
Supplementary: Unravelling the Performance of
Physics-informed Graph Neural Networks for

Dynamical Systems

Abishek Thangamuthu, Gunjan Kumar
Department of Computer Science and Engineering

Indian Institute of Technology Delhi
New Delhi 110016, India

Suresh Bishnoi
School of Interdisciplinary Research
Indian Institute of Technology Delhi

New Delhi 110016, India

Ravinder Bhattoo
Department of Civil Engineering

Indian Institute of Technology Delhi
New Delhi 110016, India

N M Anoop Krishnan, Sayan Ranu
Yardi School of Artificial Intelligence
Indian Institute of Technology Delhi

New Delhi 110016, India
{krishnan,sayanranu}@iitd.ac.in

A Expressing constraints

A constraint on a system essentially restricts the motion of a system to a subspace among all the
allowable paths. For instance, in the case of two particles with the coordinates (x, y) and (0, 0)
connected by an in-extensible rod, the constraint equation can be given as (x2 + y

2) = l
2. Such

constraints are known holonomic constraints. However, a different set of constraints act in cases such
as multi-fingered grasping, known as Pfaffian constraints, where instead of positions, constraints
are enforced on velocities. The generic form of a Pfaffian constraint is A(x)ẋ = 0. Note that
any holonomic constraint can also be written in the form of a Pfaffian constraint by differentiating
the original form. For instance, the constraint equation for two particles mentioned earlier can be
differentiated to obtain xẋ+ yẏ = 0, which is of the form A(x)ẋ = 0. For the sake of generality,
here we adopt this form to express the constraints. More details on this can be found in the Section 1,
Chapter 6 of Murray et al. (Murray, R.M., Li, Z. and Sastry, S.S., 2017. A mathematical introduction
to robotic manipulation. CRC press.)

B Experimental systems

To simulate the ground truth, physics-based equations derived using Lagrangian mechanics is em-
ployed. The equations for n-pendulum and spring systems are given in detail below.

B.1 n-Pendulum

For an n-pendulum system, n-point masses, representing the bobs, are connected by rigid (non-
deformable) bars. These bars, thus, impose a distance constraint between two point masses as

||xi � xi�1||2 = l
2
i

(17)

where, li represents the length of the bar connecting the (i� 1)th and i
th mass. This constraint can

be differentiated to write in the form of a Pfaffian constraint as

(xi � xi�1)(ẋi � ẋi�1) = 0 (18)

Note that such constraint can be obtained for each of the n masses considered to obtain the A(q).

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Datasets and Benchmarks Track.
13

The Lagrangian of this system can be written as

L =
nX

i=1

⇣
1/2miẋi

T
ẋi �migx

(2)
i

⌘
(19)

where mi represents the mass of the i
th particle, g represents the acceleration due to gravity in the

x
(2) direction and x

(2) represents the position of the particle in the x
(2) direction.

B.2 n-spring system

Here, n-point masses are connected by elastic springs that deform linearly (elastically) with extension
or compression. Note that similar to the pendulum setup, each mass mi is connected to two masses
mi�1 and mi+1 through springs so that all the masses form a closed connection. The Lagrangian of
this system is given by

L =
nX

i=1

1/2miẋi
T
ẋi �

nX

i=1

1/2k(||xi�1 � xi||� r0)
2 (20)

where r0 and k represent the undeformed length and the stiffness, respectively, of the spring.

B.3 n-body gravitational system

Here, n point masses are in a gravitational field generated by the point masses themselves. The
Lagrangian of this system is given by

L =
nX

i=1

1/2miẋi
T
ẋi +

nX

i=1

nX

j=1,j 6=i

Gmimj/2(||xi � xj ||) (21)

where G represents the Gravitational constant.

B.4 Rigid-body system

Here, in a solid cube of 5⇥ 5⇥ 5 size, the dynamics of an elastically deformable body is simulated.
Specifically, a 5⇥ 5⇥ 5 solid cube, discretized into 125 particles, is used for simulating the ground
truth. 3D solid system is simulated using the peridynamics framework. The system is compressed
isotropically and then released to simulate the dynamics of the solid, that is, the contraction and
expansion in 3D.

