
Frank-Wolfe-based Algorithms

for Approximating Tyler’s M-estimator

Lior Danon

Technion - Israel Institute of Technology
Haifa, Israel 3200003

liordanon@campus.technion.ac.il

Dan Garber

Technion - Israel Institute of Technology
Haifa, Israel 3200003

dangar@technion.ac.il

Abstract

Tyler’s M-estimator is a well known procedure for robust and heavy-tailed covari-
ance estimation. Tyler himself suggested an iterative fixed-point algorithm for
computing his estimator however, it requires super-linear (in the size of the data)
runtime per iteration, which maybe prohibitive in large scale. In this work we
propose, to the best of our knowledge, the first Frank-Wolfe-based algorithms for
computing Tyler’s estimator. One variant uses standard Frank-Wolfe steps, the
second also considers away-steps (AFW), and the third is a geodesic version of
AFW (GAFW). AFW provably requires, up to a log factor, only linear time per
iteration, while GAFW runs in linear time (up to a log factor) in a large n (number
of data-points) regime. All three variants are shown to provably converge to the
optimal solution with sublinear rate, under standard assumptions, despite the fact
that the underlying optimization problem is not convex nor smooth. Under an addi-
tional fairly mild assumption, that holds with probability 1 when the (normalized)
data-points are i.i.d. samples from a continuous distribution supported on the entire
unit sphere, AFW and GAFW are proved to converge with linear rates. Importantly,
all three variants are parameter-free and use adaptive step-sizes.

1 Introduction

Given n data-points in Rp, x1, . . . ,xn 2 Rp different from zero, Tyler’s M-estimator (TME),
originally proposed by Tyler in his seminal work [27], is a p⇥ p positive definite matrix Q⇤ which
satisfies:

p

n

nX

i=1

xix>
i

x>
i Q

⇤�1xi
= Q⇤

. (1)

While the TME is not guaranteed to exist for any set of points x1, . . . ,xn, it is well known that under
the following assumption proposed in [27], it does.
Assumption 1. The data {x1, . . . ,xn} ⇢ Rp satisfies that xi 6= 0 for all i = 1, . . . , n, and that for
any proper subspace L ⇢ Rp, denoting by N(L) the number of data-points lying in L, it holds that
n >

N(L)
dim(L)p.

The TME is a well known distribution-free robust covariance estimator. It is also a maximum
likelihood estimator for the shape matrix of angular and compound Gaussian distributions, and often
used for estimation of heavy-tailed distributions [28]. Tyler’s M-estimator has received notable
interest within the statistics and signal processing communities, see for instance the excellent survey
[28] (including the many important references therein), as well as the recent works [30, 11, 29, 25,
6, 16, 20, 24, 2] which provide additional analysis results, related estimators, as well as structured

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

versions of Tyler’s estimator (e.g., convex constraints, low-rank structure, sparse structure, and more),
to name only a few.

It is also well known that when the TME exists, it is given by the optimal solution to the following
optimization problem:

min
Q2Sp

{f(Q) :=
p

n

nX

i=1

log(x>
i Q

�1xi) + log det(Q)} s.t. Q � 0,Tr(Q) = p, (2)

where Sp denotes the set of real-valued symmetric p⇥ p matrices, and Q � 0 (Q ⌫ 0) denotes that
Q is positive definite (positive semidefinite).

Indeed the connection between (1) and (2) becomes more apparent when examining the gradient
given by

rf(Q) = � p

n

nX

i=1

Q�1xix>
i Q

�1

x>
i Q

�1xi
+Q�1

. (3)

Thus, a matrix Q � 0 satisfying (1), also satisfies Qrf(Q)Q = 0, meaning rf(Q) = 0, and the
other way around. In particular, it can be shown that matrices Q � 0 for which rf(Q) = 0, are the
only stationary points of Problem (2) (i.e., do not have descent directions).
Theorem 1 (see for instance [28]). Under Assumption 1, Problem (2) admits a unique optimal
solution Q⇤ � 0. This solution is also the unique solution to Eq. (1) with trace equals p.

Throughout this paper we assume that Assumption 1 indeed holds true. Note also that (1) is
invariant to scaling of each data-point xi, i = 1, . . . , n, and the matrix Q⇤. Hence, throughout
this paper, as often customary, we assume that x1, . . . ,xn are normalized to have unit-length, i.e.,
kxik2 = 1, i = 1, . . . , p, and Q⇤ is normalized to have trace equals p, i.e., Tr(Q⇤) = p.

The subject of this paper are efficient algorithms for approximating the TME in large-scale, i.e.,
when both n, p are large. In [27] Tyler proposed a simple algorithm for computing the TME which
performs fixed-point iterations, as we define next.
Definition 1 (Fixed-point iterations for computing the TME). The FPI method computes the following
iterations:

Qt+1
p

n

nX

i=1

xix>
i

x>
i Q

�1
t xi

, (4)

and the returned solution is given by Q = p
QT

Tr(QT) , where QT is the last iterate computed. 1

Note that each iteration (4) requires O(p3 + np
2) runtime: O(p3) time in order to compute the

inverse matrix Q�1
t from the previous iterate Qt, and additional O(np2) time to compute the sum of

rank-one matrices. In particular, the runtime is super-linear in the size of the input which is np, and
thus can be prohibitive when n, p are both very large (note that under Assumption 1 we always have
n > p).

