
Appendix

Additional Notation For d ∈ N, we use Vd : Rn 7→ R(n+1)d to denote the degree-d Veronese
mapping, where the outputs are corresponding to monomials of degrees at most d.

A Additional Technical Background

For completeness, we start with the definition of the classic LWE problem. Note that Definition 2.3
generalizes this definition, so we will not use the definition below directly.
Definition A.1 (Classic Learning with Errors Problem). Let m,n, q ∈ N, and
let Dsample, Dsecret, Dnoise be distributions on Znq , Znq , Zq respectively. In the
LWEclassic(m,Dsample, Dsecret, Dnoise,modq) problem, we are givenm independent samples (x, y)
and want to distinguish between the following two cases:

(i) Alternative hypothesis: s is drawn from Dsecret. Then, each sample is generated by taking
x ∼ Dsample, z ∼ Dnoise and letting y = modq(⟨x, s⟩+ z).

(ii) Null hypothesis: x, y are independent and each has the same marginal distribution as above.

Throughout our proofs, we need to manipulate discrete Gaussian distributions that are taken modulo
1 and those with noise added. Due to this, it will be convenient to introduce the following definitions.

Definition A.2 (Expanded Gaussian Distribution from Rn1 ). For σ ∈ R+, let Dexpand
Rn1 ,σ

denote the
distribution of x′ drawn as follows: first sample x ∼ U(Rn1 ) (using the Lebesgue measure on Rn1 ),
and then sample x′ ∼ DN

Zn+x,σ .

Definition A.3 (Collapsed Gaussian Distribution on Rn1 ). We will use Dcollapse
Rn1 ,σ

to denote the
distribution of mod1(x) on Rn1 , where x ∼ DN

Rn,σ .

We will also need the following fact, which can be easily derived from known bounds in literature.
For completeness, we provide the full proof in Appendix A.1.

Fact A.4. Let n ∈ N, σ ∈ R+, ϵ ∈ (0, 1/3) be such that σ ≥
√
ln(2n(1 + 1/ϵ))/π. Then, we have

PDexpand
Rn1 ,σ

/σ(t)

PDN
Rn,1

(t)
=

PU(Rn1 )(mod1(σt))

PDcollapse
Rn1 ,σ

(mod1(σt))
= 1±O (ϵ) ,

for all t ∈ Rn, and

dTV

(
Dexpand

Rn1 ,σ

σ
,DN

Rn,1

)
, dTV

(
Dcollapse

Rn1 ,σ
, U(Rn1 )

)
= exp

(
−Ω(σ2)

)
.

We will also need the following well-known fact in our proof.
Lemma A.5 (Corollary 3.10 of [Reg09]). Let z ∈ Rn, σ1, σ2 ∈ R>0. Assume that

1/
√

1/σ2
1 + ∥z∥22/σ2

2 ≥ ηϵ(L) ,

and further suppose that x ∼ DN
Zn,σ1

and x′ ∼ DN
σ2

. Then the distribution of ⟨x, z⟩+ x′ is within
O(ϵ) total variation distance to DN√

∥z∥2
2σ

2
1+σ

2
2

. (ηϵ(L) is the smoothing parameter of a lattice, and is

defined in Definition A.7.)

A.1 Proof of Fact A.4

We start by recalling the definition of a lattice.
Definition A.6 (Lattice). Let B = (v1,v2, · · · ,vn) be a set of n linearly independent vectors in Rn.
The lattice L = L(B) defined by B is the set of all integer linear combinations of vectors in B, i.e.,
the set {v ∈ Rn : v =

∑n
j=1 αjvj , αj ∈ Z}.
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Since we only use the integer lattices Zn, we will only introduce notation as necessary. For a more
detailed introduction about lattices, the reader is referred to [MG02].

Partially supported Gaussian distributions (Definition 2.1) behave similarly to continuous Gaussian
distributions. The similarity can be quantified based on the so-called smoothing parameter of a lattice
defined below.

Definition A.7 (see, e.g., Definition 2.10 of [Reg09]). For an n-dimensional lattice L and ϵ ∈ R+,
we define the smoothing parameter ηϵ(L) to be the smallest s such that2 ρ1/s(L∗ \ {0}) ≤ ϵ.

Lemma A.8 (see, e.g., Lemma 2.12 of [Reg09]). For any n ∈ N and ϵ ∈ R+, we have that

ηϵ(Zn) ≤
√

ln(2n(1+1/ϵ))
π .

The main lemma we will use here is that, when σ is larger than the smoothing parameter, the
normalizing factor remains roughly the same after a shift by an arbitrary vector v, as formalized
below. (Note that in the discrete Gaussian case, the two sides would have been equal.) This
property follows from the proof of [MR07, Lemma 4.4], in which it was shown that ρσ(L+ v) ∈
[(1− ϵ) det(L∗), (1 + ϵ) det(L∗)]; the lemma then follows since det((Zn)∗) = 1.

Lemma A.9 ([MR07]). Let n ∈ N, ϵ ∈ (0, 1) and σ ≥ ηϵ(Zn). Then, for any v ∈ Rn, we have that
ρσ(Zn + v) ∈ [1− ϵ, 1 + ϵ].

We are now ready to prove Fact A.4.

Proof of Fact A.4. Let r = mod1(σt). Notice that

P(1/σ)◦Dexpand
Rn1 ,σ

(t)

PDN
Rn,1

(t)
=

1

PDN
Rn,1

(t)
· PU(Rn1 )(r) · PDN

Zn+r,σ
(σt)

=
1

PDN
Rn,1

(t)
· PDN

Zn+r,σ
(σt)

=
1

PDN
Rn,1

(t)
· ρσ(σt)

ρσ(Zn + r)

=
1

PDN
Rn,1

(t)
· p1(t)

ρσ(Zn + r)

=
1

ρσ(Zn + r)

(Lemmas A.9, A.8)
=

1

1± ϵ
= 1±O(ϵ) .

Notice also that

PDcollapse
Rn1 ,σ

(r)

PU(Rn1 )(r)
= PDcollapse

Rn1 ,σ
(r)

=
∑
u∈Zn

ρσ(u+ r)

= ρσ(Zn + r)

=
PDN

Rn,1
(t)

P(1/σ)◦Dexpand
Rn1 ,σ

(t)
,

where the last equality follows from the previously derived equality above. These prove the first
equality in Fact A.4.

2Note that L∗ denotes the dual lattice of L; it contains all y such that ⟨x,y⟩ is an integer for all x ∈ L.
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Next, note that pointwise closeness immediately yields the same bound on the TV distance. Therefore,
we have

dTV

(
(1/σ) ◦Dexpand

Rn1 ,σ
, DN

Rn,1

)
, dTV

(
Dcollapse

Rn1 ,σ
, U(Rn1 )

)
≤ ϵ ≤ exp(−Ω(σ2)) ,

where the second inequality follows from our choice of σ.

B Hardness of LWE with Binary Secret, Continuous Samples, and
Continuous Noise

The main theorem of this section is a reduction from LWE(n,Zlq,Zlq, DN
Z,σ,modq) to

LWE(m,Rn1 , {±1}n, DN
σ′ ,mod1). The purpose of this reduction is to massage the LWE problem

into its variant with binary secret, continuous samples and continuous noise, so we can further reduce
it to the Massart problem.

We reiterate that this reduction between LWE problems follows from the previous works [Mic18a,
GVV22]; we provide the full proof here for completeness. The main theorem regarding the reduction
is presented below.
Theorem B.1. Let n,m, l, q ∈ N, σ, σ′ ∈ R, where the parameters satisfy:

1. log(q)/2l = δω(1) (where ω(1) goes to infinity as n goes to infinity),

2. σ = ω(
√
log(mn/δ))

3. n ≥ 2l log2(q) + ω(log(1/δ)), and

4. σ′ = c
√
nσ/q, where c is a sufficiently large constant.

Suppose there is no T + poly(m,n, l, log q, log(1/δ)) time distinguisher for
LWE(n,Zlq,Zlq, DN

Z,σ,modq) with ϵ/m advantage. Then there is no T time distinguisher
for LWE(m,Rn1 , {±1}n,Nσ′ ,mod1) with 2ϵ+O(δ) advantage.

Before we prove Theorem B.1, let us note that combining it with Assumption 2.4 yields Lemma 2.5.

Proof of Lemma 2.5. We take n = lα, m = 2O(lβ
′
), q = lγ

′
, and σ =

√
l, where α > 1 and

β′′ > β′ ∈ (0, 1). Then, from Assumption 2.4, it follows that there is no 2O(nβ
′′/α) time algorithm

to solve LWE
(
n,Zlq,Zlq, DN

Z,nα/2 ,modq

)
with 2−O(nβ

′′/α) advantage.

