1 ⊙wl−1)−W ′

2

(
u′
l−1 ⊙w′

l−1

))∥∥
2

≤ max
u∈U,w∈I

(∥∥W1w
′
l−1 −W ′

1w
′
l−1

∥∥
2
+
∥∥W2 (ul−1 ⊙wl−1)−W ′

2

(
u′
l−1 ⊙w′

l−1

)∥∥
2

)
×

(
max
u∈U

∑
w∈Nu

|ãuw|

)
. (12)
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Similar to Eq. (11),∥∥W1wl−1 −W ′
1w

′
l−1

∥∥
2
≤ ∥W1 −W ′

1∥2 ∥wl−1∥2 +B1

∥∥wl−1 −w′
l−1

∥∥
2
. (13)

And since ∥W2∥2 ≤ B2, we have∥∥W2 (ul−1 ⊙wl−1)−W ′
2

(
u′
l−1 ⊙w′

l−1

)∥∥
2

≤ ∥W2 −W ′
2∥2 ∥ul−1 ⊙wl−1∥2 +B2

∥∥ul−1 ⊙wl−1 − u′
l−1 ⊙w′

l−1

∥∥
2

≤ ∥W2 −W ′
2∥2 ∥ul−1 ⊙wl−1∥2 +B2

(∥∥ul−1 ⊙
(
wl−1 −w′

l−1

)∥∥
2
+
∥∥(ul−1 − u′

l−1

)
⊙w′

l−1

∥∥
2

)
≤ ∥W2 −W ′

2∥2 ∥ul−1∥2 ∥wl−1∥∞ +B2

(
∥ul−1∥∞

∥∥wl−1 −w′
l−1

∥∥
2
+
∥∥ul−1 − u′

l−1

∥∥
2

∥∥w′
l−1

∥∥
∞

)
.

(14)

The last inequality is due to ∥a⊙b∥2 ≤ ∥a∥2∥b∥∞ for any a, b ∈ Rd. Together with the assumption
about the infinity norm bound of node representation at any layer, which means ∥ul−1∥∞ ≤ b and∥∥w′

l−1

∥∥
∞ ≤ b. Substituting Eq. (13) and Eq.(14) into Eq. (12), and since

max
u∈U

∑
w∈Nu

|ãuw| = ∥R̃u∥∞ ≤ ∥Ã∥∞ = γ,

we can get

max
u∈U,w∈I

∥nl − n′
l∥2

≤ γ · max
u∈U,w∈I

(
∥W1 −W ′

1∥2 ∥wl−1∥2 +B1

∥∥wl−1 −w′
l−1

∥∥
2

)
+ γb · max

u∈U,w∈I

(
∥W2 −W ′

2∥2 ∥ul−1∥2 +B2

∥∥wl−1 −w′
l−1

∥∥
2
+B2

∥∥ul−1 − u′
l−1

∥∥
2

)
. (15)

Combining Eq. (11) and Eq. (15), we have

max
u∈U,w∈I

∥ul − u′
l∥2

≤ Cϕ · max
u∈U,w∈I

[∥ul−1∥2 (∥W1 −W ′
1∥2 + γb ∥W2 −W ′

2∥2) + γ ∥wl−1∥2 ∥W1 −W ′
1∥2]

+ Cϕ · max
u∈U,w∈I

[∥∥ul−1 − u′
l−1

∥∥
2
(B1 + γB2b) +

∥∥wl−1 −w′
l−1

∥∥
2
γ (B1 +B2b)

]
. (16)

Similarly, we have

max
u∈U,w∈I

∥wl −w′
l∥2

≤ Cϕ · max
u∈U,w∈I

[∥wl−1∥2 (∥W1 −W ′
1∥2 + γb ∥W2 −W ′

2∥2) + γ ∥ul−1∥2 ∥W1 −W ′
1∥2]

+ Cϕ · max
u∈U,w∈I

[∥∥wl−1 −w′
l−1

∥∥
2
(B1 + γB2b) +

∥∥ul−1 − u′
l−1

∥∥
2
γ (B1 +B2b)

]
. (17)

Combining Eq. (16) and Eq. (17), we have

∆l = max
u∈U,w∈I

(∥ul − u′
l∥2 + ∥wl −w′

l∥2)

= CϕTl−1 [(γ + 1) ∥W1 −W ′
1∥2 + γb ∥W2 −W ′

2∥2] + Cϕ∆l−1 [(γ + 1)B1 + 2γbB2]

≤ CϕTl−1 [(γ + 1) ∥W1 −W ′
1∥2 + γb ∥W2 −W ′

2∥2] + 2C∆l−1.

