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Abstract

Knowledge Distillation (KD) aims at transferring the knowledge of a well-
performed neural network (the teacher) to a weaker one (the student). A peculiar
phenomenon is that a more accurate model doesn’t necessarily teach better, and
temperature adjustment can neither alleviate the mismatched capacity. To explain
this, we decompose the efficacy of KD into three parts: correct guidance, smooth
regularization, and class discriminability. The last term describes the distinctness
of wrong class probabilities that the teacher provides in KD. Complex teachers
tend to be over-confident and traditional temperature scaling limits the efficacy of
class discriminability, resulting in less discriminative wrong class probabilities.
Therefore, we propose Asymmetric Temperature Scaling (ATS), which separately
applies a higher/lower temperature to the correct/wrong class. ATS enlarges the
variance of wrong class probabilities in the teacher’s label and makes the students
grasp the absolute affinities of wrong classes to the target class as discriminative
as possible. Both theoretical analysis and extensive experimental results demon-
strate the effectiveness of ATS. The demo developed in Mindspore is available at
https://gitee.com/lxcnju/ats-mindspore and will be available at https:
//gitee.com/mindspore/models/tree/master/research/cv/ats.

1 Introduction

Although large-scale deep neural networks have achieved overwhelming successes in many real-
world applications [22, 11, 60], the vast capacity hinders them from being deployed on portable
devices with limited computation and storage resources [3]. Some efficient architectures, e.g.,
MobileNets [14, 37] and ShuffleNets [59, 29], have been proposed for lightweight deployment, while
their performances are usually constrained. Fortunately, knowledge distillation (KD) [46, 13] could
transfer the knowledge of a more complex and well-performed network (i.e., the teacher) to them.

The original KD [13] forces the student to mimic the teacher’s behavior via minimizing the Kullback-
Leibler (KL) divergence between their output probabilities. Recent studies generalize KD to various
types of knowledge [36, 57, 17, 12, 33, 1, 34, 44, 52, 27, 54, 45, 50, 26, 23] or various distillation
schemes [61, 2, 58, 20]. An intuitive sense after the proposal of KD [13] is that larger teachers could
teach students better because their accuracies are higher. A recent work [6] first points out that the
teacher accuracy is a poor predictor of the student’s performance. That is, more accurate neural
networks don’t necessarily teach better. Until now, this phenomenon is still counter-intuitive [51],
surprising [31], and unexplored [24]. Different from some existing empirical studies and theoretical
analysis [40, 18, 30, 35, 55, 63, 6, 28, 15], we investigate the miraculous phenomenon in detail and
aim to answer the following questions: What’s the real reason that more complex teachers can’t teach
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Figure 1: Left: Decomposition of a teacher’s label. The first class is the target. As temperature
increases, correct guidance is weaker, smooth regularization is stronger, while class discriminability
(measured by the variance of wrong class probabilities) will first increase and then decrease. Right:
Larger/Smaller teachers’ logits are consistent in relative class affinities, i.e., logit values of the four
wrong classes are in the same order of magnitude. However, larger teachers are over-confident and
give a larger target logit or smaller inherent variance, leading to a smaller derived variance under
traditional temperature scaling, i.e., less distinct wrong class probabilities after softmax.

well? Is it really impossible to make larger teachers teach better through simple operations, such as
temperature scaling?

To answer the first question, we focus on analyzing the distinctness of wrong class probabilities
that a teacher provides in KD. We decompose the teacher’s label into three parts (see Sect. 4.1): (I)
Correct Guidance: the correct class’s probability; (II) Smooth Regularization: the average probability
of wrong classes; (III) Class Discriminability: the variance of wrong class probabilities (defined as
derived variance). The commonly utilized temperature scaling could control the efficacy of these
three terms (the left of Fig. 1). More complex teachers are over-confident and assign a larger score for
the correct class or less varied scores for the wrong classes. If we use a uniform temperature to scale
their logits, the class discriminability of the larger teacher is less effective (theoretically analyzed in
Sect. 4.2), i.e., the probabilities of wrong classes are less distinct (the right of Fig. 1).

As to the second question, we focus on enlarging the variance of wrong class probabilities (i.e.,
derived variance) that a teacher provides to make the distillation process more discriminative. To
specifically enhance the distinctness of wrong class probabilities, we separately apply a higher/lower
temperature to the correct/wrong class’s logit instead of a uniform temperature (see Sect. 4.3). We
name our method Asymmetric Temperature Scaling (ATS), and abundant experimental studies verify
that utilizing this simple operation could make larger teachers teach well again.

2 Related Works

KD with Larger Teacher: Although KD has been a general technique for knowledge transfer in
various applications [13, 61, 42, 25], could any student learn from any teacher? [6] first studies the
KD’s dependence on student and teacher architectures. They find that larger models do not often
make better teachers and propose the early-stopped teacher as a solution. [31] introduces a multi-step
KD process, employing an intermediate-sized network (the teacher assistant) to bridge the capacity
gap. [51] formulates KD as a multi-task learning problem with several knowledge transfer losses. The
transfer loss will be utilized only when its gradient direction is consistent with the cross-entropy loss.
[10, 24] define the knowledge gap as residual, which is utilized to teach the residual student, and
then they take the ensemble of the student and residual student for inference. These works attribute
the worse teaching performance to capacity mismatch, i.e., weaker students can’t completely mimic
the excellent teachers. However, they don’t explain this peculiar phenomenon in detail.