We take δ to be a sufficiently small constant and apply Theorem B.1. Then we have that no 2O(nβ
′/α)

time algorithm can solve LWE

(
2O(nβ

′/α),Rn1 , {±1}n, DN
Z,O(n1/(2α)+1/2−γ′/α)

,mod1

)
with 1/3

advantage. We rename β = β′/α and γ = 1/(2α) + 1/2 − γ′/α. By taking α > 1 and β′ < 1
to be arbitrarily close to 1 and γ′ to be arbitrarily large constant, we can have β ∈ (0, 1) to be
arbitrarily close to 1 and γ to be arbitrarily large. Then there is no 2O(nβ) time algorithm to solve
LWE

(
2O(nβ),Rn1 , {±1}n, DN

O(n−γ),mod1

)
with 1/3 advantage.

Given the above, by a standard boosting argument, it follows that there is no 2O(nβ) time algorithm
to solve LWE

(
2O(nβ),Rn1 , {±1}n, DN

O(n−γ),mod1

)
with 2−O(nβ) advantage.

From Zq Secret to Binary Secret We require the following lemma from [GVV22] that reduces
the classic LWE problem with Zq secret to an LWE problem with binary secret.
Lemma B.2 (Theorem 7 from [GVV22]). Let q, l, n,m ∈ N and σ ∈ R+. Assum-
ing that there is no time T + poly(l, n, log(q), log(1/δ)) algorithm for solving LWE(n +
1,Zlq,Zlq, DN

Z,σ,modq) with advantage (ϵ − δωn(1))/(2m), there is no time T algorithm for solv-
ing LWE(m,Zn+1

q , {±1}n+1, DN
Z,σ′ ,modq) with ϵ advantage, as long as the following holds:

log(q)/2l = δωn(1), σ ≥ 4
√
ω(log(1/δ)) + logm+ log n, n ≥ 2l log2(q) + ω(log(1/δ)), and

σ′ = 2σ
√
n+ 1.
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From Discrete To Continuous In the next step, we show that adding a small amount of Gaussian
noise on y will render the discrete Gaussian noise close to continuous Gaussian noise.
Lemma B.3 (Lemma 15 from [GVV22]). Let n,m, q ∈ N, σ ∈ R+, c be a sufficiently
large constant and suppose that σ >

√
c log(m/δ). Suppose there is no distinguisher for

LWE(m,Znq , {±1}n, DN
Z,σ,modq) running in time T + poly(m,n log(q), log(1/δ)) with ϵ advan-

tage. Then there is no T -time distinguisher for LWE(m,Znq , {±1}n, DN
σ′ ,modq) with ϵ + O(δ)

advantage, where
σ′ ≥

√
σ2 + c log(m/δ) .

Proof. We will give a reduction argument. Take σadd =
√
σ′2 − σ2. Then for each sample (x, y)

from LWE(m,Znq , {±1}n, DN
Z,σ,modq), we return

(x,mod1(y + e)) where e ∼ DN
σadd

as a sample for LWE(m,Znq , {±1}n, DN
σ′ ,modq).

Suppose that the input instance is in the alternative hypothesis case. We need to argue that after
running the reduction algorithm, the new noise z + e has at most O(δ/m) total variation distance
from DN

σ′ . From Lemma A.5, we have that for a sufficiently large constant c, (z + e) is within
O(δ/m) total variation distance to DN

σ′ . With m samples, this only decreases the distinguishing
advantage by at most O(δ).

Suppose that input instance is from the null hypothesis case. We need to show after the reduction
algorithm, both x and y have the same marginal as in the previous case. It is easy to verify that after
the reduction, x will have the same marginal as in the previous case. For y, the marginal distribution
of y in the previous case is U(Rq) by symmetry. Similarly, in the null hypothesis case, the distribution
of y is also U(Rq) by symmetry.

We now show that adding a small amount of Gaussian noise on the samples will render the samples
continuous; at the same time, this extra Gaussian noise on samples can be interpreted as some extra
Gaussian noise on the labels.
Lemma B.4 (Lemma 16 from [GVV22]). Let n,m, q ∈ N, σ ∈ R, c be a sufficiently large constant.
Suppose that σ ≥ cn1/2

√
log(mn/δ). Suppose there is no T + poly(m,n, log(q), log(1/δ))-

time distinguisher for LWE(m,Znq , {±1}, DN
σ ,modq) with ϵ advantage. Then there is no T -time

distinguisher for LWE(m,Rnq , {±1}, DN
σ′ ,modq) with ϵ+ δ advantage, where

σ′ =
√
σ2 + cn log(mn/δ) .

Proof. We will give a reduction argument. Taking σadd =
√

σ′2−σ2

n , then for each sample (x, y)

from LWE(m,Znq , {±1}n, DN
σ ,modq), we return

(modq(x+ x′), y) ,where x′ ∼ DN
Rn,σadd

as a sample for LWE(m,Rnq , {±1}n, DN
σ′ ,modq).

Suppose the input instance is in the alternative hypothesis case. We need to show the following:

(a) modq(x+ x′) is close to U(Rnq ); and

(b) y = modq(⟨modq(x+ x′),S⟩ + z′), where z′ is the noise in this new LWE instance
we generated. We need to show z′ has distribution close to a independent DN

σ′ noise
(independent of modq(x+ x′)).

For (a), from the symmetry of x and x+ u where u ∈ Znq , we have

dTV(modq(x+ x′), U(Rnq )) = dTV(modq(x+ x′)|modq(x+ x′) ∈ [0, 1]n, U(Rn1 ))
= dTV(mod1(x

′), U(Rn1 )) .
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From Fact A.4, we know that for a sufficiently large constant c, the distribution of modq(x
′) is

O(δ/m) close to U(Rnq ).

For (b), consider x ∼ U(Znq ), s ∼ U({±1}n), z ∼ DN
σ and y = modq(⟨x,S⟩+ z). Then the new

sample satisfies

y = modq(⟨modq(x+ x′),S⟩+ (−⟨x′,S⟩+ z)) ,

where the new noise is z′ = −⟨x′,S⟩ + z. We now verify the distribution of noise. Conditioned
on a fixed x+ x′, we have noise as −⟨x′,S⟩+ z, where x′ ∼ Dpartial

x+x′+Zn,σadd
and z ∼ DN

σ . From
Lemma A.5, we have that the distribution of noise is O(δ/m) close to DN

σ′ , for sufficiently large c.
Overall, with m samples, the distinguishing advantage has decreased by at most O(δ).

If the input instance is from the null hypothesis case, it is easy to verify that after the reduction, both
x and y will have the same marginal as in the alternative hypothesis case.

The final step is to rescale the sample and noise by 1/q.

Lemma B.5. Suppose there is no T + poly(m,n, log q) time distinguisher for the distribution
LWE(m,Rnq , {±1}n, DN

σ ,modq) with advantage ϵ. Then there is no T time distinguisher for the
distribution LWE(m,Rn1 , {±1}n, DN

σ′ ,mod1) with advantage ϵ, where σ′ = σ/q.

Proof. This follows simply by rescaling samples by 1/q and changing modq to mod1. Note the size
of the secret remains unchanged here, but the noise is scaled by 1/q.

Putting Things Together: Proof of Theorem B.1 Now we are ready to prove Theorem B.1.

Proof of Theorem B.1. Suppose there is no T +poly(m,n, l, log q, log(1/δ)) time distinguisher for
LWE(n,Zlq,Zlq, DN

Z,σ,modq) with ϵ/m advantage. Then, by applying Lemma B.2, we have that
there is no T +poly(m,n, log q, log(1/δ)) time distinguisher for LWE(n,Zlq, {±1}l, DN

Z,σ1
,modq)

with 2ϵ+ δωn(1) advantage, where σ1 = 2σ
√
n+ 1.

Then, we apply Lemma B.3, Lemma B.4, and Corollary B.5. It follows that there is no time
T distinguisher for LWE(m,Rn1 , {±1}n,Nσ′ ,mod1) with 2ϵ + O(δ) advantage, where σ′ ≥√
σ2
1 + cn log(mn/δ)/q.

Recalling that σ = ω(
√
log(mn/δ)), σ1 = 2σ

√
n+ 1 and σ′ ≥

√
σ2
1 + cn log(mn/δ)/q, we have

that σ′ = c
√
nσ/q is sufficient.

C Omitted Proofs from Section 3

This section includes additional details of our Massart halfspace hardness reduction, and contains the
proofs omitted from Section 3.

We start with Figure 1, which shows a rough flow chart of the reduction algorithm and its relation
with the relevant theorems and lemmas.
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Figure 1: Reducing LWE to Learning Halfspaces with Massart Noise. The diagram shows which
step of the analysis each lemma is used for and which case of the input LWE instance (alternative/null
hypothesis case) for the reduction algorithm. Lemma 3.5 (resp. Lemma 3.6) analyzes the properties
of x′ when the input LWE instance is from the alternative hypothesis case (resp. null hypothesis case).
Lemma 3.9 (resp. Lemma C.8) analyzes the properties of (x′, y′) when the input LWE instance is
from the alternative hypothesis case (resp. null hypothesis case). Theorem 3.2 analyzes the properties
of (Vd(x′), y′) for the input LWE instance from both cases.