The last inequality is due to Cϕ [(γ + 1)B1 + 2γbB2] ≤ 2Cϕ [(γ + 1)B1 + γbB2] = 2C. According
to the norm bound for node representations completed in Eq. (9) and expanding the recursion, we can
get the following result,

∆l = max
u∈U,w∈I

(∥ul − u′
l∥2 + ∥wl −w′

l∥2)

≤ CϕC
l−1(Bu +Bi) [(γ + 1) ∥W1 −W ′

1∥2 + γb ∥W2 −W ′
2∥2] + 2C∆l−1

≤ CϕC
l−1(Bu +Bi) [(γ + 1) ∥W1 −W ′

1∥2 + γb ∥W2 −W ′
2∥2]

(2C)l − 1

2C − 1
. (18)
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Step 3: Max change of recommendation. For any user-item (u, i), we first perform that the
difference between preference scores predicted by f and f ′ can be bounded by w and w′. Then we
derive the covering number bound for the function class F with specific radius.

ΛL = max
(u,i)∈S

|f(u, i)− f ′(u, i)| = max
(u,i)∈S

∣∣∣eTuei − e′u
T
e′i

∣∣∣ .
There exists three types of integration operations to obtain the final node representations.

(Case 1) Final layer:

ΛL ≤ max
u∈U,w∈I

∣∣∣uT
LwL − u′

L
T
w′

L

∣∣∣
≤ max

u∈U,w∈I

(∣∣uT
LwL − uL

Tw′
L

∣∣+ ∣∣∣uT
Lw

′
L − u′

L
T
w′

L

∣∣∣)
≤ max

u∈U,w∈I
(∥uL∥2 ∥wL −w′

L∥2 + ∥uL − u′
L∥2 ∥w

′
L∥2) . (19)

Similarly,

ΛL ≤ max
u∈U,w∈I

(∥u′
L∥2 ∥wL −w′

L∥2 + ∥uL − u′
L∥2 ∥wL∥2) . (20)

Combining Eq. (19) and Eq. (20), we have

ΛL ≤ max
u∈U,w∈I

[(∥uL∥2 + ∥u′
L∥2) ∥wL −w′

L∥2 + ∥uL − u′
L∥2 (∥wL∥2 + ∥w′

L∥2)]

≤ 1

2
max

u∈U,w∈I
(∥uL∥2 + ∥u′

L∥2 + ∥wL∥2 + ∥w′
L∥2) (∥uL − u′

L∥2 + ∥wL −w′
L∥2)

≤ TL∆L. (21)

(Case 2) Linear combination:

ΛL ≤ max
u∈U,w∈I

∣∣∣∣∣∣
(

L∑
l=0

αlul

)T ( L∑
l=0

αlwl

)
−

(
L∑

l=0

αlu′
l

)T ( L∑
l=0

αlw′
l

)∣∣∣∣∣∣
≤ 1

2
max

u∈U,w∈I

(∥∥∥∥∥
L∑

l=0

αlul

∥∥∥∥∥
2

+

∥∥∥∥∥
L∑

l=0

αlu′
l

∥∥∥∥∥
2

+

∥∥∥∥∥
L∑

l=0

αlwl

∥∥∥∥∥
2

+

∥∥∥∥∥
L∑

l=0

αlw′
l

∥∥∥∥∥
2

)

×

(∥∥∥∥∥
L∑

l=0

αl (ul − u′
l)

∥∥∥∥∥
2

+

∥∥∥∥∥
L∑

l=0

αl (wl −w′
l)

∥∥∥∥∥
2

)

≤ 1

2
max

u∈U,w∈I

(
L∑

l=0

|αl| (∥ul∥2 + ∥u′
l∥2 + ∥wl∥2 + ∥w′

l∥2)

)(
L∑

l=0

|αl| (∥ul − u′
l∥2 + ∥wl −w′

l∥2)

)

≤

(
L∑

l=0

|αl|Tl

)(
L∑

l=0

|αl|∆l

)
.

(Case 3) Concatenation:

ΛL ≤ max
u∈U,w∈I

∣∣∣(u0 ⊕ · · · ⊕ uL)
T
(w0 ⊕ · · · ⊕wL)− (u′

0 ⊕ · · · ⊕ u′
L)

T
(w′

0 ⊕ · · · ⊕w′
L)
∣∣∣

= max
u∈U,w∈I

∣∣∣∣∣
L∑

l=0

uT
l wl −

L∑
l=0

u′
l
T
w′

l

∣∣∣∣∣
≤ max

u∈U,w∈I

L∑
l=0

∣∣∣uT
l wl − u′

l
T
w′

l

∣∣∣
≤

L∑
l=0

Tl∆l.
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For convenience, we only consider the outputs of the last layer as the final representations. Substituting
Eq. (9) and Eq. (18) in to Eq. (21), we will derive the following change bound of recommendations
predicted by two GCN-based models with different parameters.