Understanding of KD: Quite a few works focus on understanding the advantages of KD from a
principled perspective. [28] unifies KD and privileged information into generalized distillation.
[35, 18] utilize gradient flow and neural tangent kernel to analyze the convergence property of KD
under deep linear networks and infinitely wide networks. [5] explains KD via quantifying the task-
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Table 1: The used notations in this paper. The definitions of Derived Average, Derived Variance and
Inherent Variance are only for wrong classes (Sect. 4.1 and Sect. 4.2).

All Classes Wrong Classes
Logit f g = [fc]c≠y
Probability p = SF(f) q = [pc]c≠y
Derived Average of Probabilities - e(q) = ∑j qj/(C − 1)
Derived Variance of Probabilities - v(q) = ∑j(qj − e(q))

2/(C − 1)
Inherent Variance of Probabilities - q̃ = SF(g), v(q̃) = ∑j(q̃j − e(q̃))

2/(C − 1)

relevant and task-irrelevant visual concepts. [7] casts KD as a semiparametric inference problem and
proposes corresponding enhancements. Our work is more related to KD decompositions. [9] treats
the teacher’s correct/wrong outputs differently, respectively explaining them as importance weighting
and class similarities. [40] further decomposes the “dark knowledge” into universal knowledge,
domain knowledge, and gradient rescaling. [30] establishes a bias-variance tradeoff to quantify the
divergence of a teacher with the Bayes teacher. [63] utilizes bias-variance decomposition to analyze
KD and discovers regularization samples that could increase bias and decrease variance. Our work is
also related to Label smoothing (LS). [55] points out that the regularization effect in KD is similar to
LS. [32] finds that training a teacher with LS could degrade its teaching quality, and attributes this
to the fact that LS erases relative information between teacher logits. Recently, [38] further studies
this problem and proposes a metric to measure the degree of erased information quantitatively. Our
work also decomposes KD into several effects to study why more complex teachers can’t teach well.
Detailed relatedness to these works is presented in Sect. 4.1.

3 Background

We consider a C-class classification problem with Y = [C] = {1,2,⋯,C}. Given a neural network
and a sample pair (x, y), we could obtain the “logits” as f(x) ∈ RC . We denote the softmax function
with temperature τ as SF(⋅; τ), i.e., pc(τ) = exp (fc(x)/τ) /Z(τ) and Z(τ) = ∑

C
j=1 exp (fj(x)/τ),

where p(τ) is the softened probability vector that a network outputs and c is the index of class. Later,
we may omit the dependence on x and τ if without any ambiguity. We use fy and py to denote the
correct class’s logit and probability, while we use g and q to represent the vector of wrong classes’
logits and probabilities, i.e., g = [fc]c≠y and q = [pc]c≠y . The notations could be found in Tab. 1.

The most standard KD [13] contains two stages of training. The first stage trains complex teachers,
and then the second stage transfers the knowledge from teachers to a smaller student via minimizing
the KL divergence between softened probabilities. Usually, the loss function during the second stage
(i.e., the student’s learning objective) is a combination of cross-entropy loss and distillation loss:

` = −(1 − λ) logpSy (1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CE Loss

−λτ2
C

∑
c=1

pTc (τ) logp
S
c (τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KD Loss

, (1)

where the upper script “T”/“S” denotes “Teacher”/“Student” respectively. Commonly, a default
temperature of 1 is utilized for the CE loss, and the student could also take a temperature of 1 for the
KD loss, e.g., pSc (τ = 1) [13, 31, 45, 44].

Suppose we have two teachers, denoted as Tlarge and Tsmall, and the larger teacher performs better on
both training and test data. If we use them to teach the same student S, we could find that the student’s
performance is worse when mimicking the larger teacher’s outputs. Adjusting the temperature could
neither make the larger teacher teach well. The details of this phenomenon could be found in [6, 31]
and Fig. 9. Obviously, pTlarge could differ a lot from pTsmall , which is the only difference in the loss
function when teaching the student. Hence, we focus on analyzing what probability distributions are
tended to be provided by teachers with different capacities.
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4 Proposed Methods

This section first decomposes KD into three parts and defines several quantitative metrics. Then, we
present theoretical analysis to demonstrate why larger networks can’t teach well. Finally, we propose
a more appropriate temperature scaling approach as an alternative.

4.1 KD Decomposition

We omit the coefficient of λτ2 in Eq. 1, and define e (qT (τ)) = 1
C−1 ∑

C
j=1,j≠y p

T
j (τ), where qT (τ) =

[pTc (τ)]c≠y . Then, we have the following decomposition:

`kd = −p
T
y (τ) logp

S
y (τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Correct Guidance

−∑
c≠y

e (qT (τ)) logpSc (τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Smooth Regularization

−∑
c≠y

(pTc (τ) − e (q
T
(τ))) logpSc (τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Class Discriminability

. (2)

(I) Correct Guidance: this term guarantees correctness during teaching. The decomposition in [9]
also contains this term, which is explained as importance weighting. This term works similarly to the
cross-entropy loss, which could be dealt with separately when applying temperature scaling.