C.1 Illustration of Hard Instances

For the sake of intuition, we additionally present the following figures to illustrate the ideas behind
our construction. Figure 2 illustrates the original [DK22] construction, as discussed in Section 3.
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Figure 2: The original SQ-hard construction in [DK22] (specifically, the univariate distribution in the
hidden direction). The red part corresponds to Pr[y = +1]P[xs|(y=+1)](·); the blue part corresponds
to Pr[y = −1]P[xs|(y=−1)](·).

As discussed in Section 3.2, if we try to replace the “hidden direction discrete Gaussian” with its
noisy variant, we will get a construction as the one illustrated in Figure 3.

Figure 3: The [DK22] construction with a noisy “hidden direction discrete Gaussian”. The red part cor-
responds to Pr[y = +1]P[xs|(y=+1)](·), and the blue part corresponds to Pr[y = −1]P[xs|(y=−1)](·).
Notice the thin green intervals where Pr[y=+1]P[xs|(y=+1)](·)

Pr[y=−1]P[xs|(y=−1)](·)
is close to 1; the labels +1 and −1 are

close to equally likely in these regions, and thus violate the Massart noise condition. (Notice that,
as we explained in Section 3.2, there are other places where Pr[y=+1]P[xs|(y=+1)](·)

Pr[y=−1]P[xs|(y=−1)](·)
is close to 1;

however, the density of these regions is negligible.)

Our idea is to modify the above construction by carving empty slots on the support of xs | (y = −1),
so the “clean” version of the construction (using the “hidden direction discrete Gaussian” without
noise) is as presented in Figure 4.
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Figure 4: The modified hardness construction with the clean “hidden direction discrete Gaussian”.
The red part corresponds to Pr[y = +1]P[xs|(y=+1)](·) and the blue part corresponds to Pr[y =
−1]P[xs|(y=−1)](·). Compared with the original construction, we carve empty slots on xs | (y = −1)
for the problematic part to fit in. Since the total mass we carve out is at most a constant fraction, this
causes the density to increase by at most a constant multiplicative factor.

With the noisy “hidden direction discrete Gaussian”, the modified construction is as presented in
Figure 5.

Figure 5: The modified construction with the noisy “hidden direction discrete Gaussian”. The
red part corresponds to Pr[y = +1]P[xs|(y=+1)](·) and the blue part corresponds to Pr[y =
−1]P[xs|(y=−1)](·).

It is worth noting that even this modified construction does not perfectly satisfy the Massart condition.
However, the part that violates the Massart condition is negligibly small, thus it is very close to a
distribution that perfectly satisfies the Massart condition.

C.2 Omitted Proofs from Section 3.1

Here we give the proof for Lemma 3.3. Lemma 3.3 is stated only for the sake of intuition, and is not
needed for the proof of our main theorem.
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Proof of Lemma 3.3. Notice y = mod1(⟨s,x⟩+z). We rename the variables as xnew
def
= x, σ′

scale
def
=

σscale and znew = z then we have

x′ ∼ (1/σ′
scale) ◦DN

xnew+Zn,σ′
scale

|(y = y′)

where xnew ∼ U(Rn1 ), znew ∼ DN
σ are independent and y = mod1(⟨s,xnew⟩+ znew). This is the

exact same distribution we calculated in the proof of Lemma 3.5 (after we rewrote the distribution in
Lemma 3.5). The same calculation gives the lemma statement here.

C.3 Omitted Proofs from Section 3.3

C.3.1 Analysis of Algorithm 1

We first prove that the parameters defined in Algorithm 1 are well posed. In particular, we need to
show that the expression inside the square root in Step 3 of Algorithm 1 is positive.

Observation C.1. Let SR, σscale be as in Algorithm 1. Then SR ≥ 1/2 and (1 − SR)σ2
scale ≥

SR(σ/
√
n)2.

Proof. The first three conditions of the parameters in Condition 3.1 yield (t+ ϵ)σ ≤ 2tσ ≤ 2t
√
n ≤

2/
√
c log(n/δ), which is at most 1/8 for sufficiently large c. This implies that SR ≥ 1/2.

Moreover, from our choice of σscale, we have

(1− SR)σ2
scale

SR(σ/
√
n)2

=
SR(1− SR)

((t+ k − ψ)σ)2
≥ (1/2)(4(t+ ϵ)2σ2)

((t+ ϵ)σ)2
= 2.

We note that Observation C.1 implies that the expression inside the square root in Step 3 of Algorithm
1 is positive; therefore, σadd in Step 3 is real. It is also useful to observe some other properties of the
parameters that will be useful later in the proof of Lemma 3.5.

Observation C.2. Let SR, σscale be as in Algorithm 1. Then σscale ≥ 1
2(t+k−ψ)

√
n

and SR =

σ2
scale

σ2
scale+σ

2
add+σ

2/n
.

Proof. The observation σscale ≥ 1
2(t+k−ψ)

√
n

follows from SR ≥ 1/2 (Observation C.1) and

σscale =
SR

(t+k−ψ)
√
n

. Then SR =
σ2
scale

σ2
scale+σ

2
add+σ

2/n
follows from the definition of σadd in Algorithm

1.

We next prove a lower bound on the acceptance probability of Algorithm 1.

Lemma C.3. If y ∼ U(R1), then Algorithm 1 accepts with probability at least Ω(λ(B)(t−ψ)
t2 ).

Proof. The probability of a sample not being rejected by the first rejection in Step 1 of Algorithm 1 is

λ

({
k

t+ (k − ψ)
, k ∈ B

})
≥ min

k∈B

d
(

k
t+(k−ψ)

)
dk

·λ(B) ≥ λ(B)(t− ψ)

(t+ ϵ)2
= Ω

(
λ(B)(t− ψ)

t2

)
,

where the inequality holds because k
t+(k−ψ) is monotone increasing for k ∈ B. Conditioned on

passing the first rejection, the second round rejects with probability 1− t2

(t+k−ψ)2 , which is at most
3/4 since t + k − ψ ≤ t + ϵ ≤ 2t. Therefore, a sample is accepted with probability at least
Ω
(
λ(B)(t−ψ)

t2

)
.
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C.3.2 Proof of Lemma 3.5

Proof of Lemma 3.5. We first prove property (i). We first review the definition of Dalternative
t,ϵ,ψ,B,δ .

We have (x, y) from the alternative hypothesis case of the LWE problem. Namely, this means
we have an unknown s ∈ {±1}n and independently sampled x ∼ U(Rn1 ) and z ∼ DN

σ . Then
y = mod1(⟨x, s⟩+ z). We reject unless y = k

t+(k−ψ) for some k ∈ B. Then the secondary rejection

step rejects with probability 1 − t2

(t+k−ψ)2 . We calculate σadd and σscale which only depend on y
and output a sample

x′ ∼ (1/σscale) ◦DN
x+xadd+Zn,σscale

,

where xadd ∼ DN
Rn,σadd

. Let k be the value such that y′ = k
t+(k−ψ) . Then since y ∼ U(R1)

Dalternative
t,ϵ,ψ,B,δ ∝

∫ 1

0

1(k ∈ B)

(
t2

(t+ k − ψ)2

)[
(1/σscale) ◦DN

x+xadd+Zn,σscale

∣∣∣∣ (y = y′)

]
dy′

∝
∫
B

[
(1/σscale) ◦DN

x+xadd+Zn,σscale

∣∣∣∣ (y =
k

t+ (k − ψ)

)]
dk .

Taking the proper scaling factor gives

Dalternative
t,ϵ,ψ,B,δ =

1

λ(B)

∫
B

[
(1/σscale) ◦DN

x+xadd+Zn,σscale

∣∣∣∣ (y =
k

t+ (k − ψ)

)]
dk .

We will prove that for any fixed k, letting x′
k ∼ (1/σscale) ◦ DN

x+xadd+Zn,σscale

∣∣∣∣ (y = k
t+(k−ψ)

)
,

that
Px′s

k
(u) = (1±O(δ))PDN

k+(t+k−ψ)Z,σsignal
⋆DN

σnoise
(u) .

We use σ′
add and σ′

scale to denote the specific values of σadd and σscale for y = k
t+(k−ψ) . Then

Dx′
k
= (1/σscale) ◦DN

x+xadd+Zn,σscale
|
(
y =

k

t+ (k − ψ)

)
= (1/σscale) ◦DN

mod1(x+xadd)+Zn,σscale
|
(
y =

k

t+ (k − ψ)

)
= (1/σ′

scale) ◦DN
mod1(x+x′

add)+Zn,σ′
scale

|
(
y =

k

t+ (k − ψ)

)
,

where x′
add ∼ DN

Rn,σ′
add

. Now we will attempt to reason about this random process and replace it
with something equivalent. Letting xnew = mod1(x+ x′

add) and znew = −⟨x′
add, s⟩+ z, we notice

that
y = mod1(⟨xnew, s⟩+ znew) .