ΛL = max
u∈U,w∈I

|f(u, i)− f ′(u, i)|

≤ CϕC
2L−1(Bu +Bi)

2 [(γ + 1) ∥W1 −W ′
1∥2 + γb ∥W2 −W ′

2∥2]
(2C)L − 1

2C − 1
.

Step 4: Covering number bound of the function class F over a sample set S with size n. Let
S = {zi}ni=1, we denote a vector fS = (f(z1), . . . , f(zn)) as the recommendations predicted by the
model f ∈ F for all sample in sample set S. Let M = CϕC2L−1(Bu +Bi)

2 (2C)L−1
2C−1 , we have

∥fS∥∞ = ΛL ≤M [(γ + 1) ∥W1 −W ′
1∥2 + γb ∥W2 −W ′

2∥2] .

Since for any matrix A, ∥A∥2 ≤ ∥A∥F , we can find a ϵ
2(γ+1)M−cover for W1 and a ϵ

2γbM−cover
for W2 to bound

∥W1 −W
′

1∥2 ≤ ∥W1 −W
′

1∥F ≤ ϵ

(γ + 1)M
,

∥W2 −W
′

2∥2 ≤ ∥W2 −W
′

2∥F ≤ ϵ

γbM
.

According to Lemma B.1, we have

N (W1,
ϵ

2(γ + 1)M
, ∥ · ∥F ) ≤

(
1 +

4(γ + 1)MB1

√
d

ϵ

)d2

,

N (W2,
ϵ

2γbM
, ∥ · ∥F ) ≤

(
1 +

4γbMB2

√
d

ϵ

)d2

.

Thus, we have a way of obtaining the covering number of the function class F to bound ΛL ≤ 2ϵ,

logN
(
F|S , ϵ, ∥ · ∥∞

)
≤ d2 log

(
1 +

4(γ + 1)MB1

√
d

ϵ

)(
1 +

4γbMB2

√
d

ϵ

)
.

Moreover, when ϵ ≤ 4M
√
dmax{(γ + 1)B1, γbB2},

logN
(
F|S , ϵ, ∥ · ∥∞

)
≤ d2 log

64M2dγ(γ + 1)B1B2b

ϵ2

≤ 2d2 log
8M

√
dB1B2b(γ + 1)

ϵ
.

The proof is complete.

C Proof of Lemma 2

We first present the definition of the inductive empirical Rademacher complexity and some lemmas
that we will use in the later proofs.
Definition C.1 (Inductive empirical Rademacher complexity). Let D be a probability distribution
over X . Suppose that the examples S = {xi}mi=1 are sampled independently from X according to D.
Let F be a family of functions mapping X to R. The empirical Rademacher complexity of F with
respect to the samples S is defined as

ℜ̂S(F) ≜ Eσ

{
sup
f∈F

1

m

m∑
i=1

σif(xi)

}
,

where σ = (σ1, · · · , σm)T , with σi is independent uniform random variables taking values in
{−1,+1}.
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Lemma C.1 ([48]). For any bounded loss function l : R → [−B,B], given a training set D ∼ Dm,
with probability of at least 1− δ, for any function g in a class G,

LG(g) ≤ L̂(g) + 2ℜ̂S(l ◦ G) + 4B

√
2 log 4/δ

m
.

Lemma C.2 (Contraction Lemma [29]). Let Φ : R → R be an L− lipschitz function, then for a
real-valued function set G,

ℜm (Φ ◦ G) ≤ Lℜm (G) .
Lemma C.3 (Extension of [35]). Let F be a real-valued function class taking values in [−e, e], and
assume that 0 ∈ F . Then the empirical Rademacher complexity of F can be bounded as

ℜ̂S (F) ≤ inf
α>0

(
4α√
n
+

12

n

∫ 2e
√
n

α

√
logN

(
F|S , ϵ, ∥ · ∥2

)
dϵ

)
.

Then we provide the proof of Lemma 2. The following summarizes the proof strategy and the roles
of the above lemmas.

• Derive a Rademacher complexity-based generalization error bound using Lemma C.1 and
Lemma C.2.

• Yield the final result with respect to discrete covering number via chaining using Lemma C.3.

Lemma 2. Let F be a real-valued function class taking values in [−e, e], and assume that 0 ∈ F .
Under assumptions, for any function f in a class F , with probability of at least 1− δ over an i.i.d.
size-m training set, we have

L(f) ≤ L̂m(f) + 4Cl inf
α>0

(
4α√
m

+
12

m

∫ 2e
√
m

α

√
logN

(
F|Sm

, ϵ, ∥ · ∥2
)
dϵ

)
+ 4B

√
2 log 4/δ

m
.