(II) Smooth Regularization: some previous works [55, 62, 63] attribute the success of KD to the
efficacy of regularization and study its relation to label smoothing (LS). The combination of this term
with correct guidance works similarly to LS. Notably, e (qT (τ)) differs across samples, implying
that the strength of smoothing is instance-specific, which is similar to the analysis in [62].

(III) Class Discriminability: this term tells the student the affinity of wrong classes to the correct
class. Transferring the knowledge of class similarities to students has been the mainstream guess of
the “dark knowledge” in KD [13, 38]. Ideally, a good teacher should be as discriminating as possible
in telling students which classes are more related to the correct class.

Illustrations of the decomposition are presented in the left of Fig. 1. Obviously, an appropriate
temperature should simultaneously contain the efficacy of the three terms, e.g., the shaded row in
Fig. 1. A too high or too low temperature could lead to smaller class discriminability, making the
guidance less different among wrong classes, which weakens the distillation performance in practical.
Among these three terms, we advocate that class discriminability is more fundamental in KD and
present more discussions in Appendix A (verified in Fig. 2 and Fig. 3).

To measure these three terms quantitatively, we use the target class probability (i.e., py), the average
of wrong class probabilities (i.e., e(q) = 1

C−1 ∑j≠y pj), and the variance of wrong class probabilities
(i.e., v(q) = 1

C−1 ∑j≠y (pj − e(q))
2) as estimators. e(⋅) and v(⋅) calculates the mean and variance

of the elements in a vector. In some cases, we use the standard deviation as an estimator for the
third term, i.e., σ(q) = v1/2(q). Because the latter two terms are calculated after applying softmax
to the complete logit vector, we define them as Derived Average (DA) and Derived Variance (DV),
respectively. In experiments, we calculate these metrics for all training samples and sometimes report
the average or standard deviation across these samples.

4.2 Theoretical Analysis

We analyze the mean and variance of the softened probability vector, i.e., the teacher’s label pT (τ)
used in KD. We defer the proofs of Lemma 4.1 and Proposition 4.3, 4.4 to Appendix B.
Lemma 4.1 (Variance of Softened Probabilities). Given a logit vector f ∈ RC and the softened
probability vector p = SF(f ; τ), τ ∈ (0,∞), v(p) monotonically decreases as τ increases.

As τ increases, p(τ) becomes more uniform, i.e., it’s entropy increases. However, we especially
focus on the wrong classes, where the mean and variance are more intuitive to calculate and analyze.
Assumption 4.2. The target logit is higher than other classes’ logits, i.e., fy ≥ fc,∀c ≠ y.

Assumption 4.2 is rational because well-performed teachers could almost achieve a higher accuracy
(e.g., >95%) on the training set, and most training samples meet this requirement.
Proposition 4.3. Under Assumption 4.2, py monotonically decreases as τ increases, and e(q)
monotonically increases as τ increases. As τ →∞, e(q)→ 1/C.
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Proposition 4.3 implies that increasing temperature could lead to a higher derived average (empirically
see Fig. 7) and strengthen the smooth regularization term in Eq. 2.

Before we analyze the class discriminability term, we define q̃(τ) as the result of applying softmax
only to the wrong logits with temperature τ , i.e., q̃(τ) = SF(g; τ). For the element index c′ of q, we
have

q̃c′(τ) = exp(gc′/τ)/∑
j

exp(gj/τ). (3)

Notably, q̃ differs from q a lot. Specifically, the former satisfies ∑c′ q̃c′ = 1, while the summation of
the latter is ∑c≠y pc = 1 − py . The former does not depend on the correct class’s logit while the latter
does. We name v(q̃) Inherent Variance (IV) because it only depends on wrong classes’ logits.
Proposition 4.4 (Derived Variance vs. Inherent Variance). The derived variance is determined by
the square of derived average and the inherent variance via:

v(q)
±

DV

= (C − 1)2 e2(q)
²

DA2

v(q̃)
±

IV

. (4)

With τ increases, e(q) increases (Proposition 4.3) while v(q̃) decreases (Lemma 4.1), and hence, it
is not so easy to judge the specific monotonicity of v(q) w.r.t. τ . Empirically, we observe that the
derived variance first increases and then decreases (see Fig. 7), which conforms to the change of the
class discriminability as illustrated in Fig. 1.

We could use Proposition 4.4 to clearly analyze why larger teacher networks can’t teach well. Before
this, we present another two properties and a corollary without detailed proof.
Remark 4.5. Fixing g and τ , a higher target logit fy leads to a higher py, i.e., a smaller derived
average e(q).
Remark 4.6. Fixing τ , less varied wrong logits g leads to less varied q̃, i.e., a smaller inherent
variance v(q̃).
Corollary 4.7. Suppose we have two teachers T1 and T2, and their logit vectors for a same sample
are fT1 and fT2 .

• If fT1
y ≥ fT2

y while gT1 and gT2 are nearly the same, then pT1
y ≥ pT2

y (Remark 4.5) while
v(q̃T1) ≈ v(q̃T2). Hence, v(qT1) ≤ v(qT2).