We show that xnew and znew are independent before conditioning on y, therefore we can instead
consider the random process as sampling independent xnew and znew and then conditioning on y.
Note that xnew = mod1(x + x′

add) ∼ U(Rn1 ). If we condition on any fixed x′
add, the conditional

distribution of xnew is always U(Rn1 ), therefore x′
add and xnew are independent. Since both x′

add
and z are independent of xnew, we have that znew = −⟨x′

add, s⟩ + z is also independent of xnew.
Therefore,

Dx′
k
= (1/σ′

scale) ◦DN
xnew+Zn,σ′

scale
| (mod1(⟨xnew, s⟩+ znew) = y′) ,

where we can interpret xnew and znew as independent samples xnew ∼ U(Rn1 ) and znew ∼
DN√

σ2+∥s∥2
2σ

′2
add

.

Now let w ∼ (1/σ′
scale) ◦ DN

xnew+Zn,σ′
scale

. Since xnew ∼ U(Rn1 ), we have DN
xnew+Zn,σ′

scale
=

Dexpand
Rn1 ,σ′

scale
. From the lower bound of σscale in Observation C.2 and Condition (iii) in Condition 3.1,

we have
σ′
scale ≥

1

2(t+ k − ψ)
√
n
≥ 1

4t
√
n
≥
√
c log(n/δ) .
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Therefore, applying Fact A.4 yields

Pw(u) = (1±O(δ))PDN
Rn,1

(u) .

Since s ∈ {±1}n and mod1(xnew) = mod1(σ
′
scalew), we have that

mod1(⟨xnew, s⟩) = mod1(⟨σ′
scalew, s⟩) .

We can now rewrite the distribution as

Dx′
k
= (1/σ′

scale) ◦DN
mod1(x+x′

add)+Zn,σ′
scale

|
(
y =

k

t+ (k − ψ)

)
= (1/σ′

scale) ◦DN
xnew+Zn,σ′

scale
|
(
mod1(⟨xnew, s⟩+ znew) =

k

t+ (k − ψ)

)
= w

∣∣ (mod1(⟨σ′
scalew, s⟩+ znew) =

k

t+ (k − ψ)

)
= w

∣∣ (mod1(σ
′
scale∥s∥2ws + znew) =

k

t+ (k − ψ)

)
,

where
Pw(u) = (1±O(δ))PDN

Rn,1
(u) ,

and
znew ∼ DN√

σ2+∥s∥2
2σ

′2
add

are independently sampled (this follows from xnew and znew being independent, since w solely
depends on xnew). The above form allows us the explicitly express the PDF function as follows:

Px′s
k
(u) ∝Pws(u)

∑
i∈Z+ k

t+(k−ψ)

Pznew(i− σ′
scale∥s∥2u)

∝(1±O(δ))
∑

i∈Z+ k
t+(k−ψ)

PDN
1
(u)PDN√

σ2+∥s∥22σ
′2
add

(i− σ′
scale∥s∥2u)

∝(1±O(δ))
∑

i∈σ′−1
scalen

−1/2(Z+ k
t+(k−ψ) )

PDN
1
(u)PDN√√√√σ2/n+σ′2

add
σ′2
scale

(i− u) .

Letting α def
=

√
σ2/n+σ′2

add

σ′2
scale

, we notice that α =
√
1/SR− 1 from Observation C.2. Thus, we can

write

Px′s
k
(u) ∝(1±O(δ))

∑
i∈σ′−1

scalen
−1/2(Z+ k

t+(k−ψ) )

PDN
1
(u)PDN

α
(i− u)

∝(1±O(δ))
∑

i∈σ′−1
scalen

−1/2(Z+ k
t+(k−ψ) )

exp

(
−π
(
u2 +

(i− u)2

α2

))

∝(1±O(δ))
∑

i∈σ′−1
scalen

−1/2(Z+ k
t+(k−ψ) )

exp

(
−π
(
(α2 + 1)u2

α2
+
i2

α2
− 2iu

α2

))

∝(1±O(δ))
∑

i∈σ′−1
scalen

−1/2(Z+ k
t+(k−ψ) )

exp

(
−π

(
i2

α2 + 1
+

(
(α2 + 1)1/2u− (α2 + 1)−1/2i

)2
α2

))

∝(1±O(δ))
∑

i∈σ′−1
scalen

−1/2(Z+ k
t+(k−ψ) )

exp

(
−π

((
(α2 + 1)−1i

)2
(α2 + 1)−1

+

(
u− (α2 + 1)−1i

)2
α2(α2 + 1)−1

))

∝(1±O(δ))
∑

i∈σ′−1
scalen

−1/2(Z+ k
t+(k−ψ) )

PDN
(α2+1)−1/2

((α2 + 1)−1i)PDN
α(α2+1)−1/2

(u− (α2 + 1)−1i) .
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Notice that (α2 + 1)−1 = SR from Observation C.2. Thus, we get

Px′s
k
(u) ∝(1±O(δ))

∑
i∈σ−1

scalen
−1/2(Z+ k

t+(k−ψ) )

PDN√
SR
(SRi)PDN√

1−SR
(SRi− u)

∝(1±O(δ))
∑

i∈SRσ−1
scalen

−1/2(Z+ k
t+(k−ψ) )

PDN√
SR
(i)PDN√

1−SR
(i− u) .

Since σscale = SR
(t+k−ψ)

√
n

from Step 3 of Algorithm 1,

Px′s
k
(u) ∝(1±O(δ))

∑
i∈k+(t+k−ψ)Z

PDN√
SR
(i)PDN√

1−SR
(i− u) .

Notice the expression here is propotional to the convolution of DN
k+(t+k−ψ)Z,

√
SR

and DN√
1−SR

.
Therefore, we have

Px′s
k
(u) = (1±O(δ))PDN

k+(t+k−ψ)Z,
√

SR
⋆DN√

1−SR
(u)

= (1±O(δ))PDN
k+(t+k−ψ)Z,σsignal

⋆DN
σnoise

(u) .

Now we can plug this back and calculate
[
Dalternative
t,ϵ,ψ,B,δ

]s
, as follows:

P[Dalternative
t,ϵ,ψ,B,δ ]

s(u) =
1

λ(B)

∫
B

Px′s
k
(u)dk

=
1

λ(B)
(1±O(δ))

∫
B

PDN
k+(t+k−ψ)Z,σsignal

⋆DN
σnoise

(u)dk .

Note that inside the integration is the convolution of two distributions, DN
k+(t+k−ψ)Z,σsignal

and
DN
σnoise

. SinceDN
σnoise

is independent of k, we can interpret it as added after the integration. Therefore,

P[Dalternative
t,ϵ,ψ,B,δ ]

s(u) = (1±O(δ))P[∫
B

1
λ(B)

DN
k+(t+k−ψ)Z,σsignal

dk⋆DN
σnoise

](u)
= (1±O(δ))PD′⋆DN

σnoise
(u) ,

where
σsignal =

√
SR ,

and
σnoise =

√
1− SR = 2(t+ ϵ)σ .

This proves property (i).

Now we prove Property (ii). We prove that for any fixed y = k
t+(k−ψ) , letting x′

k ∼ Dalternative
t,ϵ,ψ,B,δ |(

y = k
t+(k−ψ)

)
, then x′⊥s

k is nearly independent of x′s
k in the sense that for any l ∈ R and u ∈ Rn−1,

we have that
Px′⊥s

k |x′s
k =l(u) = (1±O(δ))PDN

Rn−1,1
(u) .

Following the same notation we used for proving Property (i), we can rewrite the random process as

(1/σscale) ◦DN
x+xadd+Zn,σscale

|
(
y =

k

t+ (k − ψ)

)
= w

∣∣ (mod1(σ
′
scale∥s∥2ws + znew) =

k

t+ (k − ψ)

)
,

where
Pw(u) = (1±O(δ))PDN

Rn,1
(u) ,

and
znew ∼ DN√

σ2+∥s∥2
2σ

′2
add
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are independently sampled (before conditioning). Therefore, we have that

Px′⊥s
k |x′s

k =l(u) = P[w⊥s|(mod1(σ′
scale∥s∥2ws+znew)= k

t+(k−ψ) )∧(ws=l)](u)

= P[w⊥s|(mod1(σ′
scale∥s∥2l+znew)= k

t+(k−ψ) )∧(ws=l)](u)

= P[w⊥s|ws=l](u) .

Recall that the PDF of w is pointwise close to a Gaussian, as shown earlier in proof for Property (i),
therefore, we obtain

Px′⊥s
k |x′s

k =l(u) = Pw⊥s|ws=l(u) = (1±O(δ))PDN
Rn−1,1

(u) .