In [27] Tyler also proved the convergence of the iteration (4) (under Assumption 1) but without
a rate. Recently, it was proved in [6] that when the data x1, . . . ,xn are i.i.d. samples from an
elliptical distribution, the FPI method produces a matrix bQ � 0 with Tr(bQ) = p, such that with
high probability, kI�Q⇤1/2 bQ�1Q⇤1/2kF ✏, after O(|log det⌃|+ p+ log(1/✏)) iterations, for
any error tolerance ✏, where Q⇤ is the solution to (1) with trace equals p, ⌃ is the shape matrix of
the underlying elliptical distribution, and k·kF denotes the Frobenius (Euclidean) norm. The proof
of this result is highly involved and relies on deep mathematical concepts such as strong geodesic
convexity and quantum expanders. Note that taking into account the runtime of a single iteration (4)
and the bound on number of iterations, the total runtime to reach ✏ error (according to the measure of
convergence in [6]) is ⌦(p4 + np

3).

The goal of this paper is to present new simple and efficient first-order methods for solving Problem
(2) which avoid the super-linear runtime barrier of np2, and even the matrix inversion barrier (O(p3)

1There is a variant in which the normalization of the trace is performed after each iteration and was observed
to have similar empirical performance [28].

2

in practical implementations), required by each iteration of (4). Our algorithms are based on the well
known Frank-Wolfe method (aka conditional gradient method) for constrained smooth minimization
[5, 15]. To the best of our knowledge this is the first time that the Frank-Wolfe method has been
considered for computing the TME. We provide three such variants with the following properties:

• All three variants provably converge to the optimal solution (the one satisfying Eq. (1))
under Assumption 1 with a sublinear rate — O(1/✏2) iterations for approximation error ✏.

• Two variants, AFW and GAFW, are also proved to converge with a linear rate (i.e,. log(1/✏)
dependence on the error tolerance ✏), under an additional fairly mild assumption that holds
with probability 1 when the (normalized) data-points are i.i.d. samples from a continuous
distribution supported on the entire unit sphere (note that the O(log(1/✏)) rate proved in [6]
also holds under an assumption that the data is sampled i.i.d. from an elliptical distribution).

• All three variants are parameter-free and do not require any tuning of parameters, and apply
adaptive step-sizes (i.e., not fixed beforehand).

• The AFW variant requires only Õ(np) runtime per iteration which is linear in the size of
the data, up to a single logarithmic factor, while another variant GAFW runs in the same
time when n � p

2. This is in contrast to FPI which requires O(np2 + p
3) time per iteration.

In fact, even if processing the data could be ideally distributed / done in parallel, FPI still
requires an expensive matrix inversion on each iteration (which practically runs in O(p3)
time), while our AFW variant only requires additional O(p2) runtime per iteration.

A quick summary of our results is brought in Table 1.

Importantly and quite pleasingly, our derivations and proofs rely mostly on standard arguments for
continuous optimization in Euclidean spaces, and we believe that as such, are quite accessible.

Beyond our contribution to efficient algorithms for computing the TME, our work also contributes
more broadly to the theory of Frank-Wolfe-type methods, which have received significant interest in
recent years in the context of obtaining faster rates for convex and smooth problems (e.g., [10, 19, 9,
7, 1]), dealing with nonsmooth objectives (e.g., [26, 4, 3]), and dealing with non-convex objectives
(e.g., [18]). While Problem (2) is nonsmooth and nonconvex, our Frank-Wolfe variants, with our
tailored-designed adaptive step-sizes, are guaranteed to converge to the global minimum, and this
is the first result of its kind for Frank-Wolfe-based methods that we are aware of. Moreover, while
to the best of our knowledge, so called away-steps in Frank-Wolfe algorithms were only shown to
facilitate linear convergence rates when optimizing over polytopes [19], here we establish that also
for the feasible set of positive semidefinite matrices in Problem (2), such away-steps can lead to
linear convergence rates (under proper assumptions), as we prove for our AFW and GAFW variants.
An additional contribution is our connection between Frank-Wolfe methods and optimization over
manifolds as captured by our GAFW variant which applies Frank-Wolfe steps and away-steps w.r.t. to
the geodesic gradient of Problem (2). It is thus our hope that our work will lead to additional efficient
Frank-Wolfe-based algorithms for other important and well-structured non-convex and potentially
nonsmooth problems.

We introduce the following notation. We let Sp+ and Sp++ denote the sets of positive semidefinite
and positive definite matrices in Sp, respectively. We denote Sp = {Q 2 Sp+ | Tr(Q) = p},
Sp+ = {Q 2 Sp++ | Tr(Q) = p}. For a matrix M 2 Sp, we let �i(M) denote the ith largest
signed eigenvalue of M. We also denote at times by �max(M) and �min(M) the largest and smallest
(signed) eigenvalues, respectively. For real matrices we let k·k2, k·kF , k·k1 denote the spectral
norm (largest singular value), Frobenius (Euclidean) norm, and trace norm (sum of singular values),
respectively. We also denote by h·, ·i the standard inner-product in Sp.