Proof. Let l ◦H = {(z, z′, y) → l(h)|h ∈ H} and H = {(z, z′, y) → y(f(z)− f(z′))|f ∈ F}. We
denote S1 = {(zi, yi)}mi=1 as the sample derived from Sm by keeping only the first element of each
pair and S2 = {(z′i, yi)}mi=1 the one obtained by keeping only the second element. Using Lemma C.1,
Lemma C.2 and the assumption about loss function, we have

L(f) ≤ L̂m(f) + 2ℜ̂Sm
(l ◦ H) + 4B

√
2 log 4/δ

m

≤ L̂m(f) + 2Clℜ̂Sm
(H) + 4B

√
2 log 4/δ

m
.

Here, since σiyi and σi have same distribution, ℜ̂m(H) can be bounded as follows,

ℜ̂Sm(H) = Eσ

{
sup
f∈F

1

m

m∑
i=1

σiyi(f(zi)− f(z′i))

}

= Eσ

{
sup
f∈F

1

m

m∑
i=1

σi(f(zi)− f(z′i))

}

≤ Eσ

{
sup
f∈F

1

m

m∑
i=1

σif(zi) + sup
f∈F

1

m

m∑
i=1

σif(z
′
i)

}
= ℜ̂S1

(F) + ℜ̂S2
(F).

Considering the distribution D as symmetric, we have ℜ̂S1
(F) = ℜ̂S2

(F), and then ℜ̂Sm
(H) ≤

2ℜ̂S1
(F). Together with Lemma C.3, we can derive the following generalization error bounded by

covering number.

L(f) ≤ L̂m(f) + 4Clℜ̂S1
+ 4B

√
2 log 4/δ

m

≤ L̂m(f) + 4Cl inf
α>0

(
4α√
m

+
12

m

∫ 2e
√
m

α

√
logN

(
F|S1

, ϵ, ∥ · ∥2
)
dϵ

)
+ 4B

√
2 log 4/δ

m
.

The proof is complete.
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D Proof of Lemma 3

Similarly, we first present the definition of the transductive Rademacher complexity (TRC) and some
TRC version of lemmas that we will use in the later proofs.

Definition D.1 (Transductive Rademacher complexity). Let F ⊆ Rm+u and p ∈ [0, 1/2]. Let
σ = (σ1, . . . , σm+u)

T be a vector of i.i.d. random variables such that

σi ≜

{
1 with probability p;
−1 with probability p;
0 with probability 1− 2p.

(22)

The transductive Rademacher complexity with parameter p is

ℜm+u(F , p) ≜
(

1

m
+

1

u

)
· Eσ

{
sup
f∈F

σTf

}
.

Lemma D.1 ([33]). Let B1 ≤ 0, B2 ≥ 0 and V be a (possibly infinite) set of real-valued vectors
in [B1, B2]

m+u. Let B = B2 − B1 and Bmax = max(|B1|, |B2|). Let Q1 = 1
u + 1

m , Q2 =

m+u
(m+u−1/2)(1−1/2(max(m,u))) and c0 =

√
32 log(4e)

3 < 5.05. Then with probability of at least 1− δ

over random partitions of S, for all v ∈ V ,

Lu(f) ≤L̂m(f) + ℜm+u(F ,
mu

(m+ u)2
) +Bmaxc0Q1

√
min(m,u) +B

√
Q1Q2

2
ln

1

δ
.

Lemma D.2 (Contraction lemma for TRC [33]). Let Φ : R → R be an L− lipschitz function, Then
for a real-valued function set G,

ℜm (Φ ◦ G, p) ≤ Lℜm (G, p) .

Lemma D.3 (Massart’s lemma for TRC). Let A ⊆ Rm be a finite set of vectors, r = max
x∈A

∥x∥2, then

1

m
Eσ

[
sup
x∈A

m∑
i=1

σixi

]
≤
r
√

2 log |A|
m

,

where σis are transductive Rademacher random variables defined in Eq. (22) and x = {x1, . . . , xm}.

Lemma D.4. Let F be a real-valued function class taking values in [−e, e], and assume that 0 ∈ F .
Then the transductive Rademacher complexity of F can be bounded as

ℜS (F , p) ≤ inf
α>0

(
4α√
n
+

12

n

∫ 2e
√
n

α

√
logN

(
F|S , ϵ, ∥ · ∥2

)
dϵ

)
.

The proofs of Lemma D.3 and Lemma D.4 follow the proofs for inductive Rademacher complexity,
and will be provided in Section D.1 and Section D.2.