• If fT1
y ≈ fT2

y while v(gT1) ≤ v(gT2), then pT1
y ≈ pT2

y while v(q̃T1) ≤ v(q̃T2) (Remark 4.6).
Hence, v(qT1) ≤ v(qT2).

This corollary explains why a larger teacher can’t teach better. Because the larger teacher tends to be
over-confident, the target logit fy may be larger or the variance of wrong logits v(g) may be smaller.
These are illustrated in Fig. 1 and empirically verified in Fig. 4. Then the derived variance v(q) may
be smaller, limiting the efficacy of class discriminability in Eq. 2. Empirical results are in Fig. 7.

Notably, we focus on analyzing the variance of wrong class probabilities instead of all classes.
Maximizing the variance of all classes’ probabilities does not mean maximizing the variance of
wrong classes’. For example, although a very low temperature can maximize the variance of all
classes’ probabilities, the generated teacher’s label is one-hot that shows no distinctness between
wrong classes. In other words, the effectiveness of KD should be more related to the distinctness
between wrong classes rather than all classes. However, traditional temperature scaling applies a
uniform temperature for all classes, which cannot separately handle the wrong classes.

4.3 Asymmetric Temperature Scaling

We conclude the above analysis: if a larger teacher makes an over-confident prediction, the wrong
class probabilities it provides could be not discriminative enough. Utilizing a uniform temperature
could not enlarge the derived variance as much as possible with the interference of the target class’s
logit (see the middle of Fig. 7). Thanks to the decomposition in Eq. 2, the correct guidance term
works similarly to the cross-entropy loss and allows us to deal with it separately. Hence, we propose
a novel temperature scaling approach:

pc(τ1, τ2) = exp (fc/τc) / ∑
j∈[C]

exp (fj/τj) , τi = I{i = y}τ1 + I{i ≠ y}τ2,∀i ∈ [C], (5)
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where we take τ1 > τ2 > 0. This approach is named Asymmetric Temperature Scaling (ATS) because
we apply different temperatures to the logits of correct and wrong classes. According to Eq. 4, ATS
could bring such benefits when the teacher is over-confident:

• If the teacher outputs a larger logit fy for the correct class, a relatively larger τ1 could
decrease it to a reasonable magnitude, i.e., decreasing py and increasing e(q), and finally
increasing the derived variance v(q);

• If the teacher outputs less varied logits g for wrong classes, a relatively smaller temperature
τ2 could make them more diverse, i.e., increasing v(q̃), finally increasing the derived
variance v(q).

ATS is more flexible in enlarging the derived variance (see the right of Fig. 7), i.e., it could generate
more discriminative distillation guidance during teaching. Take the demo in Fig. 1 as an example, the
smaller and larger teacher captures the same relative class affinities, e.g., they both know that the
fourth/fifth class (shaded cells) is the most/least relevant to the target class. However, with a uniform
temperature 4.0, the smaller teacher provides probabilities (0.073,0.060) for these two classes,
while over-confident larger teachers provide (0.040,0.033) or (0.074,0.067). Clearly, the absolute
affinities of the larger teachers are not so discriminative as the smaller teacher’s. Utilizing ATS, we
could respectively apply (τ1 = 4.67, τ2 = 4.0) or (τ1 = 4.0, τ2 = 2.0) to the over-confident teacher’s
logits, generating the same probability vector as the smaller teacher’s. ATS utilizes two temperatures
and creates the wiggle room to make the distribution over wrong classes more discriminative.

5 Experiments

We use CIFAR-10/CIFAR-100 [21], TinyImageNet [43], CUB [47], Stanford Dogs [19], and
Google Speech Commands [48] as the datasets. For teacher networks, we use different versions
of ResNet [11], WideResNet [56], ResNeXt [49]. For student networks, we use VGG [39], Shuf-
fleNetV1/V2 [59, 29], AlexNet [22], MobileNetV2 [37], and DSCNN [60].

We majorly follow the training settings in [44] 1. Except that the Google Speech Commands takes
50 epochs, we train networks on other datasets with 240 epochs. We use the SGD optimizer with
0.9 momentum. For VGG, AlexNet, ResNet, WideResNet, and ResNeXt, we set the learning rate as
0.05 (recommended by [44]). For ShuffleNet and MobileNet, we use a smaller learning rate of 0.01
(recommended by [44]). We use the pre-trained models provided in PyTorch for CUB and Stanford
Dogs, and correspondingly, their learning rates are scaled by 0.1×. During training, we decay the
learning rate by 0.1 every 30 epochs after the first 150 epochs (recommended by [44]). For Google
Speech Commands, we decay the learning rate via the cosine annealing. We set the batch size as 128
for CIFAR data, 64 for other datasets. Other dataset, network and training details are in Appendix C.