It is known that for every Q 2 Sp+, f(Q) is finite, while for every sequence (Qk)k�1 ✓ Sp+ with
�min(Qk) �!

k!1
0, it holds that f(Qk) �!

k!1
1, see [28]. This implies the following lemma that will

be used throughout the paper.

Lemma 1. Fix Q0 2 Sp+. There exists a constant � > 0 such that for every Q 2 Sp+ satisfying
f(Q) f(Q0), it holds that �min(Q) � �.

3

Table 1: Summary of main results. The bounds are given in simplified form excluding constants
and logarithmic factors. We denote by 0,�0, ̃0 the maximal values of �max(Q)

�min(Q) , �max(Q), �2
max(Q)

�min(Q)

over the level set {Q 2 Sp | f(Q) f(Q0)}, where Q0 is the initialization point, respectively. The
rf notation denotes the gradient at the current point. ⇢ is the constant of linear convergence (see
Theorem 4). The linear rates are w.r.t. the approximation error in function value. The sublinear
rates of AFW and GAFW are w.r.t. the distance in spectral norm from satisfying Eq. (1), while the
sublinear rate for FW is for a related, yet slightly different measure, see Theorem 3.

FW variant single iteration runtime
(Theorem 2)

sublinear rate
(Theorem 3)

linear rate
(Theorem 4)

FW (p2 +np)
p

krfk2|�min(rf)|�1 ̃2
0/✏

2 -
AFW p2 + np ̃2

0/✏
2 2

0⇢
�1 log(1/✏)

GAFW p3 + np �2
0/✏

2 ⇢�1 log(1/✏)

2 Frank-Wolfe-based Algorithms for Approximating Tyler’s M-estimator

We consider three Frank-Wolfe variants for Problem (2), all described below in Algorithm 1. All
three variants require to solve (approximately) a certain eigenvalue problem, a different one for each
variant, see more details below. All three variants have the following two properties: 1. they all
use the same adaptive scheme to compute the step-size µt, which in particular does not require any
knowledge of the parameters of the problem (this choice will become clearer in the convergence
analysis), and 2. since the gradient of the objective f(·) requires the inverse matrix Q�1

t , where Qt is
the current iterate of the algorithm, they all explicitly and efficiently maintain the inverse Q�1

t using
the well-known Sherman-Morrison formula and capitalizing on the fact that the algorithm performs a
rank-one update. Hence, the inverse could be updated in only O(p2) time per iteration (as opposed to
the standard O(p3) matrix inversion time). Below we expand on each of the eigenvalue problems in
Algorithm 1 and how they correspond to familiar and new Frank-Wolfe-type methods.

We note that Algorithm 1 is completely independent of any parameter of Problem (2). The only
parameter the algorithm accepts is the approximation parameter � 2 [0, 1), however this choice is not
very important as will be evident from our convergence theorems, and only brought for convinience.
In particular one can always simply choose some universal constant, for instance � = 1/2. The
algorithm also requires a feasible initialization point Q0 2 Sp+ and its inverse, and a convenient
choice is to simply take Q0 = I = Q�1

0 .

Algorithm 1 Frank-Wolfe variants for approximating Tyler’s M-estimator
Input: Q0,Q

�1
0 such that Q0 � 0, � 2 [0, 1)

for t = 0, , ... do

Solve an approximate eigenvalue problem: let vt 2 Rp be such that kvtk =
p
p and satisfies

one of the following:

1. � v>
t rf(Qt)vt � �p(1� �)�min(rf(Qt)) (FW step) (5)

2. |v>
t rf(Qt)vt| � p(1� �)krf(Qt)k2 (AFW step) (6)

3.
|v>

t rf(Qt)vt|
v>
t Q

�1
t vt

� (1� �)kQ1/2
t rf(Qt)Q

1/2
t k2 (GAFW step) (7)

µt �vt
>rf(Qt)vt

(v>
t Q�1

t vt)2�vt
>rf(Qt)vt

�t µt

1�µt
= �v>

t rf(Qt)vt

(v>
t Q�1

t vt)2

Qt+1 Qt + µt(vtvt
> �Qt)

Q�1
t+1 1

1�µt
(Q�1

t � �t
Q�1

t vtv
>
t Q�1

t

1+�tv>
t Q�1

t vt
)

end for

Standard Frank-Wolfe update: For the feasible set Sp, it is well known that the solution to the
FW linear optimization problem minV2SphV,rf(Qt)i at the current point Qt is given w.l.o.g. as
V+ := vv>, where v =

p
pu and u is a unit-length eigenvector of rf(Qt) corresponding to the

4

smallest eigenvalue, i.e., u>rf(Q)u = �min(rf(Qt)), see for instance [14, 15]. This is exactly
the step in Eq. (5) in Algorithm 1, only that in Eq. (5) we do not require exact computation of the
eigenvector, but allow for a (1� �) multiplicative approximation w.r.t. the smallest eigenvalue.