C Graph Neural ODE (GNODE)

To learn the dynamical systems, GNODEs parameterize the dynamics F (x, ẋ, t) using a neural network
to learn the approximate function F̂ (xt, ẋt, t) by minimizing the loss between the predicted and
actual trajectories, that is, L = ||xt+1 � x̂t+1||. Thus, a GNODE essentially uses graph topology
to learn the approximate dynamics F̂ by training directly from the trajectory. Figure 11 shows the
architecture of the GNODE, which is discussed in detail below.
Graph structure. First, an n-particle system is represented as a undirected graph G = {V, E},
where the nodes represent the particles and the edges represents the connections or interactions
between them. For example, in pendulum or spring systems, the nodes correspond to bobs or balls,
respectively, and the edges correspond to the bars or springs, respectively.
Input features. Each node is characterized by the features of the particles, namely, the particle type
(t), position (xi), and velocity (ẋi). The type distinguishes particles of differing characteristics, for
instance, balls or bobs with different masses. Further, each edge is represented by the edge features
wij = (xi � xj), which represents the relative displacement of the nodes connected by the given
edge.
Pre-Processing. In the pre-processing layer, we construct a dense vector representation for each node
vi and edge eij using MLPem as:

h0
i
= squareplus(MLPem(one-hot(ti), xi, ẋi)) (22)

h0
ij
= squareplus(MLPem(wij)) (23)

14

Figure 11: GNODE architecture.

squareplus is an activation function. Note that the MLPem corresponding to the node and edge
embedding functions are parameterized with different weights. Here, for the sake of brevity, we
simply mention them as MLPem.
Acceleration prediction. In many cases, internal forces in a system that govern the dynamics are
closely dependent on the topology of the structure. To capture this information, we employ multiple
layers of message-passing between the nodes and edges. In the l

th layer of message passing, the
node embedding is updated as:

hl+1
i

= squareplus

0

@hl

i
+
X

j2Ni

Wl

V ·
�
hl

j
||hl

ij

�
1

A (24)

where, Ni = {vj 2 V | eij 2 E} are the neighbors of vi. Wl

V is a layer-specific learnable weight
matrix. hl

ij
represents the embedding of incoming edge eij on vi in the l

th layer, which is computed
as follows.

hl+1
ij

= squareplus
�
hl

ij
+Wl

E ·
�
hl

i
||hl

j

��
(25)

Similar to Wl

V , Wl

E is a layer-specific learnable weight matrix specific to the edge set. The
message passing is performed over L layers, where L is a hyper-parameter. The final node and edge
representations in the L

th layer are denoted as hL

i
and hL

ij
respectively.

In addition to the internal forces, there could be forces that are independent of the topology and
depend only on the features of the particle, for example, gravitational force. To account for these, an
additional node embedding that is not included in the message passing, namely, hg

i
is concatenated

with the final node representation after message passing as zi = (hL

i
||hg

i
). Finally, the acceleration

of the particle q̈i is predicted as:

ẍi = squareplus(MLPV(zi)) (26)

Note that the major difference between GNODE and FGNODE, in addition to the other parametric
and architectural differences, is the inclusion of this additional global feature embedding in GNODE,
which is absent in FGNODE. As seen earlier, inclusion of this additional embedding significantly
improves the performance in cases where there are forces due to external fields such as gravity.

D Lagrangian Graph Neural Network (LGNN)

Figure 12 shows the the neural network architecture of the LGNN. The architecture directly predicts
the Lagrangian of the system exploiting the topology of the system encoded as graph. Note that
the graph structure, input features, pre-processing and the message passing leading to intermediate
embedding of nodes and edges for LGNN are developed exactly following the same as GNODE,

15

Figure 12: LGNN architecture.

detailed as per section C. Two major differences for LGNN from GNODE is in the computation of the
kinetic energy and the potential energy, which are absent in GNODE, as detailed below.