5.1 Observations

Class discriminability matters a lot in KD and correlates with the KD improvement. To show
the importance of class discriminability in KD, we omit the distinctness of wrong class probabilities
during distillation. Specifically, we only keep the first two terms in Eq. 2, which works similarly to

1https://github.com/HobbitLong/RepDistiller
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Figure 7: The change of derived average (e(q))
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0.1 to 10.0 on CIFAR-10. The third one shows
the results of ResNet110 with the proposed ATS.
DV under TS is limited while ATS enlarges it.

the instance-specific label smoothing (abbreviated as “ILS”). Fig. 2 shows students’ performances on
CIFAR-100. Without the third term in Eq. 2, both small teachers (“ST”) and larger teachers (“LT”)
teach worse significantly. Then, we investigate the correlations of KD performance improvement
(i.e., the test accuracy change ratio with KD w.r.t. without KD) with smooth regularization and class
discriminability under 270 pairs of “(teacher, student, temperature)”. Details are in Appendix C.4.
Fig. 3 plots the scatters, where dots show pairs whose improvement is higher than 2%. Clearly,
teachers with a larger derived variance tend to guide better. These observations show the rationality
of the proposed KD decomposition and imply that enhancing derived variance is beneficial.

Larger teachers provide a larger target logit or less varied wrong logits. We first compare the
logit distributions provided by larger and smaller teachers on the training set. Fig. 4 plots the
histograms (200 bins) of the target logit (i.e., fy) and the standard deviation of wrong logits (i.e.,
σ(g)). The left and right, respectively, show the results on CIFAR-100 and CIFAR-10. Clearly, the
first column shows that ResNet110 tends to generate a larger target logit (i.e., Ex[fy] ≈ 15.0) than
ResNet14 (i.e., Ex[fy] ≈ 10.0). On CIFAR-10, the smallest fy given by WRN28-8 is larger than
WRN28-1. Furthermore, WRN28-8 gives smaller variance (the fourth column), i.e., smaller inherent
variance. These reveal specific manifestations of complex networks’ over-confidence.

Larger and smaller teachers have similar inherent variance while different derived variance
under traditional temperature scaling. We use τ = 1.0 to soften the complete logits and only the
wrong class logits, respectively, and then show the mean and standard deviation of derived variance
and inherent variance across training samples in Fig. 5. Although the larger models’ inherent variance
is smaller, the difference between RNX29-4-4d and RNX29-64-4d is only up to 1.3×. However, the
derived variance differs a lot, where the smaller teacher’s variance is approximately 9.7× as the larger
teacher’s. These observations imply that traditional temperature scaling could seriously decrease the
derived variance of larger teachers though they have appreciable inherent variance.

Complex teachers know approximately the same as smaller teachers on relative class affinities.
Only if the relative magnitudes of the wrong class probabilities are correct, it is valid to enlarge
the discrimination between them. Otherwise, if a teacher himself misunderstands the knowledge’s
principles, it will be counterproductive to reinforce this knowledge to students. Given two teachers
T1 and T2, we first calculate the Spearman correlation between pT1 and pT2 . Second, the set overlap
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Table 2: Comparisons with SOTA methods on CIFAR-100. ResNet110, WRN28-8, and RNX29-
64-4d are teachers. VGG8, SFV1, and MV2 are students. The area in gray shows the results of the
ensemble. “KD+ATS” and “KD+ATS+Ens” are our methods.

Teacher ResNet110 (74.09) WRN28-8 (79.73) RNX29-64-4d (79.91) AvgStudent VGG8 SFV1 MV2 VGG8 SFV1 MV2 VGG8 SFV1 MV2
NoKD 69.92 70.04 64.75 69.92 70.04 64.75 69.92 70.04 64.75 68.24
ST-KD 72.30 73.22 66.56 71.85 72.85 66.52 71.61 72.18 65.82 70.32
KD 71.35 71.86 65.49 70.46 70.87 64.97 71.13 71.80 64.99 69.21
ESKD 71.88 72.02 65.92 71.13 71.32 65.09 71.09 71.27 64.83 69.39
TAKD 72.71 72.86 66.98 71.20 71.62 65.11 71.46 71.44 65.36 69.86
SCKD 70.38 70.61 64.59 70.83 70.52 65.19 70.33 70.92 64.86 68.69
KD+ATS 72.31 73.44 67.18 72.72 73.58 66.47 72.93 73.03 66.80 70.94
Ens 72.77 73.61 67.76 72.77 73.61 67.76 72.77 73.61 67.76 71.38
ResKD 73.89 76.03 69.00 73.84 75.14 67.69 74.64 75.43 68.10 72.64
KD+ATS+Ens 74.86 75.05 69.50 74.60 75.04 68.79 75.34 75.47 69.82 73.16

between the top-5 predictions is calculated, i.e., ∣CT1 ∩ CT2 ∣/∣CT1 ∪ CT2 ∣. C denotes the set of top-5
predicted classes. Third, we calculate Kendall’s τ between pT1 and pT2 , which directly shows the
rank correlation of two teachers. These metrics only depend on classes’ relative magnitudes. The
results are in Fig. 6. Excitingly, these metrics among teachers with different capacities do not vary a
lot, and the Spearman correlations are almost all larger than 0.85. According to the interpretation
of Kendall’s τ [8, 53], if the smaller teacher predicts that class i is more related to the target class
than that of class j, then the larger teacher has a probability of (0.75 + 1)/2 = 0.875 to give the same
relative affinity. As a comparison, we also calculate the distillation distance defined in [15], which
utilizes L1 distance and depends on the absolute magnitudes of probabilities. Using this metric,
the distance increases quickly as the capacity gap increases. These observations demonstrate that
teachers know approximately the same about relative class affinities while their absolute values differ
significantly under traditional temperature scaling.