Frank-Wolfe with Away-Steps (AFW) update: The AFW update (see [13, 19]) applies one of
two types of updates. One is the standard FW step discussed above. The other, called away-step,
takes the form Qt+1 Qt + µ(Qt �V�), µ > 0, where V� 2 Sp is ideally chosen so that V�
maximizes the inner product hV�,rf(Qt)i over Sp, subject to the constraint that there indeed exists
a corresponding µ > 0, so that Qt+1 is feasible [13, 19]. For Qt � 0, all points in Sp give rise to
such positive µ, and so, V� is simply the solution to maxV2SphV,rf(Qt)i, which w.l.o.g. is of
the form V� = vv>, where v =

p
pu and u is a unit-length eigenvector ofrf(Qt) corresponding

to the largest (signed) eigenvalue.

If hQt �V+,rf(Qt)i � hV� �Qt,rf(Qt)i, AFW performs a standard FW update with
V+, and otherwise, it performs an away-step with V�. In case of Problem (2), a straight-
forward calculation shows that hQt,rf(Qt)i = 0. Thus, in our case, a FW step is taken if
�hV+,rf(Qt)i � hV�,rf(Qt)i, i.e., if �p�min(rf(Qt)) � p�max(rf(Qt)), and other-
wise an away-step is taken. Thus, taking both cases into account, AFW performs a step of
the form Qt+1 Qt + µ(vv> � Qt) (here µ can also be negative), where |v>rf(Qt)v| �
pmax{��min(rf(Qt)),�max(rf(Qt))} = pkrf(Qt)k2, which is exactly what we have in Eq.
(6) in Algorithm 1, only that in (6) we again do not require precise computation, but allow for a
(1� �) multiplicative approximation.

Geodesic Frank-Wolfe with Away-Steps (GAFW) update: GAFW performs the same updates
as AFW, but not w.r.t. to the (standard) gradient rf(Qt), but with respect to the so-called geodesic
gradient given by Q1/2

t rf(Qt)Q
1/2
t (see for instance [6]). Note that kQ1/2

t rf(Qt)Q
1/2
t k2 =

maxu:kuk2=1 |u>Q1/2
t rf(Qt)Q

1/2
t u|2. Consider the parametrization u = Q�1/2

t v

kQ�1/2
t vk2

(note it is

invariant to the norm of v). This gives kQ1/2
t rf(Qt)Q

1/2
t k2 = maxv

|v>rf(Qt)v|
v>Q�1

t v
, which is exactly

the update step in Eq. (7) in Algorithm 1, only that in Eq. (7) it suffices to find a (1��)-multiplicative
approximation. As will be evident from our analysis, and in particular in the error reduction argument
in Lemma 3, this step maximizes the decrease in function value on each iteration.

The following lemma establishes that the step-sizes of Algorithm 1 indeed always produce feasible
iterates in Sp+. The proof is given in the appendix.
Lemma 2 (Feasibility of Algorithm 1). Suppose that Tr(Q0) = p and Q0 � 0. Then, for every
iteration t � 1 of Algorithm 1 it holds that Tr(Qt) = p and Qt � 0.

2.1 Efficient implementation of the eigenvalue oracles in Algorithm 1

We now discuss how the various eigenvalue problems in Algorithm 1 could be solved (to sufficient
approximation) efficiently via simple and well-known iterative algorithms for leading eigenvector
computation, such as the power method or the Lanczos algorithm [12, 23]. These implementations
rely on three simple ideas:

1. Use of the Sherman-Morrison formula for rank-one updates to update the inverse matrix
Q�1

t+1 from the previous one Q�1
t , given the vector vt, in O(p2) time.

2. Explicitly maintaining and updating the vectors Q�1
t xi, i = 1, . . . , n, which can be done

in overall O(np) time per iteration. This allows to compute a matrix-vector product of the
form rf(Qt)v, for some v 2 Rp, in only O(np) time (see expression for rf in Eq. (3)).

3. Apply the power method or the Lanczos algorithm (or any other method for leading eigen-
vector computation) to solve the leading eigenvalue problems (5), (6), (7), relying on the
fact that due to the pervious two items, each iteration of the power method requires only
O(p2 + np) time.

The complete proof of the following theorem is given in the appendix.
Theorem 2. Let � 2 [0, 1) be some universal constant (e.g., � = 1/2). Algorithm 1 admits
implementations based on fast algorithms for leading eigenvector computation (e.g., the power

5

method / Lanczos [12, 23]), such that each iteration of Algorithm 1 could be implemented in:
Õ(np + p

2) time when using AFW steps (Eq. (6)), O(p3) + Õ(np + p
2) time when using GAFW

steps (Eq. (7)), and Õ

⇣q
krf(Qt)k2

|�p(rf(Qt))| (np+ p
2)
⌘

when using FW steps (Eq. (5)), where in all cases

the Õ notation hides a logarithmic factor in the dimension p and the probability of failure �.
Remark 1. Note that the worst-case time to solve the standard FW eigenvalue problem, in terms
of the dependence on the size of the data np, is much worse than that of AFW and GAFW. This is
because, while the eigenvalue problems in AFW, GAFW require to approximate the largest eigenvalue
in magnitude, FW requires to approximate the smallest signed eigenvalue.
Remark 2. Since leading eigenvector algorithms such as the power method are usually initialized
with a random vector, their guarantees only hold with high probability, as captured in Theorem
2. However, since the dependence on the probability of failure is only logarithmic, for the clarity
of presentation, henceforth we neglect such considerations and treat these computations as if they
always succeed.