Lemma 3. Let F be a real-valued function class taking values in [−e, e], and assume that 0 ∈ F .
Let Q1 = 1

u + 1
m , Q2 = m+u

(m+u−1/2)(1−1/2(max(m,u))) and c0 < 5.05. Under assumptions, for any
function f in a class F , with probability of at least 1− δ over random partitions of S, we have

Lu(f) ≤L̂m(f) + 2Cl inf
α>0

(
4α√
m+ u

+
12

m+ u

∫ 2e
√
m+u

α

√
logN

(
F|S , ϵ, ∥ · ∥2

)
dϵ

)

+Bc0Q1

√
min(m,u) + 2B

√
Q2

2
Q1 ln

1

δ
.

Proof. Let l ◦ H = {(z, z′, y) → l(h)|h ∈ H} and H = {(z, z′, y) → y(f(z) − f(z′))|f ∈ F}.
We denote S1 = {(zi, yi)}m+u

i=1 as the sample derived from S by keeping only the first element of
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each pair and S2 = {(z′i, yi)}
m+u
i=1 the one obtained by keeping only the second element. Using

Lemma D.1, Lemma C.2 and the assumption about loss function, we have

Lu(f) ≤ L̂m(f) + 2ℜS(l ◦ H) +Bc0Q1

√
min(m,u) + 2B

√
Q2

2
Q1 ln

1

δ

≤ L̂m(f) + 2ClℜS(H) +Bc0Q1

√
min(m,u) + 2B

√
Q2

2
Q1 ln

1

δ
.

Here, since σiyi and σi have same distribution, ℜS(H) can be bounded as follows,

ℜS(H) = Eσ

{
sup
f∈F

1

m

m∑
i=1

σiyi(f(zi)− f(z′i))

}

= Eσ

{
sup
f∈F

1

m

m∑
i=1

σi(f(zi)− f(z′i))

}

≤ Eσ

{
sup
f∈F

1

m

m∑
i=1

σif(zi) + sup
f∈F

1

m

m∑
i=1

σif(z
′
i)

}
= ℜS1

(F) + ℜS2
(F).

Considering the distribution D as symmetric, we have ℜS1(F) = ℜS2(F), and then ℜS(H) ≤
2ℜS1(F). Together with Lemma C.3, we can derive the following generalization error bounded by
Covering number.

L(f) ≤ L̂m(f) + 4ClℜS1(F) +Bc0Q1

√
min(m,u) + 2B

√
Q2

2
Q1 ln

1

δ

≤ L̂m(f) + 4Cl inf
α>0

(
4α√
m

+
12

m

∫ 2e
√
m

α

√
logN

(
F|S1

, ϵ, ∥ · ∥2
)
dϵ

)

+Bc0Q1

√
min(m,u) + 2B

√
Q2

2
Q1 ln

1

δ
.

The proof is complete.

D.1 Proof of Lemma D.3

Proof. The proof follows similar to the one for inductive Rademacher random variables [29].

For ∀t > 0, using Jensen’s inequality, we have

exp

(
tEσ

[
sup
x∈A

m∑
i=1

σixi

])
≤ Eσ

[
exp

(
t sup
x∈A

m∑
i=1

σixi

)]

= Eσ

[
sup
x∈A

exp

(
t

m∑
i=1

σixi

)]

≤
∑
x∈A

Eσ

[
exp

(
t

m∑
i=1

σixi

)]

=
∑
x∈A

Eσ

[
m∏
i=1

exp (tσixi)

]

=
∑
x∈A

m∏
i=1

Eσ [exp (tσixi)] .
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Since Eσ[σixi] = 0 and −|xi| ≤ σixi ≤ |xi|, using Hoeffding’s lemma, we have

exp

(
tEσ

[
sup
x∈A

m∑
i=1

σixi

])
≤
∑
x∈A

m∏
i=1

Eσ [exp (tσixi)]

≤
∑
x∈A

m∏
i=1

exp

(
t2(2xi)

2

8

)

=
∑
x∈A

exp

(
t2

2

m∑
i=1

x2i

)

≤
∑
x∈A

exp

(
t2r2

2

)
≤ |A| exp

(
t2r2

2

)
.

Therefore,

Eσ

[
sup
x∈A

m∑
i=1

σixi

]
≤ log |A|

t
+
tr2

2
.

Set t =
√

2 log |A|
t , we can complete the proof.

1

m
Eσ

[
sup
x∈A

m∑
i=1

σixi

]
≤
r
√

2 log |A|
m

.

The proof is complete.

D.2 Proof of Lemma D.4

Proof. The proof follows similar to the one for inductive empirical Rademacher complexity [35].