Considering that x′ ∼ Dalternative
t,ϵ,ψ,B,δ is a mixture of x′

k ∼ Dalternative
t,ϵ,ψ,B,δ |

(
y = k

t+(k−ψ)

)
for different

values of k, it follows that

Px′⊥s|x′s=l(u) = (1±O(δ))PDN
Rn−1,1

(u) .

We also give the following claim obtained from Lemma 3.5, which will be useful when we prove the
Massart condition in Lemma 3.9.

Claim C.4. The exact PDF function of the distribution D′ in Lemma 3.5 is

PD′(u) =
Θ(t)

λ(B)

∑
i∈Z

1

|i+ 1|
1(u ∈ it+ ψ + (i+ 1)(B − ψ))ρσsignal

(u) .

Proof. This follows from expanding the expression of D′ in Lemma 3.5. We have

PD′(u) = P[
1

λ(B)

∫
B
DN
k+(t+k−ψ)Z,σsignal

dk

](u)
=

1

λ(B)

∫
B

P[
DN
k+(t+k−ψ)Z,σsignal

](u)dk .
Notice that

P[
DN
k+(t+k−ψ)Z,σsignal

](u) = 1 (u ∈ k + (t+ k − ψ)Z)
ρσsignal

(u)

ρσsignal
(k + (t+ k − ψ)Z)

.

Then using that σsignal =
√
SR ≥ 1/2 (Observation C.1) and 1

t
√
n
≥
√
c log(n/δ) for a sufficiently

large c (Condition 3.1), we have that σsignal/(t+ k − ψ) ≥
√
c̃ log(1/δ) for a sufficiently large c̃.

After that, an application of Lemma A.9 gives that

ρσsignal
(k+(t+k−ψ)Z) = (t+k−ψ)−1ρσsignal/(t+k−ψ)(k/(t+k−ψ)+Z) = (1±O(δ))(t+k−ψ)−1 .

Plugging this back, we obtain

PD′(u) =
1±O(δ)

λ(B)

∫
B

(t+ k − ψ)1 (u ∈ k + (t+ k − ψ)Z) ρσsignal
(u)dk

=
1±O(δ)

λ(B)

∫
B

(t+ k − ψ)
∑
i∈Z

[1(u = k + (t+ k − ψ)i)] ρσsignal
(u)dk

=
Θ(t)

λ(B)

∑
i∈Z

[∫
B

1(u = k + (t+ k − ψ)i)dk

]
ρσsignal

(u)

=
Θ(t)

λ(B)

∑
i∈Z

1

|i+ 1|
1(u ∈ it+ ψ + (i+ 1)(B − ψ))ρσsignal

(u) .
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C.3.3 Proof of Lemma 3.6

Proof of Lemma 3.6. We first review the definition of Dnull
t,ϵ,ψ,B,δ. Let (x, y) be drawn from the

null hypothesis case of the LWE problem. This means that we have x ∼ U(Rn1 ) and y ∼ U(R1)
independently. In this case, we reject unless y = k

t+(k−ψ) for some k ∈ B. Then the secondary

rejection step rejects with probability 1− t2

(t+k−ψ)2 . We calculate σadd and σscale which only depend
on y, and output a sample

x′ ∼ (1/σscale) ◦DN
x+xadd+Zn,σscale

,

where xadd ∼ DN
Rn,σadd

. Therefore, the distribution Dnull
t,ϵ,ψ,B,δ is a mixture of

(1/σscale) ◦DN
x+xadd+Zn,σscale

| (y = y′) ,

for different values of y′.

We prove that for any fixed y′, the following holds:
P[

(1/σscale)◦DN
x+xadd+Zn,σscale

|(y=y′)
](u) = (1±O(δ)) · PDN

Rn,1
(u) .

We use σ′
add and σ′

scale to denote the specific values of σadd and σscale for y = y′. Then

(1/σscale) ◦DN
x+xadd+Zn,σscale

| (y = y′) =(1/σscale) ◦DN
mod1(x+xadd)+Zn,σscale

| (y = y′)

=(1/σ′
scale) ◦DN

mod1(x+x′
add)+Zn,σ′

scale
| (y = y′)

=(1/σ′
scale) ◦DN

mod1(x+x′
add)+Zn,σ′

scale
,

where x′
add ∼ DN

Rn,σ′
scale

. Since x is always drawn from U(Rn1 ) and x′
add is independent of x, then

mod1(x+ x′
add) is also drawn from U(Rn1 ). Thus, we can write

DN
x+x′

add+Zn,σ′2
scale

= Dexpand
Rn1 ,σ′

scale
.

Applying Fact A.4, the lower bound of σscale in Observation C.2 and Condition (iii) in Condition 3.1
yields

PDexpand

Rn1 ,σ
′
scale

(u) = (1±O(δ)) · PDN
Rn,σ′

scale

(u) .

Plugging this back, we obtain that
P[

(1/σscale)◦DN
x+xadd+Zn,σscale

|(y=y′)
](u) = (1±O(δ)) · PDN

Rn,1
(u) .

Then, since Dnull
t,ϵ,ψ,B,δ is a mixture of (1/σscale) ◦DN

x+xadd+Zn,σscale
| (y = y′) for different y′, we

get that
PDnull

t,ϵ,ψ,B,δ
(u) = (1±O(δ)) · PDN

Rn,1
(u) .

C.3.4 Proof of Lemma 3.9

Before we prove Lemma 3.9, we restate the definition for B− as a refresher. B− is defined by carving
out O(t/ϵ) many empty slots in [t/2, t] in order to make the problematic part of xs|y = +1 to fit in
(see Figure 4 and Figure 5). To define B−, we need to first define a mapping g that maps a location to
the corresponding place we need to carve out on B−. The function g : R− [−1.5t, 0.5t] 7→ [0.5t, t]
is defined as follows: for i ∈ Z and b ∈ Rt, we have that

g(it+ t/2 + b)
def
=

{
b
i+1 + t/2 if i ≥ 0;
b−t
i+2 + t/2 if i < 0.

Then B− is defined as follows:

B−
def
= [t/2, t/2 + ϵ]

−
t
ϵ−1⋃

i= t
2ϵ−1

g([it− 2c′ϵ, it])−
t
ϵ−1⋃

i= t
2ϵ−1

g([it+ (i+ 1)ϵ, it+ (i+ 1)ϵ+ 2c′ϵ])

−
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it+ (i+ 1)ϵ− 2c′ϵ, it+ (i+ 1)ϵ])−
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it, it+ 2c′ϵ]) .
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Proof of Lemma 3.9. We will prove that there is a distribution Dtruncated such that
dTV (D

truncated, Dalternative
PTF ) = O(δ/m′) and there is a degree-O(t/ϵ) PTF sign(p(·)) such that

1. Pr(x,y)∼Dtruncated [sign(p(x)) ̸= y] = exp(−Ω(t4/ϵ2)); and,

2. Dtruncated satisfies the O(η) Massart condition with respect to sign(p(x)).

We first give some high level intuition for Dtruncated. First, we recall that Dalternative
PTF is the 1− η : η

mixture of Dalternative
t,ϵ,ψ+,B+,δ

and Dalternative
t,ϵ,ψ−,B−,δ

with +1 and −1 labels, respectively 3. Also we recall that
both Dalternative

t,ϵ,ψ+,B+,δ
and Dalternative

t,ϵ,ψ−,B−,δ
are noisy “hidden direction discrete Gaussians” which are close

to continuous Gaussian on all except the hidden direction s, and on the hidden direction, they are
close to a linear combination of discrete Gaussian plus an extra continuous Gaussian noise (as shown
in Lemma 3.5). The idea here is to truncate that extra continuous Gaussian noise on the hidden
direction to obtain Dtruncated.

Now we formally define Dtruncated in the following way. We will first define distributions Dtruncated
+

and Dtruncated
− such that

dTV (D
truncated
+ , Dalternative

t,ϵ,ψ+,B+,δ) = O(δ/m′) ,

and
dTV (D

truncated
− , Dalternative

t,ϵ,ψ−,B−,δ) = O(δ/m′) .

Then we take Dtruncated as the 1 − η : η mixture of Dtruncated
+ and Dtruncated

− with +1 and −1
labels respectively.

We define Dtruncated
+ below; Dtruncated

− is defined analogously. We specify Dtruncated
+ to satisfy the

following requirement: Let x′ ∼ Dtruncated
+ and x ∼ Dalternative

t,ϵ,ψ+,B+,δ
. For any l ∈ R, we specify the

conditional distribution of Px′⊥s|x′s=l to be:

Px′⊥s|x′s=l = Px⊥s|xs=l .

Since the conditional distributions on ⊥ s are the same, to define Dtruncated
+ , it remains to specify

[Dtruncated
+ ]s. According to Lemma 3.5 property (i),

[
Dalternative
t,ϵ,ψ+,B+,δ

]s
is pointwise close to the

convolutional sum of a distribution D′ and noise drawn from DN
σnoise

. Here we use D′
+ (resp. D′

−) to

denote the corresponding D′ for
[
Dalternative
t,ϵ,ψ+,B+,δ

]s
(resp.