The proposed ATS could enlarge the derived variance of larger teachers. The above analysis
verifies that the over-confident teachers experience lower derived variance under traditional tempera-
ture scaling although they grasp the relative class affinities well. For an intuitive visualization, we
plot the probabilities for a randomly sampled instance whose correct class is y = 1 from CIFAR-100.
The top two rows in Fig. 8 show the results of RNX29-4-4d and RNX29-64-4d under traditional
temperature scaling (TS), where the latter really experiences a smaller derived variance. Using ATS
could enhance the derived variance as shown at the bottom row (the bars are more jagged). Then,
we study the change of derived average (DA) and derived variance (DV) as temperature increases.
Given a τ , we obtain the DA and DV for all training samples via softmax and then calculate the
average. For ATS, we use τ1 = 1.25τ and τ2 = 0.75τ . The curves are shown in Fig. 7. According to
Proposition 4.3, e(q) increases as τ increases, which enhances the efficacy of smooth regularization.
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Table 3: Comparisons with SOTA methods on TinyImageNet, CUB, and Stanford Dogs. WRN50-2
and RNX101-32-8d are teachers. AlexNet, SFV2, and MV2 are students.

TinyImageNet CUB Stanford Dogs AvgTeacher WRN50-2 (66.28) RNX101-32-8d (79.50) RNX101-32-8d (73.98)
Student ANet SFV2 MV2 ANet SFV2 MV2 ANet SFV2 MV2
NoKD 34.62 45.79 52.03 55.66 71.24 74.49 50.20 68.72 68.67 57.94
ST-KD 36.16 49.59 52.93 56.39 72.15 76.80 51.95 69.92 72.06 59.77
KD 35.83 48.48 52.33 55.10 71.89 76.45 50.22 68.48 71.25 58.89
ESKD 34.97 48.34 52.15 55.64 72.15 76.87 50.39 69.02 71.56 59.01
TAKD 36.20 48.71 52.44 54.82 71.53 76.25 50.36 68.94 70.61 58.87
SCKD 36.16 48.76 51.83 56.78 71.99 75.13 51.78 68.80 70.13 59.04
KD+ATS 37.42 50.03 54.11 58.32 73.15 77.83 52.96 70.92 73.16 60.88
Ens 39.37 50.69 56.40 59.84 74.43 77.47 54.04 71.65 72.53 61.82
ResKD 38.66 51.93 57.32 62.60 75.29 76.27 54.68 70.73 72.85 62.26
KD+ATS+Ens 40.42 52.14 58.47 62.00 76.26 78.97 55.69 73.22 74.67 63.54

Notably, this term changes nearly the same between teachers with various capacities. However, the
derived variance v(q) differs a lot. Empirically, v(q) first increases and then decreases, and the
maximal of the larger teacher’s DV is smaller, which verifies the Corollary 4.7. Because derived
variance corresponds to the efficacy of class discriminability, this shows why larger teachers can’t
teach well. Using the proposed ATS could enhance the derived variance, which equivalently improves
the efficacy of class discriminability in KD. We conclude that traditional temperature scaling leads to
distillation labels with less discriminative information among wrong class probabilities; our proposed
ATS could enhance the discrimination among wrong classes and benefit the distillation process.

5.2 Performances

ATS makes larger teachers teach well again. Previous studies find that more accurate teach-
ers can’t necessarily teach well [6, 31]. As shown in Fig. 9, although we tune temperatures in
{1.0,2.0,4.0,8.0,12.0,16.0}, larger teachers still teach worse under traditional temperature scaling
(the solid curves). However, using ATS (the dashed curves) could make larger teachers teach well or
better again. The details are in Appendix C.4.

ATS surpasses previous methods with advanced techniques. We compare with SOTA methods
and list the results on CIFAR-100, TinyImageNet, CUB, and Dogs in Tab. 2 and Tab. 3. The sota
compared methods include ESKD [6], TAKD [31], SCKD [51], and ResKD [10, 24]. NoKD trains
students without the teacher’s supervision. ST-KD trains students under the guidance of a smaller
teacher. KD trains students under the guidance of the larger teacher. More details of compared
methods are in Appendix C.3. The last column of these tables shows the average performance
of corresponding rows. The larger teacher could slightly improve the students’ performances via
traditional KD, i.e., 68.24% → 69.21% and 57.94 → 58.89%. However, using a smaller teacher
(the row of “ST-KD”) could obtain about 2% improvement on average, i.e., 68.24%→ 70.32% and
57.94% → 59.77%. This again verifies that larger teachers really teach worse on various datasets.
Taking advantage of the early-stopped teacher (ESKD), the teacher assistant (TAKD), and the student
customized teacher (SCKD) only improves the larger teacher slightly, e.g., 69.21%→ 69.86% and
58.89%→ 59.04%. These results do not even surpass the small teacher. ResKD improves the students’
performances a lot via introducing the residual student and taking the two students’ ensemble, which
surpasses the ensemble performances of two separately trained students under different initializations
(the “Ens” row). For a fair comparison, we also test the performances of our methods via repeating
the “KD+ATS” two times and making predictions via the ensemble. The results are almost 1% higher
than ResKD. Results on CIFAR-10 and speech data are in Appendix D.