Let N be arbitrary and let εi = 2e
√
n2−(i−1) for each i ∈ [N ]. We denote the outputs of function

f ∈ F over training set S = {x1, . . . , xn} as a vector fS = (f(x1), . . . , f(xn)). For each i let Vi
denote the cover achieving N (F|S , εi, ∥ · ∥2), so that

∀f ∈ F ,∃v ∈ Vi, ∥fS − v∥2 ≤ εi,

and |Vi| = N (F|S , εi, ∥ · ∥2). For a fixed f ∈ F , let vi[f ] denote the nearest element in Vi. Then we
have

ℜn (F , p) =
1

n
Eσ sup

f∈F

n∑
j=1

σjf(xj)

=
1

n
Eσ sup

f∈F

 n∑
j=1

σj
(
f(xj)− vNj [f ]

)
+

N−1∑
i=1

n∑
j=1

σj
(
vij [f ]− vi+1

j [f ]
)
−

n∑
j=1

σjv
1
j [f ]


≤ 1

n
Eσ sup

f∈F

 n∑
j=1

σj
(
f(xj)− vNj [f ]

)+
1

n

N−1∑
i=1

Eσ sup
f∈F

 n∑
j=1

σj
(
vij [f ]− vi+1

j [f ]
)

+
1

n
Eσ sup

f∈F

 n∑
j=1

σjv
1
j [f ]

 . (23)

The last inequality is due to σi ∈ {−1,+1, 0}. For the first term in Eq. (23), using Cauchy-Schwarz
inequality, since (σj)

2 ≤ 1, we have

1

n
Eσ sup

f∈F

 n∑
j=1

σj
(
f(xj)− vNj [f ]

) ≤ 1

n

√√√√Eσ

n∑
j=1

(σj)2
√

sup
f∈F

(
f(xj)− vNj [f ]

)2 ≤ εN√
n
.
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For the second term in Eq. (23), let Wi = {vij [f ]− vi+1
j [f ]|f ∈ F}, then we have

Eσ sup
f∈F

 n∑
j=1

σj
(
vij [f ]− vi+1

j [f ]
) ≤ Eσ sup

w∈Wi

 n∑
j=1

σjwt

 . (24)

Since εi+1 ≤ εi, we can get |Wi| ≤ |Vi||Vi+1| ≤ |Vi+1|2, which implies Wi is a finite set. Using
Lemma D.3, the following inequality holds,

Eσ sup
w∈Wi

 n∑
j=1

σjwt

 ≤ sup
w∈Wi

∥w∥2
√
2 log |Wi| ≤ 2 sup

w∈Wi

∥w∥2
√

log |Vi+1|. (25)

And furthermore
sup

w∈Wi

∥w∥2 = sup
f∈F

∥∥vi[f ]− vi+1[f ]
∥∥
2

≤ sup
f∈F

∥∥vi[f ]− fS

∥∥
2
+ sup

f∈F

∥∥fS − vi+1[f ]
∥∥
2

≤ εi + εi+1

= 3εi+1.

Combining with Eq. (24) and Eq. (25), we have

1

n

N−1∑
i=1

Eσ sup
f∈F

 n∑
j=1

σj
(
vij [f ]− vi+1

j [f ]
) ≤ 6

n

N−1∑
i=1

εi+1

√
log |Vi+1|.

For the third term in Eq. (23), if we set V1 = {0}, ∥fS − 0∥2 ≤ 2e
√
n = ε1, which is a cover

achieving N (F|S , ε1, ∥ · ∥2). Then the following equation holds,

1

n
Eσ sup

f∈F

 n∑
j=1

σjv
1
j [f ]

 = 0.

Collecting all terms, we can get the final result.

ℜn (F , p) ≤
εN√
n
+

6

n

N−1∑
i=1

εi+1

√
N (F|S , εi+1, ∥ · ∥2)

≤ εN√
n
+

12

n

N−1∑
i=1

(εi − εi+1)
√
N (F|S , εi, ∥ · ∥2)

≤ εN√
n
+

12

n

∫ 2e
√
n

εN+1

√
N (F|S , ε, ∥ · ∥2).

Finally, select any α > 0 and takeN be the largest integer with εN+1 > α. Then εN < 4εN+2 < 4α,
we have

ℜn (F , p) ≤
4α√
n
+

12

n

∫ 2e
√
n

εN+1

√
N (F|S , ε, ∥ · ∥2).

The proof is complete.

E Proof of Proposition 1

The main the strategy in this proof is to derive the integral over discrete covering number.