3 Sublinear Convergence of Algorithm 1

While the measure of convergence in our sublinear rates for AFW and GAFW will be simply the
distance in spectral norm from satisfying the TME equation (1) , our measure of convergence for the
standard FW variant is slightly less obvious and is motivated by the following observation, the proof
of which is given in the appendix.

Observation 1. For any Q 2 Sp+, �min

⇣
Q� p

n

Pn
i=1

xix
>
i

x>
i Q�1xi

⌘
 0, and

�min

⇣
Q� p

n

Pn
i=1

xix
>
i

x>
i Q�1xi

⌘
= 0 if and only if Q = Q⇤.

Theorem 3 (O(1/✏2) convergence of Algorithm 1). Consider the iterates of Algorithm 1 and define
the function T (✏̃) = d4(f(Q0)� f(Q⇤))(1 + ✏̃

�2)e. Fix ✏ > 0 and define

✏̃FW :=

✓
min

Q2Sp:f(Q)f(Q0)

�min(Q)

�2
max(Q)

◆
(1� �)✏, ✏̃AFW :=

✓
min

Q2Sp:f(Q)f(Q0)

�min(Q)

�2
max(Q)

◆
(1� �)✏,

✏̃GAFW :=

✓
max

Q2Sp:f(Q)f(Q0)
�max(Q)

◆�1

(1� �)✏.

Then, when using FW steps (Eq. 5), it holds that for all t � T (✏̃FW),

max
⌧=0,...,t�1

�min

Q⌧ �

p

n

nX

i=1

xix>
i

x>
i Q

�1
⌧ xi

!
� �✏. (8)

When using AFW steps (Eq. (6)) or GAFW steps (Eq. (7)), it holds for all t � T (✏̃AFW) or
t � T (✏̃GAFW), respectively, that

min
⌧=0,...,t�1

�����Q⌧ �
p

n

nX

i=1

xix>
i

x>
i Q

�1
⌧ xi

�����
2

 ✏. (9)

Remark 3. Note that one motivation for considering the use of the GAFW variant in light of
Theorem 3, is that it enjoys better conditioning than AFW in terms of the maximal condition number
�max(Q)/�min(Q) over the initial level set {Q 2 Sp | f(Q) f(Q0)}.

The complete proof of Theorem 3 is given in the appendix. Below we state and prove the key
technical step — a bound on the improvement in function value that Algorithm 1 makes on a single
iteration. In particular, the lemma is independent of the way the vector vt is generated and hence
applies to all three variants described in Algorithm 1.

Lemma 3. Fix some iteration t of Algorithm 1 and define Lt =
v>
t rf(Qt)vt

v>
t Q�1

t vt
. It holds that

f(Qt+1)� f(Qt) �
1

4
min{1, L2

t}. (10)

6

Remark 4. An immediate important consequence of Lemma 3 is that Algorithm 1 is a decent method,
i.e., the function value never increases from one iteration to the next. Lemma 3 also reveals one
motivation for the GAFW step in Eq. (7): (up to a (1 � �) factor) it maximizes the reduction in
function value.

Proof of Lemma 3. Using the definition of Qt+1 we have that,

f(Qt+1) =
p

n

nX

i=1

log(x>
i ((1� µt)Qt + µtvtv

>
t)

�1xi) + log(det((1� µt)Qt + µtvtv
>
t)).

(11)

Using the Sherman-Morrison formula we have that,

((1� µt)Qt + µtvtv
>
t)

�1 =
1

1� µt

⇣
Q�1

t � �t
Q�1

t vtv>
t Q

�1
t

1 + �tv>
t Q

�1
t vt

⌘
, (12)

where we recall that �t = µt

1�µt
.

Using the well-known matrix determinant lemma for rank-one updates we have,

det((1� µt)Qt + µtvtv
>
t) = (1� µt)

p(1 + �tv
>
t Q

�1
t vt) det(Qt). (13)

Plugging (12) and (13) into (11), we obtain

f(Qt+1) =
p

n

nX

i=1

log

1

1� µt
x>
i

⇣
Q�1

t � �t
Q�1

t vtv>
t Q

�1
t

1 + �tv>Q�1
t vt

⌘
xi

!

+ log
�
(1� µt)

p(1 + �tv
>
t Q

�1
t vt) det(Qt)

�

=
p

n

nX

i=1

log

x>
i

⇣
Q�1

t � �t
Q�1

t vtv>
t Q

�1
t

1 + �v>
t Q

�1
t vt

⌘
xi

!
+ log

�
(1 + �tv

>Q�1
t vt) det(Qt)

�

=
p

n

nX

i=1

log

x>
i Q

�1
t xi � �t

(x>
i Q

�1
t vt)2

1 + �tv>
t Q

�1
t vt

!
+ log(1 + �tv

>
t Q

�1
t vt) + log det(Qt)

=
p

n

nX

i=1

log(x>

i Q
�1
t xi) + log

⇣
1� �t

1

1 + �tv>
t Q

�1
t vt

(x>
i Q

�1
t vt)2

x>
i Q

�1
t xi

⌘!