Ablation Studies One might argue that the validity of ATS is due to the tuning from a larger hyper-
parameter space. We vary τ1 from 1.0 to 6.0, τ2 from 1.0 to 5.0, and record the performances in
Fig. 10. Obviously, setting τ1 > τ2 could be better, and especially, we recommend the setting of
τ2 ∈ [τ1 − 2, τ1 − 1]. Although we introduce one more hyper-parameter, ATS is simple to implement
and surpasses SOTA methods that take advanced techniques. We achieve the goal of only utilizing
simple operations to make larger teachers teach well again. Then, we study the trade off of the KD
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loss and CE loss under different λ. The results of “WRN28-8 → MV2” on CIFAR-100 (Fig. 11)
verifies that ATS could improve the performances under various λ. We also compare ATS with other
types of KD under various scenes, and the results are in Appendix D.3.

6 Conclusion

We study the miraculous phenomenon in KD that a more accurate model doesn’t necessarily teach
better. The proposed KD decomposition attributes the success of a better teacher to three factors,
including correct guidance, smooth regularization, and class discriminability. Through theoretical
analysis, over-confident teachers could not release their potential abilities of the class discriminability
under traditional temperature scaling. As a simple yet effective solution, we propose Asymmetric
Temperature Scaling (ATS) to enhance the derived variance of larger teachers, making their distilla-
tion labels more discriminative when teaching students. Extensive experimental results verify the
superiorities of our proposed methods.

7 Broader Impact

We focus on the variance of wrong class probabilities to analyze why larger teachers cannot teach
well and hope that our research could bring a new perspective to the KD field. Our work has no
potential negative societal impacts.

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Grant No.
61921006, 41901270), and Natural Science Foundation of Jiangsu Province (Grant No. BK20190296).
Thanks to Huawei Noah’s Ark Lab NetMIND Research Team. We gratefully acknowledge the support
of Mindspore used for this reasearch. Professor De-Chuan Zhan is the corresponding author. A

10



References
[1] Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, and Zhenwen Dai.

Variational information distillation for knowledge transfer. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 9163–9171, 2019.

[2] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E. Dahl, and Geof-
frey E. Hinton. Large scale distributed neural network training through online distillation. In
The 6th International Conference on Learning Representations, 2018.

[3] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 535–541, 2006.

[4] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In IEEE Conference on Computer Vision and Pattern Recognition, pages 5008–5017,
2021.

[5] Xu Cheng, Zhefan Rao, Yilan Chen, and Quanshi Zhang. Explaining knowledge distillation by
quantifying the knowledge. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12922–12932, 2020.

[6] Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In IEEE/CVF
International Conference on Computer Vision, pages 4793–4801, 2019.

[7] Tri Dao, Govinda M. Kamath, Vasilis Syrgkanis, and Lester Mackey. Knowledge distillation as
semiparametric inference. In The 9th International Conference on Learning Representations,
2021.

[8] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on Discrete
Mathematics, 17(1):134–160, 2003.

[9] Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. Born-again neural networks. In Proceedings of the 35th International Conference
on Machine Learning, volume 80, pages 1602–1611, 2018.

[10] Mengya Gao, Yujun Wang, and Liang Wan. Residual error based knowledge distillation.
Neurocomputing, 433:154–161, 2021.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[12] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge transfer via
distillation of activation boundaries formed by hidden neurons. In The Thirty-Third AAAI
Conference on Artificial Intelligence, pages 3779–3787, 2019.

[13] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[14] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[15] Daniel Hsu, Ziwei Ji, Matus Telgarsky, and Lan Wang. Generalization bounds via distillation.
In The 9th International Conference on Learning Representations, 2021.

[16] Zhen Huang, Xu Shen, Jun Xing, Tongliang Liu, Xinmei Tian, Houqiang Li, Bing Deng,
Jianqiang Huang, and Xian-Sheng Hua. Revisiting knowledge distillation: An inheritance and
exploration framework. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3579–3588, 2021.

[17] Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity
transfer. CoRR, abs/1707.01219, 2017.

[18] Guangda Ji and Zhanxing Zhu. Knowledge distillation in wide neural networks: Risk bound,
data efficiency and imperfect teacher. In Advances in Neural Information Processing Systems
33, 2020.

[19] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei fei Li. Novel dataset for
fine-grained image categorization. In First Workshop on Fine-Grained Visual Categorization,
CVPR (2011).

[20] Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum Hwang. Self-knowledge
distillation with progressive refinement of targets. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6567–6576, 2021.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2012.

11



[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25,
pages 1106–1114, 2012.

[23] Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning
with convolutional networks. In Proceedings of the 35th International Conference on Machine
Learning, pages 2830–2839, 2018.

[24] Xuewei Li, Songyuan Li, Bourahla Omar, Fei Wu, and Xi Li. Reskd: Residual-guided
knowledge distillation. IEEE Transactions on Image Processing, 30:4735–4746, 2021.