[
Dalternative
t,ϵ,ψ−,B−,δ

]s
). This is

P[
Dalternative
t,ϵ,ψ+,B+,δ

]s(u) = (1±O(δ))PD′
+⋆D

N
σnoise

(u) .

We define a truncated noise distribution N truncated to replace DN
σnoise

, as follows:

PN truncate(u) ∝

{
PDN

σnoise
(u) if |u| ≤ c′ϵ,

0 otherwise ,

where c′ is the parameter in Condition 3.1. We now define [Dtruncated
+ ]s as pointwise close to the

convolution sum of the distribution D′
+ and noise from N truncated, namely,

P[Dtruncated
+ ]s(u) ∝

P[
Dalternative
t,ϵ,ψ+,B+,δ

]s(u)
PD′

+⋆D
N
σnoise

(u)
PD′

+⋆N truncated(u) ,

where
P[
Dalternative
t,ϵ,ψ+,B+,δ

]s (u)
PD′

+
⋆DN
σnoise

(u) = (1±O(δ)). Dtruncated
− is defined in the same manner.

Now we bound dTV (Dtruncated
+ , Dalternative

t,ϵ,ψ+,B+,δ
). We first define

f(u) =

P[
Dalternative
t,ϵ,ψ+,B+,δ

]s(u)
PD′

+⋆D
N
σnoise

(u)
PD′

+⋆N truncated(u) ,

3That is, Dalternative
PTF is the joint distribution of (x, y) such that with probability 1 − η we sample x ∼

Dalternative
t,ϵ,ψ+,B+,δ

and y = +1; and with probability η we sample x ∼ Dalternative
t,ϵ,ψ−,B−,δ and y = −1
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and notice that

PDtruncated
+

(u) =

(∫
R
f(u)du

)−1

f(u) .

We then bound
∫
R f(u)du. Note that∫

R

∣∣∣∣f(u)− P[
Dalternative
t,ϵ,ψ+,B+,δ

]s(u)
∣∣∣∣ du = (1±O(δ))

∫
R

∣∣∣∣∫
R
PD+

(t)PN truncated(u− t)dt−
∫
R
PD+

(t)PDN
σnoise

(u− t)dt

∣∣∣∣ du
≤ (1±O(δ))

∫
R
PD+

(t)

∫
R

∣∣∣PN truncated(u− t)− PDN
σnoise

(u− t)
∣∣∣ dtdu

= (1±O(δ))

∫
R

∣∣∣PN truncated(u)− PDN
σnoise

(u)
∣∣∣ du

= (1±O(δ))2dTV (N truncated, DN
σnoise

) .

Therefore, we have that
∫
R f(u)du = 1 ± O(dTV (N truncated, DN

σnoise
)). To bound our objective

dTV (D
truncated
+ , Dalternative

t,ϵ,ψ+,B+,δ
), we have

dTV (D
truncated
+ , Dalternative

t,ϵ,ψ+,B+,δ) = dTV

([
Dtruncated

+

]s
,
[
Dalternative
t,ϵ,ψ+,B+,δ

]s)
=

1

2

∫
R

∣∣∣∣P[Dtruncated
+ ]

s(u)− P[
Dalternative
t,ϵ,ψ+,B+,δ

]s(u)
∣∣∣∣ du .

By the triangle inequality, we can write

dTV (D
truncated
+ , Dalternative

t,ϵ,ψ+,B+,δ) ≤
1

2

∫
R

∣∣∣∣f(u)− P[
Dalternative
t,ϵ,ψ+,B+,δ

]s(u)
∣∣∣∣ du+

1

2

∫
R

∣∣∣f(u)− P[Dtruncated
+ ]

s(u)
∣∣∣ du

= O
(
dTV

(
N truncated, DN

σnoise

))
+

1

2

∣∣∣∣∫
R
f(u)du− 1

∣∣∣∣
= O

(
dTV

(
N truncated, DN

σnoise

))
= O

(
exp

(
− (c′ϵ)2

2σ2
noise

))
.

From Condition (iv) in Condition 3.1 and σnoise = 2(t + ϵ)σ, we have that (c′ϵ)2

2σ2
noise

≥ log(m′/δ);
thus,

dTV (D
truncated
+ , Dalternative

t,ϵ,ψ+,B+,δ) = O(δ/m′) .

The same holds for Dtruncated
− . Therefore, we have that

dTV (D
truncated, Dalternative

PTF ) = (1− η)dTV (D
truncated
+ , Dalternative

t,ϵ,ψ+,B+,δ) + ηdTV (D
truncated
− , Dalternative

t,ϵ,ψ−,B−,δ)

= O(δ/m′) .

Before we continue with the rest of the proof, we require the following claim about the support of
these distributions.

Claim C.5. The support of distribution D′
+ is⋃

i∈Z−

[it+ (i+ 1)ϵ, it] ∪
⋃
i∈Z+

[it, it+ (i+ 1)ϵ] ,

and the support of distribution Dtruncated
+ is⋃

i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ] .

Similarly, the support of distribution D′
− is a subset of⋃

i∈Z−

[it+ t/2 + (i+ 1)ϵ, it+ t/2] ∪
⋃
i∈Z+

[it+ t/2, it+ t/2 + (i+ 1)ϵ] ,

and the support of distribution Dtruncated
+ is a subset of⋃

i∈Z−

[it+ t/2 + (i+ 1)ϵ− c′ϵ, it+ t/2 + c′ϵ] ∪
⋃
i∈Z+

[it+ t/2− c′ϵ, it+ t/2 + (i+ 1)ϵ+ c′ϵ] .
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The above claim directly follows from Claim C.4, the definition of these distributions, and the fact
that the support of N truncated is [−c′ϵ, c′ϵ].

Now we continue with our proof. With our definition of Dtruncated, it remains to prove that there is a
PTF sign(p(·)) satisfying the following:

1. Pr(x,y)∼Dtruncated [sign(p(x)) ̸= y] = exp(−Ω(t4/ϵ2)); and

2. Dtruncated satisfies the O(η) Massart condition with respect to sign(p(x)).

From the way we defined Dtruncated and Property (ii) of Lemma 3.5, we know that for u ∈ Rn

PrDtruncated [y = +1 | x = u] = (1±O(δ))PrDtruncated [y = +1 | xs = us] .

Since (1 ± O(δ)) = O(1) and t/ϵ = Ω(1), therefore, it suffices to prove these statements on the
subspace spanned by s: there is a degree-O(t/ϵ) PTF sign(p(⟨s, ·⟩)) such that

1. Pr(x,y)∼[Dtruncated]s [sign(p(⟨s, x⟩)) ̸= y] = exp(−Ω(t4/ϵ2)); and

2.
[
Dtruncated

]s
satisfies the O(η) Massart condition with respect to sign(p(⟨s, x⟩)),

where we abuse the notation slightly and use
[
Dtruncated

]s
to denote the 1 − η : η mixture of

[Dtruncated
+ ]s and [Dtruncated

− ]s with +1 and −1 labels repectively. We consider a degree-O(t/ϵ)
PTF sign(p(u)) such that

sign(p(u)) =

+1 if u ∈
⋃
i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ] ;

−1 otherwise .

Notice that according to Claim C.7, the domain with value +1 can be written as the union of O(t/ϵ)
many intervals, thus the above function must be realizable by taking p as a degree-O(t/ϵ) PTF.

For item 1, from Claim C.5, the support of +1 samples (
[
Dtruncated

+

]s
) is⋃

i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ] ,

and the support for -1 samples (
[
Dtruncated

−
]s

) is a subset of⋃
i∈Z−

[it+ t/2 + (i+ 1)ϵ− c′ϵ, it+ t/2 + c′ϵ] ∪
⋃
i∈Z+

[it+ t/2− c′ϵ, it+ t/2 + (i+ 1)ϵ+ c′ϵ] .

(The above follows from Claim C.4.) For |i+ 1| ≤ t/(2ϵ)− 1, these intervals have length at most
t/2− ϵ+ 2c′ϵ < t/2, thus do not overlap (for sufficiently small c′). Therefore, this PTF makes no
mistake for i ∈ [−t/(2ϵ), t/(2ϵ)− 2], i.e., at least for u ∈ [−t2/(2ϵ), t2/(2ϵ)− 2t]. Thus, its error
is at most exp(−Ω(t2/ϵ)2).

For item 2, we show the following:

(i) If u ∈
⋃
i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ] then

Pr(x,y)∼[Dtruncated]s [y = +1|x = u] ≥ 1−O(η) .

(ii) Otherwise,
P[Dtruncated]s|(y=+1)(u) = 0 .