+ log(1 + �tv
>
t Q

�1
t vt) + log det(Qt)

= f(Qt) +
p

n

nX

i=1

log
⇣
1� �t

1

1 + �tv>
t Q

�1
t vt

(x>
i Q

�1
t vt)2

x>
i Q

�1
t xi

⌘
+ log(1 + �tv

>
t Q

�1
t vt)

(a)

f(Qt)�
�t

1 + �tv>
t Q

�1
t vt

p

n

nX

i=1

(x>
i Q

�1
t vt)2

x>
i Q

�1
t xi

+ log(1 + �tv
>
t Q

�1
t vt)

= f(Qt) +
�t

1 + �tv>
t Q

�1
t vt

�
v>
t rf(Qt)vt � v>

t Q
�1
t vt

�
+ log(1 + �tv

>
t Q

�1
t vt),

where (a) follows from the inequality log(1 + x) x.

We now consider two cases. If �t � 0, using the inequality log(1 + x) x
2
2+x
1+x = x� x2

2(1+x) for all
x � 0, we have that

log(1 + �tv
>
t Q

�1
t vt) �tv

>
t Q

�1
t vt �

�
2
t (v

>
t Q

�1
t vt)2

2(1 + �tv>
t Q

�1
t vt)

.

If �t < 0, using the inequality log(1 + x) 2x
2+x = x� x2

2+x for all 0 � x > �1, we have that

log(1 + �tv
>
t Q

�1
t vt) �tv

>
t Q

�1
t vt �

�
2
t (v

>
t Q

�1
t vt)2

2 + �tv>
t Q

�1
t vt

.

7

It is easily verified that for our choice �t =
�v>

t rf(Qt)vt

(v>
t Q�1

t vt)2
, it holds that

�t

1 + �tv>
t Q

�1
t vt

�
v>
t rf(Qt)vt � v>

t Q
�1
t vt

�
+ �tv

>
t Q

�1
t vt = 0.

Thus, considering both options for �t (� 0 or < 0), we have that

f(Qt+1)� f(Qt) �
�
2
t (v

>
t Q

�1
t vt)2

2(1 + |�tv>
t Q

�1
t vt|)

= � L
2
t

2(1 + |Lt|)
.

The Lemma follows from considering the two cases |Lt| � 1 and |Lt| < 1, and simplifying.

Corollary 1. Fix ✏ > 0. For any t �
⌃
4(f(Q0)� f(Q⇤))

�
1 + ✏

�2
�⌥

iterations of Algorithm 1 it
holds that, min⌧=0,...,t�1 |L⌧ | ✏.

Proof. Fix some iteration t of Algorithm 1. Using Lemma 3 we have that

f(Q⇤)� f(Q0) f(Qt)� f(Q0) =
t�1X

⌧=0

f(Q⌧+1)� f(Q⌧) �
1

4

t�1X

⌧=0

min{1, L2
⌧}.

Thus, for t �
⌃
4(f(Q0)� f(Q⇤))

�
1 + ✏

�2
�⌥

iterations there must exist some ⌧ 2 {0, . . . , t� 1}
such that |L⌧ | ✏.

4 Linear Convergence of AFW and GAFW

In this section we prove that under an additional (to Assumption 1) mild assumption, the AFW and
GAFW variants converge linearly in function value.
Assumption 2. The data-points x1, . . . ,xn satisfy that n � 2p, and for any subset S ✓
{x1, . . . ,xn} such that |S| � n/2, it holds that span(S) = Rp.
Remark 5. Note that for any fixed n, if the (normalized to have unit norms) data-points are i.i.d.
samples from a continuous distribution which is supported on the entire unit sphere, Assumption 2
holds with probability 1.
Theorem 4 (Linear convergence of AFW and GAFW). Denote ht = f(Qt)� f(Q⇤) for all t � 0.
Suppose Assumption 2 holds. Then, Algorithm 1 when run with AFW steps, satisfies

8t � 0 : ht h0 exp

✓
� (1� �)2

4

�2
0 ⇢ (t� d4(f(Q0)� f(Q⇤))e)

◆
,

where ⇢ > 0 is the constant implied by Theorem 5, and 0 := maxQ2Sp:f(Q)f(Q0)
�max(Q)
�min(Q) .

When using GAFW steps, Algorithm 1 satisfies

8t � 0 : ht h0 exp

✓
� (1� �)2

4
⇢ (t� d4(f(Q0)� f(Q⇤))e)

◆
.

Remark 6. As with Theorem 3, we see that GAFW enjoys better conditioning than AFW w.r.t. the
maximal condition number �max(Q)/�min(Q) over the initial level set.