Kinetic energy. Since the system is comprised of n-point particles, the mass matrix becomes diagonal
in Cartesian coordinates [10]. Thus, the kinetic energy, ⌧i, of a point particle depends only on its
velocity and mass. Here, we learn the mass of each particle based on the node embedding h0

i
as

⌧i = squareplus(MLP⌧ (h0
i
k ẋi)) (27)

The kinetic energy of the individual particles are summed up to compute the total kinetic energy as

T =
X

ui2U
⌧i (28)

Potential energy. Potential energy of a system can have complex combination of absolute and
topological features. For instance, a system such as a pendulum in a gravitational field have a simple
potential energy function that does not depend on topology. On the contrary, for a system such as
balls connected with spring, the potential energy depends on the connections and hence, the topology.
Therefore, similar to GNODE, we use final node (hL

i
) and edge (hL

ij
) embedding from message

passing (representing topology) and global node (hg

i
) embedding to calculate the potential energy of

the system as
V =

X

ui2U
vi +

X

eij2E
vij (29)

where vi = squareplus(MLPvi(h
g

i
) + squareplus(MLPmp,vi(hL

i
)) represents the energy due to the

attributes of the particle themselves, and vij = squareplus(MLPvij (hL

ij
)) represents energy due to

interactions (topology).

Lagrangian. Finally, the Lagrangian of the system is defined as L = T � V where T is total
kinetic energy of system and V is the total potential energy of the system. Finally, the acceleration is
computed using the predicted Lagrangian employing the appropriate EL equation.

E Hamiltonian Graph Neural Network (HGNN)

Figure 13 shows the architecture of the HGNN. Note that HGNN has exactly the same architecture
as LGNN and follows all the computations exactly in the same fashion until kinetic and potential
energies. Once these energies are obtained, instead of computing the Lagrangian, the Hamiltonian of
the system is computed using the equation H = T + V where T is total kinetic energy of system and
V is the total potential energy of the system. Finally, the acceleration is computed using the predicted
Hamiltonian employing the appropriate Hamiltonian’s equation of motion.

16

Figure 13: HGNN architecture.

Figure 14: Variation of rollout error against the number of data points used to train the models.

F Additional Experiments

F.1 Data Efficiency

Figure 14, shows the dataefficiency of the different models considers. Specifically, we evaluate the
rollout error with respect to the number of data-points used to train each of the models. A clear
trend emerges from this experiment. Specifically, in pendulum systems, we observe that models with
explicit constraints significantly outperform their unconstrained counterparts with more data points
by ⇠5-6 orders of magnitude. In contrast, the unconstrained architectures show limited reduction in
error in both spring and pendulum systems. This trend indicates that injecting explicit constraints
in the model leads to more effective training. Further, we observe that the performance of CLGNN,
CHGNN, and CGNODE are comparable for pendulum systems, while that of CHGN is poorer, despite
having explicit constraints.

F.2 Robustness to Noise
To evaluate robustness of the evaluated GNNs to noise, we inject Gaussian noise to every data point in
the training dataset with mean 0 and standard deviation 1. The forward simulation error is calculated
by comparing it to the ground truth trajectories, without adding any noise to those data points. Due to
space limitations, the plots are in the appendix. Figure 17 shows the performance on unconstrained
architectures, while Figure 18 shows the time evolution of energy and rollout error. Figure 19 and
Figure 20 analyze the same, respectively, on pendulum for constrained systems. Finally, we also
show the variation of energy and rollout error for spring system for varying percentages of noise,
namely, 1%, 5%, 10% and 50% of the standard deviation of the data (see Figs. 21,22.)

17

Figure 15: Rollout error and energy error for 4-body gravitational system with constraints with
respect to time for LGNN, LGN HGN, HGNN, GNODE, FGNODE and FGNN. The curve represents
the average over 100 trajectories generated from random initial conditions.

Figure 16: Rollout error and energy error for rigid body system with respect to time for HGN, HGNN,
GNODE, FGNODE and FGNN. The curve represents the average over 10 trajectories over the test
dataset.