Item (ii) is straightforward, as from Claim C.5, the support ofDtruncated | (y = +1) (i.e.,Dtruncated
+ )

is
⋃
i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ]. Since all the support is in

item (i), in the “otherwise” case, it must be the case that P[Dtruncated]s|(y=+1)(u) = 0.
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For item (i), we recall that
[
Dtruncated

]s
is the 1− η : η mixture of Dtruncated

+ and Dtruncated
− with

+1 and −1 labels respectively. Therefore, we need to show for

u ∈
⋃
i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ] ,

we have that

PDtruncated
+

(u) = Ω(PDtruncated
−

(u)) .

Since Dtruncated
+ and Dtruncated

− are pointwise close to the convolution sums of D′
+ or D′

− and
N truncated respectively, the above amounts to∫ c′ϵ

−c′ϵ
PN truncated(u′)PD′

+
(u− u′)du′ = Ω

(∫ c′ϵ

−c′ϵ
PN truncated(u′)PD′

−
(u− u′)du′

)
.

Therefore, it suffices to prove for u ∈
⋃
i∈Z−

[it+ (i+ 1)ϵ− 2c′ϵ, it+ 2c′ϵ]∪
⋃
i∈Z+

[it− 2c′ϵ, it+ (i+

1)ϵ+ 2c′ϵ], it holds that

PD′
+
(u) = Ω(PD′

−
(u)) .

We will consider

u ∈
⋃
i∈Z−

[it+ (i+ 1)ϵ− 2c′ϵ, it+ 2c′ϵ] ∪
⋃
i∈Z+

[it− 2c′ϵ, it+ (i+ 1)ϵ+ 2c′ϵ]

for three different cases:

(A) |i+ 1| ≤ t/(2ϵ)− 1,

(B) t/(2ϵ)− 1 < |i+ 1| ≤ t/ϵ, and,

(C) |i+ 1| > t/ϵ.

For case (A), we begin by recalling that the support of D′
− is⋃

i∈Z−

[it+ t/2 + (i+ 1)ϵ, it+ t/2] ∪
⋃
i∈Z+

[it+ t/2, it+ t/2 + (i+ 1)ϵ] .

For case (A), the support of bothD′
+ andD′

− are intervals with length at most t/2−ϵ (see Claim C.5).
Thus, the gaps between D′

+ intervals and D′
− intervals are at least ϵ. Any u for case (A) is at most

2c′ϵ far from a D′
+ support interval, where c′ is sufficiently small, combining with the fact that gaps

between D′
+ intervals and D′

− intervals are at least ϵ, this makes u not inside the support of D′
−.

Therefore, for any u in case (A), we have that PD′
−
(u) = 0, which implies PD′

+
(u) = Ω(PD′

−
(u)).

For case (B), we note by Claim C.4, we have

PD′
−
(u) =

Θ(t)

λ(B−)

∑
i∈Z

1

|i+ 1|
1(u ∈ it+ t/2 + (i+ 1)(B− − t/2))ρσsignal

(u) ,

and

PD′
+
(u) =

Θ(t)

λ(B+)

∑
i∈Z

1

|i+ 1|
1(u ∈ it+ (i+ 1)[0, ϵ])ρσsignal

(u) .

Note that since t/(2ϵ− 1) < |i+ 1| ≤ t/ϵ, thus these intervals has lenghth at most t, the D+ (resp.
D−) intervals do not overlap with other D+ (resp. D−) intervals. Therefore taking i = ⌊u/t⌋,

PD′
−
(u) =

Θ(t)

λ(B−)|i+ 1|
1

(
u ∈

⋃
i∈Z

it+ t/2 + (i+ 1)(B− − t/2)

)
,

and

PD′
+
(u) =

Θ(t)

λ(B+)|i+ 1|
1

(
u ∈

⋃
i∈Z

it+ (i+ 1)[0, ϵ]

)
.
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Let S− =
⋃
i∈Z

it+ t/2 + (i+ 1)(B− − t/2) and S+ =
⋃
i∈Z

it+ (i+ 1)[0, ϵ]. Therefore it suffices to

show that
λ(B−) = Ω(λ(B+)) = Ω(ϵ) ,

and for any u in case (B)
u ∈ S− implies u ∈ S+ .

λ(B−) = Ω(ϵ) follows from the definition of B−, since

B−
def
= [t/2, t/2 + ϵ]−

t
ϵ−1⋃

i= t
2ϵ−1

g([it− 2c′ϵ, it])−
t
ϵ−1⋃

i= t
2ϵ−1

g([it+ (i+ 1)ϵ, it+ (i+ 1)ϵ+ 2c′ϵ])

−
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it+ (i+ 1)ϵ− 2c′ϵ, it+ (i+ 1)ϵ])−
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it, it+ 2c′ϵ]) .

Therefore, recall the definition of the mapping g, we get that

λ(B−) ≥ ϵ− 4

t
ϵ∑

i= t
2ϵ

2c′ϵ

|i|
≥ ϵ− 4

t

ϵ

2c′ϵ
t
2ϵ

= ϵ− 16c′ϵ = Ω(ϵ) ,

where the last equality follows from the fact that c′ is a sufficiently small constant. To prove for any
u in case (B)

u ∈ S− implies u ∈ S+ .

We prove the contrapositive, let u be in case (B) and u ̸∈ S+, then calculations show

u ∈
t
ϵ−1⋃

i= t
2ϵ−1

g([it− 2c′ϵ, it]) ∪
t
ϵ−1⋃

i= t
2ϵ−1

g([it+ (i+ 1)ϵ, it+ (i+ 1)ϵ+ 2c′ϵ]) (2)

∪
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it+ (i+ 1)ϵ− 2c′ϵ, it+ (i+ 1)ϵ]) ∪
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it, it+ 2c′ϵ]) . (3)

Notice that those intervals are exactly the intervals we carved out. Thus, u ̸∈ S− . (We note that the
intuition behind this is the following. For the interval [g(a), g(b)] we carved out on B−, we made
[a, b] missing from the support of D′

−. So what we did can be thought of as carving these intervals to
make the supports ofD′

+ andD′
− having 2c′ϵ gaps between each other for t/(2ϵ)−1 < |i+1| ≤ t/ϵ.

This ensures that after applying the N truncated noise, their supports still do not overlap.) This
completes the proof for case (B).

It remains to analyze case (C). By Claim C.4, we have that

PD′
+
(u)

PD′
−
(u)

=

Θ(t)
λ(B+)

∑
i∈Z

1
|i+1|1(u ∈ it+ ψ+ + (i+ 1)(B+ − ψ+))ρσsignal

(u)

Θ(t)
λ(B−)

∑
i∈Z

1
|i+1|1(u ∈ it+ ψ− + (i+ 1)(B− − ψ−))ρσsignal

(u)

= Ω

(∑
i∈Z

1
|i+1|1(u ∈ it+ ψ+ + (i+ 1)(B+ − ψ+))∑

i∈Z
1

|i+1|1(u ∈ it+ ψ− + (i+ 1)(B− − ψ−))

)
,

where the second equality follows from λ(B−) = Ω(λ(B+)) = Ω(ϵ). Since B− is a subset of
[t/2, t/2 + ϵ], thus∑
i∈Z

1

|i+ 1|
1(u ∈ it+ψ−+(i+1)(B−−ψ−)) ≤

∑
i∈Z

1

|i+ 1|
1
(
u ∈ it+ t/2 + (i+ 1)

(
[t/2, t/2 + ϵ]− t/2

))
,

therefore

PD′
+
(u)

PD′
−
(u)

= Ω

( ∑
i∈Z

1
|i+1|1(u ∈ it+ (i+ 1)[0, ϵ])∑

i∈Z
1

|i+1|1(u ∈ it+ t/2 + (i+ 1)([t/2, t/2 + ϵ]− t/2))

)
.

Thus we just need to show the following claim to finish case (C).
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Claim C.6. For

u ∈
⋃

i∈{Z−:|i+1|>t/ϵ}

[it+(i+1)ϵ−2c′ϵ, it+2c′ϵ]∪
⋃

i∈{Z+:|i+1|>t/ϵ}

[it−2c′ϵ, it+(i+1)ϵ+2c′ϵ] ,

we have that ∑
i∈Z

1
|i+1|1(u ∈ it+ (i+ 1)[0, ϵ])∑

i∈Z
1

|i+1|1(u ∈ it+ t/2 + (i+ 1)([t/2, t/2 + ϵ]− t/2))
= Ω(1) .

The idea is to determine for both the numerator and denominator which values of i cause the
corresponding indicator function to be 1. Notice for (−∞,−t2/ϵ− t) ∪ (t2/ϵ− t,∞), the indicator
function in the numerator it+(i+1)[0, ϵ/2] will have length at least t. Thus for u ∈ (−∞,−t2/ϵ−
2t+2c′ϵ)∪(t2/ϵ−2c′ϵ,∞), umust be in at least one of these intervals in the numerator. In particular,
there must be j ≤ k such that the non-zero terms in the numerator correspond to the indicator terms
with j ≤ i ≤ k. Therefore, the numerator is

∑k
i=j

1
|i+1| .