[25] Ruofan Liang, Tianlin Li, Longfei Li, Jing Wang, and Quanshi Zhang. Knowledge consistency
between neural networks and beyond. In The 8th International Conference on Learning
Representations, 2020.

[26] Junjie Liu, Dongchao Wen, Hongxing Gao, Wei Tao, Tse-Wei Chen, Kinya Osa, and Masami
Kato. Knowledge representing: Efficient, sparse representation of prior knowledge for knowl-
edge distillation. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 638–646, 2019.

[27] Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang Duan.
Knowledge distillation via instance relationship graph. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 7096–7104, 2019.

[28] David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, and Vladimir Vapnik. Unifying distillation
and privileged information. In The 4th International Conference on Learning Representations,
2016.

[29] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical guidelines
for efficient CNN architecture design. In Computer Vision - ECCV 2018 - 15th European
Conference, pages 122–138, 2018.

[30] Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Seungyeon Kim, and Sanjiv
Kumar. A statistical perspective on distillation. In Proceedings of the 38th International
Conference on Machine Learning, pages 7632–7642, 2021.

[31] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and
Hassan Ghasemzadeh. Improved knowledge distillation via teacher assistant. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, pages 5191–5198, 2020.

[32] Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. When does label smoothing help? In
Advances in Neural Information Processing Systems 32, pages 4696–4705, 2019.

[33] Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic
knowledge transfer. In Computer Vision - ECCV 2018 - 15th European Conference, volume
11215, pages 283–299, 2018.

[34] Baoyun Peng, Xiao Jin, Dongsheng Li, Shunfeng Zhou, Yichao Wu, Jiaheng Liu, Zhaoning
Zhang, and Yu Liu. Correlation congruence for knowledge distillation. In 2019 IEEE/CVF
International Conference on Computer Vision, pages 5006–5015, 2019.

[35] Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In
Proceedings of the 36th International Conference on Machine Learning, pages 5142–5151,
2019.

[36] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. In The 3rd International Conference on
Learning Representations, 2015.

[37] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, pages 4510–4520, 2018.

[38] Zhiqiang Shen, Zechun Liu, Dejia Xu, Zitian Chen, Kwang-Ting Cheng, and Marios Savvides.
Is label smoothing truly incompatible with knowledge distillation: An empirical study. In The
9th International Conference on Learning Representations, 2021.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, 2015.

[40] Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H. Chi, and Sagar Jain.
Understanding and improving knowledge distillation. CoRR, abs/2002.03532, 2020.

[41] Raphael Tang and Jimmy Lin. Deep residual learning for small-footprint keyword spotting. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5484–5488,
2018.

12



[42] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In The 5th International
Conference on Learning Representations, 2017.

[43] Amirhossein Tavanaei. Embedded encoder-decoder in convolutional networks towards explain-
able AI. CoRR, abs/2007.06712, 2020.

[44] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In The
8th International Conference on Learning Representations, 2020.

[45] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In 2019 IEEE/CVF
International Conference on Computer Vision, pages 1365–1374, 2019.

[46] Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Özlem Aslan, Shengjie Wang,
Abdelrahman Mohamed, Matthai Philipose, Matthew Richardson, and Rich Caruana. Do
deep convolutional nets really need to be deep and convolutional? In The 5th International
Conference on Learning Representations, 2017.

[47] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical report, 2011.

[48] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. CoRR,
abs/1804.03209, 2018.

[49] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 5987–5995, 2017.

[50] Han-Jia Ye, Su Lu, and De-Chuan Zhan. Distilling cross-task knowledge via relationship
matching. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12393–12402, 2020.

[51] Yi Wang Yichen Zhu. Student customized knowledge distillation: Bridging the gap between
student and teacher. In IEEE/CVF International Conference on Computer Vision, 2021.

[52] Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo Kim. A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, pages 7130–7138, 2017.

[53] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of
pre-trained models for transfer learning. In Proceedings of the 38th International Conference
on Machine Learning, pages 12133–12143, 2021.

[54] Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer, Yongmei Cheng, and Arnau Ramisa.
Learning metrics from teachers: Compact networks for image embedding. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2907–2916, 2019.

[55] Li Yuan, Francis E. H. Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge
distillation via label smoothing regularization. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3902–3910, 2020.

[56] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference, 2016.

[57] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In The 5th International
Conference on Learning Representations, 2017.

[58] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be
your own teacher: Improve the performance of convolutional neural networks via self distillation.
In 2019 IEEE/CVF International Conference on Computer Vision, pages 3712–3721, 2019.

[59] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, pages 6848–6856, 2018.

[60] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge: Keyword
spotting on microcontrollers. CoRR, abs/1711.07128, 2017.

[61] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, pages 4320–4328, 2018.

[62] Zhilu Zhang and Mert R. Sabuncu. Self-distillation as instance-specific label smoothing. In
Advances in Neural Information Processing Systems 33, 2020.

[63] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian
Zhang. Rethinking soft labels for knowledge distillation: A bias-variance tradeoff perspective.
In The 9th International Conference on Learning Representations, 2021.

13


	Introduction
	Related Works
	Background
	Proposed Methods
	KD Decomposition
	Theoretical Analysis
	Asymmetric Temperature Scaling

	Experiments
	Observations
	Performances

	Conclusion
	Broader Impact