The complete proof of Theorem 4 is given in the appendix. The key part in the proof is to establish
that, under Assumption 2, Problem (2) satisfies a Polyak-Łojasiewicz (PL) condition w.r.t. both
the standard gradient rf(Q) and the geodesic gradient Q1/2rf(Q)Q1/2, which is a property
well-known to facilitate linear convergence rates for first-order methods, see for instance [22, 17, 9].
A (standard, i.e., non geodesic) PL condition at some query point Q takes the form krf(Q)k2 �
C(f(Q)� f(Q⇤)), for some constant C > 0 independent of Q.

The proof of our PL condition is highly non-trivial and is very much inspired by the analysis in
[6]. However, while the proof in [6] relies heavily on geodesic strong convexity and quantum
expansion arguments, we give a different proof (in particular, our Assumption 2 is different from
their explicit assumption that the data is sampled from an elliptical distribution) that does not use
such considerations and, we believe, is more straightforward and accessible.

8

Theorem 5 (Polyak-Łojasiewicz condition). Suppose Assumption 2 holds, and let Q0 2 Sp+. Then,
there exists a constant ⇢ > 0 such that for any Q 2 Sp+ satisfying f(Q) f(Q0), it holds that,

kQ1/2rf(Q)Q1/2k22 � ⇢ (f(Q)� f(Q⇤)) .

Remark 7. While Theorem 5 establishes that the PL parameter ⇢ is strictly positive, its precise value
(i.e., its dependence on the data) is quite intricate and does not admit a simple formula (see proof in
appendix for more details).

5 Numerical Simulations

In order to give some demonstration for the empirical performance of our Frank-Wolfe-based
algorithms, we conducted two types of experiments that closely follow those in [28] (Chapter 3)
with some minor changes, which consider a Gaussian distribution with outlier contamination, and a
heavy-tailed multivariate t-distribution. We consider a large sample regime in which n = p

2. We
recall that in this regime each iteration of the Fixed-point Iterations method (FPI) takes O(np2) time,
while our AFW, GAFW variants require only O(np) time, up to a single log term, per-iteration.

Data generation: Following the experiments conducted in [28] with some minor changes, we
consider i. a Gaussian distribution with outliers contamination in which, each Gaussian-distributed
vector is replaced with probability 0.9/p with the eigenvector associated with the smallest eigenvalue
of the covariance, and ii. a heavy-tailed multivariate t-distribution with two degrees of freedom. In
both experiments we set p = 50, n = 2500, and we take the true unknown covariance to be a Toeplitz
matrix with the elements Qi,j = 0.85|i�j|.

Methodology: To present results that are implementation and scale independent as possible,
for each of the considered methods we estimate the required running time per number of itera-
tions, normalized by the data-size np. Since we consider the regime n = p

2, each iteration of
FPI takes O(np2) time. For all Frank-Wolfe variants (FW, AFW, and GAFW) we use Python’s
SCIPY.SPARSE.LINALG.EIGSH procedure, which is based on the Lanczos algorithm, to solve the
corresponding eigenevalue problem to low-accuracy (which corresponds to the approximation pa-
rameter � in Algorithm 1). We verified that in all of our experiments and for all FW variants, this
procedure makes at most 2 iterations, and thus, per the discussion in Section 2.1, the runtime per
iteration of each of these variants is estimated by O(np). Thus, normalizing the estimated runtime by
the data-size np, in the figures below each iteration of FPI is estimated to take p times more than that
of any of the FW variants. All methods are initialized from the sample covariance (normalized to
have trace equals p) and each figure is the average of 20 i.i.d. experiments.

Results: For all experiments we compute Tyler’s estimator to high accuracy by running 250
iterations of the Fixed-point method and we denote the resulting matrix by Q⇤. In Figure 1 we report
the distance in spectral norm (in log scale) of the iterates of the different methods form Q⇤, and
in Figure 2 we report the approximation error f(Qt)� f(Q⇤) of the iterates (also in log scale). It
can be seen that in both setups and with respect to both measures, GAFW converges faster than
FPI, and that in the contaminated Gaussian distribution setup it is significantly faster. Moreover,
looking at the approximation error in log-scale, it indeed seems to exhibit a linear convergence rate.
We also observe that the FW and AFW variants converge significantly slower than GAFW, which
demonstrates how the better conditioning of GAFW (as captured also in our convergence theorems,
Theorems 3 and 4) may be significant. Additionally, and perhaps surprisingly, AFW converges slower
than FW, which suggests a situation in which AFW takes many away-steps, since they are better
descent directions than the standard FW step, but in turn results in much smaller step-sizes, and thus
overall, the convergence is slower.

6 Conclusions

We have presented the first Frank-Wolfe-based variants for approximating Tyler’s M-estimator for
robust and heavy-tailed covariance estimation. In particular these include parameter-free and globally-
convergent variants with nearly linear runtime per-iteration and, under a mild assumption, with
linear convergence rates, despite the fact that the underlying optimization problem is not convex

9

Figure 1: log kQt �Q⇤k2 for Gaussian distribution with outlier contamination (left panel) and for
heavy-tailed t-distribution (right panel).

Figure 2: Log approximation error f(Qt)� f(Q⇤) for Gaussian distribution with outlier contamina-
tion (left panel) and for heavy-tailed t-distribution (right panel).

nor smooth. We hope these results will pave the way to nearly linear-time algorithms for additional
highly-structured nonconvex and nonsmooth problems.