Proposition 1 (Generalization Bound). Under assumptions, for any function f in a class F , in
inductive learning, with probability of at least 1− δ, we have,

L(f) ≤L̂m(f) +
24Cl√
m

C2L(Bu +Bi)
2d

√
2 log

(
8mM(γ + 1)

√
dB1B2b

)
+

16Cl

m
+ 4B

√
2 log 4/δ

m
.
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Accordingly, in transductive learning, with probability of at least 1− δ, we have,

Lu(f) ≤L̂m(f) +
24Cl√
m+ u

C2L(Bu +Bi)
2d

√
2 log

(
8(m+ u)M(γ + 1)

√
dB1B2b

)
+

4Cl

√
2mu

(m+ u)2
+Bc0Q1

√
min(m,u) + 2B

√
Q1Q2

2
ln

1

δ
.

Proof. First, we need to derive the bound [−e, e] for any f ∈ F .

max
u∈U,w∈I

∣∣uT
LwL

∣∣ ≤ max
u∈U,w∈I

∥uL∥2∥wL∥2 ≤ 1

4
max

u∈U,w∈I
(∥uL∥2 + ∥wL∥2)2 =

1

4
T 2
L.

Using Eq. (9), we have e = 1
4C

2L(Bu +Bi)
2. Together with Lemma 1 and Lemma 2, the generaliza-

tion error can be bounded as follows.

L(f) ≤ L̂m(f) + 4Cl inf
α>0

(
4α√
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+
12

m

∫ 2e
√
m

α

√
logN
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, ϵ, ∥ · ∥2
)
dϵ

)
+ 4B

√
2 log 4/δ

m
.

(26)

Since for any vector a ∈ Rn, ∥a∥2 ≤
√
n∥a∥∞, we have

4Cl inf
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(
4α√
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+
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m
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≤ 4Cl inf
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 4α√
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24ed√
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2 log
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= 4Cl inf
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2 log
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 . (27)

Set α =
√

1
m and substitute Eq. (27) into Eq. (26), we have

L(f) ≤L̂m(f) +
24Cl√
m

C2L(Bu +Bi)
2d

√
2 log

(
8mM(γ + 1)

√
dB1B2b

)
+

16Cl

m
+ 4B

√
2 log 4/δ

m
.

Similarly, we can derive the generalization error bound for transductive learning.

Lu(f) ≤L̂m(f) +
24Cl√
m+ u

C2L(Bu +Bi)
2d

√
2 log

(
8(m+ u)M(γ + 1)

√
dB1B2b

)
+

4Cl

√
2mu

(m+ u)2
+Bc0Q1

√
min(m,u) + 2B

√
Q1Q2

2
ln

1

δ
.

The proof is complete.

F Proofs of Section 4

We consider a training set Sm = {(uk, ik, i′k)}mk=1 with labels {yk}mk=1, where yk = 1 if user uk
prefers item ik to i′k, otherwise yk = 0. Denote by Du all users in training set and Di all item pairs in
training set. We assume that (u, i, i′) ∈ Sm for any u ∈ Du and (i, i′) ∈ Di. We further assume that
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the training set Sm is symmetric, which implies if (u, i, i′) ∈ Sm with label y, then (u, i′, i) ∈ Sm

with label 1− y. We also assume that the samplings of user u and item-pair (i, i′) are independent.

Recall the Item Mixture strategy proposed in Section 4. Since the recommendation is invariant to
the scaling of the embedding, so it suffices to consider the following definition. For a triplet (u, i, i′)
with label yi, we arbitrarily sample another triplet (u, j, j′) with label yj .

F.1 Proof of Lemma 4

In this section, we prove by second-order Taylor expansion that the IMix loss approximates the
standard loss plus a regularization term.

Lemma 4. Consider the symmetric dataset Sm and denote Σ̂ = 1
m

m∑
k=1

(eik − ei′k)(eik − ei′k)
T , the

second-order approximation of IMix loss defined in Eq. (5) is given by

Lmix
m ≈ Lstd

m + Eλ

[
(1− λ)2

λ2

]
· 1

2m

∑m

k=1

[
eηk

(1 + eηk)2
eTuk

Σ̂euk

]
.

where ηk = eTuk
(eik − ei′k).

Proof. The IMix loss function over training set Sm is defined as

LIMix
m =

1

m

m∑
k=1

Eλ∼Dλ
E(j,j′)∼Di

ℓ
(
eTuk

(ẽik − ẽi′k), yk

)
=

1

m
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log
(
1 + exp

(
eTuk

(ẽik − ẽi′k)
))

− yke
T
uk
(ẽik − ẽi′k)

]
.

(28)

Denote the randomness (of λ and (j, j′)) by ξ, since the training set Sm is symmetric, we have

1

m

m∑
k=1

Eξ − yke
T
uk
(ẽik − ẽi′k) =

1

m

m∑
k=1

−ykeTuk
(eik − ei′k).