When compared to training on clean data, we observe that the trends remain similar. Specifically,
CLGN and CHGN continue to be the poorest performers in the constrained setting. In the uncon-
strained setting, the same trend continues; FGNN and LGN continue exhibiting highest errors, while
HGN remains the best architecture. However, across architectures we observe almost a 10-fold
increase in error. All in all, this experiment reveals that while the choice of architectures remain
unaffected, all display reduced accuracy. Hence, enabling better robustness would be an important
research direction to pursue.

18

Figure 17: Geometric mean of rollout error and energy error for 3-, 4-, 5-spring and 3-,4-,5-pendulum
systems without constraints for LGNN, LGN HGN, HGNN, GNODE, FGNODE and FGNN on noisy
data. The error bar represents the 95% confidence interval over 100 trajectories generated from
random initial conditions.

Figure 18: Rollout error and energy error for 3-, 4-, 5-spring and 3-, 4-, 5-pendulum systems without
constraints with respect to time for LGNN, LGN HGN, HGNN, GNODE, FGNODE and FGNN on noisy
data. The curve represents the average over 100 trajectories generated from random initial conditions.

G Details of Experimental Setup

G.1 Dataset generation

Software packages: numpy-1.20.3, jax-0.2.24, jax-md-0.1.20, jaxlib-0.1.73, jraph-0.0.1.dev
Hardware: Chip: Intel Xeon, Total Number of Cores: 64, Memory: 128 GB, System OS: Ubuntu
18.04.5 LTS.

For all variants of LGNN, LGN, GNODE, FGNODE, FGNN: All the datasets are generated using the
known Lagrangian of the pendulum and spring systems, along with the constraints, as described in
Section 4. For each system, we create the training data by performing forward simulations with 100
random initial conditions. For the pendulum system, a timestep of 10�5

s is used to integrate the
equations of motion, while for the spring system, a timestep of 10�3

s is used. The velocity-Verlet
algorithm is used to integrate the equations of motion due to its ability to conserve the energy in long
trajectory integration.

While for HGN and HGNN, datasets are generated using Hamiltonian mechanics. Runge-Kutta
integrator is used to integrate the equations of motion due to the first order nature of the Hamiltonian
equations in contrast to the second order nature of LGNN and GNODE.

From the 100 simulations for pendulum and spring system, obtained from the rollout starting from
100 random initial conditions, 100 data points are extracted per simulation, resulting in a total of
10000 data points. Data points were collected every 1000 and 100 timesteps for the pendulum and
spring systems, respectively. Thus, each training trajectory of the spring and pendulum systems are

19

Figure 19: Geometric mean of rollout error and energy error for 3-,4-,5-pendulum systems with
constraints for CLGNN, CLGN CHGN, CHGNN, CGNODE, and CFGNODE on noisy data. The
error bar represents the 95% confidence interval over 100 trajectories generated from random initial
conditions.

Figure 20: Rollout error and energy error for 3-,4-,5-pendulum systems with constraints with respect
to time for CLGNN, CLGN CHGN, CHGNN, CGNODE, and CFGNODE on noisy data. The curve
represents the average over 100 trajectories generated from random initial conditions.

10s and 1s long, respectively. Here, we do not train from the trajectory. Rather, we randomly sample
different states from the training set to predict the acceleration.

For the gravitational system, the dataset is generated using the known Lagrangian of the gravitational
system. We create the training data by performing forward simulation from a known stable state.
We use a timestep of 10�3

s, which is used to integrate the equations of motion, and similar to the
pendulum and spring system, we use the velocity-verlet algorithm for the integration of the equations.

The known stable state is simulated forward and datapoints were collected every 100 timesteps, for a
total of 10000 datapoints. Similar to the pendulum and spring systems, we randomly sample different
states from the training set to predict the acceleration.

For 3D solid cube, we have generated ground truth data using peridynamics simulation, single initially
compressed cube was relaxed for 100s with time step 0.1s. Using this we have generated total 1000
data points.