Acknowledgements

This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 2267/22).

References

[1] Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi Li. Linear convergence of a frank-wolfe
type algorithm over trace-norm balls. Advances in Neural Information Processing Systems, 30,
2017.

[2] Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Alexandre Renaux, and Frederic Pascal.
A riemannian framework for low-rank structured elliptical models. IEEE Transactions on Signal
Processing, 69:1185–1199, 2021.

[3] Alejandro Carderera, Mathieu Besançon, and Sebastian Pokutta. Simple steps are all you
need: Frank-wolfe and generalized self-concordant functions. Advances in Neural Information
Processing Systems, 34, 2021.

[4] Pavel Dvurechensky, Petr Ostroukhov, Kamil Safin, Shimrit Shtern, and Mathias Staudigl.
Self-concordant analysis of frank-wolfe algorithms. In International Conference on Machine
Learning, pages 2814–2824. PMLR, 2020.

[5] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3:149–154, 1956.

[6] William Cole Franks and Ankur Moitra. Rigorous guarantees for tyler?s m-estimator via
quantum expansion. In Conference on Learning Theory, pages 1601–1632. PMLR, 2020.

[7] Dan Garber. Faster projection-free convex optimization over the spectrahedron. Advances in
Neural Information Processing Systems, 29, 2016.

10

[8] Dan Garber and Elad Hazan. Fast and simple pca via convex optimization. arXiv preprint
arXiv:1509.05647, 2015.

[9] Dan Garber and Elad Hazan. Faster rates for the frank-wolfe method over strongly-convex sets.
In International Conference on Machine Learning, pages 541–549. PMLR, 2015.

[10] Dan Garber and Elad Hazan. A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization. SIAM Journal
on Optimization, 26(3):1493–1528, 2016.

[11] John Goes, Gilad Lerman, and Boaz Nadler. Robust sparse covariance estimation by threshold-
ing tyler?s m-estimator. The Annals of Statistics, 48(1):86–110, 2020.

[12] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[13] Jacques GuéLat and Patrice Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical
Programming, 35(1), 1986.

[14] Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin American
symposium on theoretical informatics, pages 306–316. Springer, 2008.

[15] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435. PMLR, 2013.

[16] Abla Kammoun, Romain Couillet, Frederic Pascal, and Mohamed-Slim Alouini. Convergence
and fluctuations of regularized tyler estimators. IEEE Transactions on Signal Processing,
64(4):1048–1060, 2016.

[17] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[18] Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016.

[19] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of frank-wolfe
optimization variants. Advances in neural information processing systems, 28, 2015.

[20] Bruno Mériaux, Chengfang Ren, Arnaud Breloy, Mohammed Nabil El Korso, and Philippe
Forster. Matched and mismatched estimation of kronecker product of linearly structured scatter
matrices under elliptical distributions. IEEE Transactions on Signal Processing, 69:603–616,
2020.

[21] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and
faster approximate singular value decomposition. Advances in neural information processing
systems, 28, 2015.

[22] Ion Necoara, Yu Nesterov, and Francois Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175(1):69–107, 2019.

[23] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

[24] Ilya Soloveychik and Ami Wiesel. Tyler’s covariance matrix estimator in elliptical models with
convex structure. IEEE Transactions on Signal Processing, 62(20):5251–5259, 2014.

[25] Ying Sun, Prabhu Babu, and Daniel P Palomar. Robust estimation of structured covariance
matrix for heavy-tailed elliptical distributions. IEEE Transactions on Signal Processing,
64(14):3576–3590, 2016.

[26] Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Projection
efficient subgradient method and optimal nonsmooth frank-wolfe method. Advances in Neural
Information Processing Systems, 33:12211–12224, 2020.

[27] David E Tyler. A distribution-free m-estimator of multivariate scatter. The annals of Statistics,
pages 234–251, 1987.

11

[28] Ami Wiesel, Teng Zhang, et al. Structured robust covariance estimation. Foundations and
Trends® in Signal Processing, 8(3):127–216, 2015.

[29] Teng Zhang, Xiuyuan Cheng, and Amit Singer. Marvcenko–pastur law for tyler?s m-estimator.
Journal of Multivariate Analysis, 149:114–123, 2016.

[30] Teng Zhang and Gilad Lerman. A novel m-estimator for robust pca. The Journal of Machine
Learning Research, 15(1):749–808, 2014.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The details in
the experimental section allow to reproduce the results exactly

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

	Introduction
	Frank-Wolfe-based Algorithms for Approximating Tyler's M-estimator
	Efficient implementation of the eigenvalue oracles in Algorithm 1

	Sublinear Convergence of Algorithm 1
	Linear Convergence of AFW and GAFW
	Numerical Simulations
	Conclusions
	Proofs Missing from Section 2
	Proof of Lemma 2
	Proof of Theorem 2

	Proofs Missing from Section 3
	Proof of Observation 1
	Proof of Theorem 3

	Proofs Missing from Section 4
	Proof of Theorem 5
	Proof of Theorem 4