Further using the second-order Taylor expansion, we can approximate the first term in Eq. (28) as
follows,

1

m

m∑
k=1

Eξ

[
log
(
1 + exp

(
eTuk

(ẽik − ẽi′k)
))]

2nd−order approx.
=

1

m
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log (1 + eηk) +R1 +R2,

where ηk = eTuk
(eik − ei′k). Since the training set is symmetric, we have
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m
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1

1 + e−ηk
· Eξe

T
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[
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]
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Based on the assumption that (u, i, i′) ∈ Sm for any u ∈ Du and (i, i′) ∈ Di, we can get
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(1 + eηk)2
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,

Then we have the following second-order Taylor approximation of the IMix loss.

Lmix
m ≈ Lstd

m + Eλ

[
(1− λ)2

]
· 1

2m

∑m

k=1

[
eηk

(1 + eηk)2
eTuk

Σ̂euk

]
.

The proof is complete.
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F.2 Proof of Remark 3

We first present a fundamental uniform convergence theory, then we establish the generalization
bounds for via Rademacher complexity.

Lemma F.1 ([48]). For any bounded loss function l : R → [−B,B], with probability of at least
1− δ, for any function g in a class G,

LG(g) ≤ L̂(g) + 2ESm∼Dmℜ̂m(l ◦ G) +B

√
2 log 2/δ

m
.

Remark 3. Let ψ(u) = eu

(1+eu)2 , we shed light upon the generalization bound by investigating the
following function class:

Fmix
τ = {F , such that Euk,ik,i′k

[
eηk

(1 + eηk)2
eTuk

Σeuk

]
≤ τ}.

Assuming that the distribution of (ei − ei′) is ρ−retentive for some ρ ∈ (0, 1/2], that is, if for
any non-zero vector eu,

[
E(i,i′)ψ(e

T
u (ei − ei′))

]2 ≥ ρmin{1,E(i,i′)

(
eTu (ei − ei′)

)2}. For any
f ∈ Fmix

τ , with probability of at least 1− δ, we have,
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ρ
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ρ
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)
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√
2 log 2/δ

m
.

For the general condition, we focus on the function class as follows,

Fstd
τ = {F|E(u,i)

[
∥eu∥22 + ∥ei∥22

]
≤ τ}.

Then the generalization error bound is

L(f) ≤ L̂(f) + 2Cl

√
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|Di|
+B

√
2 log 2/δ

m
.

Proof. Let x̃i = Σ†/2(ei − ei′) and vu = Σ1/2eu, we can bound the empirical Rademacher
complexity as follows,
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(Fmix
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E
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≤τ
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[
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m
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T
uk
x̃ik .

The last inequality is due to the samplings of user and item-pair are independent.
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According to the assumptions on training set and Jensen’s inequality, we have

ℜ̂Sm(Fmix
τ ) ≤ Eσ sup

E∥vT
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ρ

1

m

m∑
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≤ Eσ sup
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ρ )1/2

1

m

m∑
k=1

σkv
T
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≤ 1

m
Eσ

∑
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∑
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T
u x̃i

≤ 1

m
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∑
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∥vT

u ∥2

∥∥∥∥∥∥
∑

(i,i′)∈Di

σix̃i

∥∥∥∥∥∥
2

≤ 1

m

∑
u∈Du

sup
E∥vT

u ∥2≤( τ
ρ )1/4∨( τ

ρ )1/2
∥vT

u ∥2

√√√√√Eσ

∥∥∥∥∥∥
∑

(i,i′)∈Di

σix̃i

∥∥∥∥∥∥
2

2

≤ 1
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√ ∑
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x̃T
i x̃i.

Therefore, we have the following bounded Rademacher complexity.

ℜm(Fmix
τ ) ≤

√
|Di|
m

·
√
rank(Σ) ·

∑
u∈Du

sup
E∥vT

u ∥2≤( τ
ρ )1/4∨( τ

ρ )1/2
∥vT

u ∥2

≤ 1√
|Di|

·
√
rank(Σ) · (τ

ρ
)1/4 ∨ (

τ

ρ
)1/2

= max{(τ
ρ
)1/4, (

τ

ρ
)1/2}

√
rank(Σ)

|Di|
.

Similarly, for the general condition, we can bound the empirical Rademacher complexity as follows,

ℜm(F) ≤

√
τ2

|Di|
.

Suppose there exists a loss function, which is Cl − lipschitz continuous and bounded by [−B,B],
based on Lemma F.1, we can derive the corresponding generalization error bound using these two
Rademacher complexities.

The proof is complete.
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