G.2 Training details

The training dataset is divided in 75:25 ratio randomly, where the 75% is used for training and 25%
is used as the validation set. Further, the trained models are tested on its ability to predict the correct
trajectory, a task it was not trained on. Specifically, the pendulum systems are tested for 1s, that is
105 timesteps, and spring systems for 20s, that is 2 ⇥ 104 timesteps on 100 different trajectories
created from random initial conditions. All models are trained for 10000 epochs. A learning rate of
10�3 was used with the Adam optimizer for the training.

G.3 Loss function

Based on the predicted ẍ, the positions and velocities are predicted using the Velocity Verlet integration.
The loss function is computed by using the predicted and actual accelerations at timesteps 2, 3, . . . , T
in a trajectory T, which is then back-propagated to train the MLPs. Specifically, the loss function is
as follows.

L =
1

n

nX

i=1

⇣
ẍ
T,t
i

�
⇣
ˆ̈xT,t
i

⌘⌘2
!

(30)

20

Figure 21: Rollout error with respect to percentage noise in the dataset used to train the 5-spring
system.

Figure 22: Energy error with respect to percentage of noise in the dataset used to train the 5-spring
model.

Here, (ˆ̈xT,t
i

) is the predicted acceleration for the i
th particle in trajectory T at time t and ẍ

T,t
i

is
the true acceleration. T denotes a trajectory from T, the set of training trajectories. Note that the
accelerations are computed directly from the ground truth trajectory using the Verlet algorithm as:

ẍ(t) = 1

(�t)2
[x(t+�t) + x(t��t)� 2x(t)] (31)

Since the integration of the equations of motion for the predicted trajectory is also performed using
the same algorithm as: x(t+�t) = 2x(t)�x(t��t)+ ẍ(�t)2, this method is equivalent to training
from trajectory/positions.

G.4 Hyper-parameters

The default hyper-parameters used for training each architecture is provided below.

•GNODE, CGNODE

Parameter Value
Node embedding dimension 5
Edge embedding dimension 5
Hidden layer neurons (MLP) 5

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing 1
Optimizer ADAM

Learning rate 1.0e�3

Batch size 100

21

•LGN, CLGN, HGN, FGNODE, CFGNODE, FGNN

Parameter Value
Node embedding dimension 8
Edge embedding dimension 8
Hidden layer neurons (MLP) 16

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing 1
Optimizer ADAM

Learning rate 1.0e�3

Batch size 100

•LGNN, CLGNN, HGNN, CHGNN

Parameter Value
Node embedding dimension 5
Edge embedding dimension 5
Hidden layer neurons (MLP) 5

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing(pendulum) 2
Number of layers of message passing(spring) 1

Optimizer ADAM
Learning rate 1.0e�3

Batch size 100

G.5 Hyper-parameter Search

• Learning rate
FGNN

LR Value Geometric mean of Zerr Time (in sec)
0.001 0.0852 4226
0.003 0.0616 4394
0.01 0.1219 4376
0.03 0.0962 4436
0.1 0.0846 4476
0.3 0.0628 4557

GNODE

LR Value Geometric mean of Zerr Time (in sec)
0.001 0.1371 5189
0.003 0.1507 5242
0.01 0.1288 5250
0.03 0.1267 5176
0.1 0.1284 5206
0.3 0.1491 5179

HGNN

22

LR Value Geometric mean of Zerr Time (in sec)
0.001 0.1868 3856
0.003 0.1895 3613
0.01 0.1622 3878
0.03 0.1878 4089
0.1 0.146 9195
0.3 0.2356 6859

LGNN

LR Value Geometric mean of Zerr Time (in sec)
0.001 0.1939 38082
0.003 0.189 11904
0.01 0.1869 11890
0.03 0.1879 12314
0.1 0.2316 11845
0.3 0.279 12320

• Number of message-passing layers
FGNN

No of message passing layers Geometric mean of Zerr Time (in sec)
1 0.0852 6234
2 1.0 7552
3 0.1724 8024
4 0.0786 8455

GNODE

No of message passing layers Geometric mean of Zerr Time (in sec)
1 0.1491 7833
2 0.1649 6850
3 0.1721 6924
4 0.2078 7429

HGNN

No of message passing layers Geometric mean of Zerr Time (in sec)
1 0.1782 8924
2 0.1796 8254
3 0.1583 9095
4 0.1608 11199

LGNN

No of message passing layers Geometric mean of Zerr Time (in sec)
1 0.1887 11649
2 0.2319 12345
3 0.1903 12172
4 0.1839 12838

• Number of hidden layers in MLP
FGNN

No of hidden layers Geometric mean of Zerr Time (in sec)
5 0.1132 5423
10 0.0848 5926
15 0.0821 6583
25 0.0934 7446

23

GNODE

No of hidden layers Geometric mean of Zerr Time (in sec)
5 0.2078 25559
10 0.1697 9246
15 0.2084 9728
25 0.185 10747

HGNN

No of hidden layers Geometric mean of Zerr Time (in sec)
5 0.1782 8984
10 0.1524 11307
15 0.1543 12605
25 0.1497 17498

LGNN

No of hidden layers Geometric mean of Zerr Time (in sec)
5 0.1887 12885
10 0.18 14954
15 0.1692 16533
25 0.1731 21011

• Embedding dimensionality in hidden layers of MLP
FGNN

No of Neurons Geometric mean of Zerr Time (in sec)
1 0.0646 3973
2 0.1132 5462
4 0.0763 8258
8 0.075 13900

GNODE

No of Neurons Geometric mean of Zerr Time (in sec)
1 0.187 7664
2 0.2078 9895
4 0.1869 12258
8 0.7755 20041

HGNN

No of Neurons Geometric mean of Zerr Time (in sec)
1 0.1886 7689
2 0.1782 8984
4 0.1555 12615
8 0.1553 19389

LGNN

No of Neurons Geometric mean of Zerr Time (in sec)
1 0.2351 10448
2 0.1887 13070
4 0.18 15710
8 0.1674 24039

24

• Activation function
FGNN

Activation Function Geometric mean of Zerr Time (in sec)
softplus 0.886 6141

squareplus 0.1757 1340

GNODE

Activation Function Geometric mean of Zerr Time (in sec)
softplus 0.1287 6970

squareplus 0.1371 6425

HGNN

Activation Function Geometric mean of Zerr Time (in sec)
softplus 0.1953 9685

squareplus 0.1782 8463

LGNN

Activation Function Geometric mean of Zerr Time (in sec)
softplus 0.1921 11620

squareplus 0.1887 38082

H Training and Simulation Time

The key insight obtained from Tables 1-3 is that the LGN family of architectures take significantly
longer to train. The GNODE family is marginally faster on average than the HGN family. The LGN
family is the slowest since the lagrangian needs to be differentiated, which leads to the differentiation
over the GNN parameters. In HGN, the GNN outputs Hamiltonian and thus there is only one layer of
differentiation to learn the GNN parameters. Finally, in GNODE, the output is only integrated. Thus,
to summarize, in LGN family, the order of differentiation is double, in HGN the order is single and in
GNODE, the order is zero.

Models Training time (in sec) Forward Simulation time (in sec)
CFGNODE 9475 2.21
CGNODE 8784 1.57
CLGN 55810 16.97
CLGNN 27614 3.85
CHGN 6130 0.54
CHGNN 11038 0.82
FGNN 1325 0.02
FGNODE 8097 1.75
GNODE 6341 1.02
LGN 55042 14.82
LGNN 37752 13.53
HGN 2512 0.76
HGNN 8365 0.51

Table 1: Training and inference times in pendulum systems.

25

Models Training time (in sec) Forward Simulation time (in sec)
FGNN 1738 0.01
FGNODE 1337 0.25
GNODE 6977 0.10
LGN 141962 5.81
LGNN 25710 0.81
HGN 14053 0.43
HGNN 18128 0.89

Table 2: Training and inference times in spring systems.

Models Training time (in sec) Forward Simulation time (in sec)
FGNN 13136 0.30
FGNODE 13238 12.94
GNODE 11422 8.58
HGN 56996 5.21
HGNN 46038 8.04

Table 3: Training and inference times in rigid body systems.

26