Then we examine the terms for the denominator. For convenience, we use lnumerator
i and rnumerator

i

(resp. ldenominator
i and rdenominator

i ) to denote the left endpoint and right endpoint of the ith term
in the numerator (resp. denominator). Since the j − 1th term in the numerator is not satisfied,
u > rnumerator

j−1 . Since rnumerator
j−1 > rdenominator

j−2 , we know that u > rdenominator
j−2 , thus the j − 2th

term in the denominator cannot be satisfied. Then, since the (k + 1)-st term in the numerator is not
satisfied, we know that u < lnumerator

k+1 . Since lnumerator
k+1 < ldenominator

k+1 , u < ldenominator
k+1 , thus the

(k + 1)-st term in the denominator is not satisfied. Now we have that the denominator is at most∑k
i=j−1

1
|i+1| .

Then, we just need to prove for any j, k ∈ Z and j ≤ k (since from the j-th to k-th term in the
numerator are satisfied, it must be that k < −1 or j > −1), it holds that∑k

i=j
1

|i+1|∑k
i=j−1

1
|i+1|

= Ω(1) .

This is easy to see, since the denominator has at most one term more than the numerator and all terms
are of comparable size. This completes the proof for Lemma 3.9.

Now we prove the following helper lemma for Lemma 3.9.

Claim C.7. ⋃
i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ]

can be equivalently written as the union of O(t/ϵ) many intervals on R.

Proof. We notice that for |i + 1| ≥ t/ϵ, the interval terms inside the union has length at least t,
therefore they overlap with each other and cover the whole space. Thus, we can rewrite the expression
as ⋃

i∈Z−

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃
i∈Z+

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ]

=(−∞,−t2/ϵ− t+ c′ϵ]

∪
⋃

i∈{Z−|i+1|<t/ϵ}

[it+ (i+ 1)ϵ− c′ϵ, it+ c′ϵ] ∪
⋃

i∈{Z+|i+1|<t/ϵ}

[it− c′ϵ, it+ (i+ 1)ϵ+ c′ϵ]

∪ [−t2/ϵ− t− c′ϵ,∞) ,

which is the union over O(t/ϵ) many intervals.
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C.3.5 Null Hypothesis Analysis for Algorithm 2

Here we analyze the null hypothesis case by showing that for (x, y) ∼ Dnull
PTF, x and y are almost

independent. For Dnull
PTF, we establish the following property.

Lemma C.8. For any u ∈ Rn, we have that

Pr(x,y)∼Dnull
PTF

[y = +1 | x = u] = (1±O(δ))(1− η) .

Proof. This lemma follows directly from Lemma 3.6, since

Px|(y=+1)(u), Px|(y=−1)(u) = (1±O(δ))PDN
Rn,1

(u) .

Also the marginal probability is Pr[y = +1] = 1− η. Therefore, for any u ∈ Rn,

Pr(x,y)∼Dnull
PTF

[y = +1 | x = u] = (1±O(δ))(1− η) .

C.4 Proof of Theorem 3.2

Proof of Theorem 3.2. We give a reduction from LWE(m,Rn1 , {±1}n,Nσ,mod1)
to Massart(m′, N, η,OPT). Suppose there is an algorithm A for the problem
Massart(m′, N, η,OPT) with 2ϵ′ distinguishing advantage such that (a) if the input is from the
alternative hypothesis case, A outputs “alternative hypothesis” with probability α; and (b) if the input
is from the null hypothesis case, A outputs “alternative hypothesis” with probability at most α− 2ϵ′.

Given m samples from LWE(m,Rn1 , {±1}n,Nσ,mod1), we run Algorithm 2 with input parameters
(m′, t, ϵ, δ, η′), where δ and η′/η are sufficiently small positive constants. If Algorithm 2 fails, we
output “alternative hypothesis” with probability α and “null hypothesis” with probability 1−α. Other-
wise, Algorithm 2 succeeds, and we get m′ many i.i.d. samples (x1, y1), (x2, y2) · · · , (xm′ , ym′) ∈
Rn × {±1} from DPTF (they are i.i.d. according to Observation 3.8). With d = c(t/ϵ), where c is a
sufficiently large constant, we apply the degree-d Veronese mapping Vd : Rn 7→ RN on the samples
to get (Vd(x1), y1), (Vd(x2), y2) · · · , (Vd(xm′), ym′) ∈ RN × {±1}. Then we give these samples
to A and argue that the above process can distinguish LWE(m,Rn1 , {±1}n,Nσ,mod1) with at least
ϵ′ −O(δ) advantage.

We let DLTF denote the distribution of (Vd(x), y), where (x, y) ∼ DPTF (DPTF depends on s and
which case the original LWE samples come from). We note that the samples we provide to the
Massart distinguisher are m′ many i.i.d. samples from DLTF. We claim that if we can prove the
following items, then we are done.

1. In the alternative (resp. null) hypothesis case, Algorithm 2 in the above process fails with
probability at most 1/2.

2. Completeness: If the LWE instance is from the alternative hypothesis case, then DLTF has at
most O(δ/m′) dTV distance from a distribution D and there is an LTF h such that

(a) Pr(x,y)∼D[h(x) ̸= y] = exp(−Ω(t4/ϵ2)), and
(b) D satisfies the η Massart condition with respect to to the LTF h.

3. Soundness: If the LWE instance is from the null hypothesis case, then ROPT(DLTF) = Ω(η).

Suppose we have proved the above items. In the alternative hypothesis case, the above process
outputs “alternative hypothesis” with probability at least α − O(δ), since D is at most O(δ/m′)
in dTV distance from DLTF. Then, in the null hypothesis case, the process outputs “alternative
hypothesis” with probability at most α − ϵ′. Therefore, the distinguishing advantage is at least
ϵ′ −O(δ). Now it remains to prove these three items.

For the first item, recall that for each sample, Algorithm 2 uses Algorithm 1 to generate a new
sample. If Algorithm 1 accepts, it outputs a new sample. According to Lemma C.3, it accepts with
probability Ω(λ(B)(t−ψ)

t2 ). Under our choice of ψ, this is at least Ω(ϵ/t) (since we have shown that
λ(B+), λ(B−) = Ω(ϵ) in the proof of Lemma 3.9 and ψ is either ψ+ = 0 or ψ− = t/2). With
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m′ = c(ϵ/t)m, where c > 0 is sufficiently small and m(ϵ/t)2 is sufficiently large, by applying the
Hoeffding bound, one can see that Algorithm 2 succeeds with probability at least 1/2.

For the second item, suppose that the initial LWE samples are from the alternative hypothesis case.
Then, in the proof of Lemma 3.9 (at the beginning of the proof), we have shown that there exists
a distribution Dtruncated

PTF (denoted by Dtruncated in the proof of Lemma 3.9) within total variation
distance O(δ/m′) from Dalternative

PTF , and a degree-d PTF sign(p(x)) such that

1. Pr(x,y)∼Dtruncated
PTF

[sign(p(x)) ̸= y) = exp(−Ω(t4/ϵ2)]; and

2. Dtruncated
PTF satisfies the O(η′) Massart noise condition with respect to sign(p(x)).

With η′/η being a sufficiently small constant, the second item satisfies the η Massart noise condition.
Then, letting Dtruncated

LTF denote the distribution of (Vd(x), y) where (x, y) ∼ Dtruncated
PTF , one can

see that Dtruncated
LTF is at most O(δ/m′) in total variation distance from DLTF. Let h denote the

corresponding LTF such that h(Vd(x)) = sign(p(x)). Then, after the Veronese mapping, it must be
the case that:

1. Pr(x,y)∼Dtruncated
LTF

[h(x) ̸= y] = exp(−Ω(t4/ϵ2)); and

2. Dtruncated
LTF satisfies the η Massart noise condition with respect to h(x).

This gives the second item.

For the third item, if the initial LWE samples are from the null hypothesis case, then according to
Lemma C.8, for any u ∈ Rn,

Pr(x,y)∼Dnull
PTF

[y = +1 | x = u] = (1±O(δ))(1− η′) .

Therefore, ROPT(DPTF) = Ω(η′) = Ω(η), thus ROPT(DLTF) = Ω(η). This completes the
proof.

D Putting Everything Together: Proof of Main Hardness Result

Applying Theorem 3.2 together with Lemma 2.5 yields our main theorem:

Theorem D.1. Under Assumption 2.4, for any ζ ∈ (0, 1), there ex-
ists χ > 0 such that there is no NO(logχN)-time algorithm that solves
Massart

(
m′ = NO(logχN), N, η = 1/3,OPT = 1/2log

1−ζ N
)

with 1/3 advantage.

Proof. We first take χ = 0.01ζ. For Lemma 2.5, we take β = 1− 0.1ζ and γ = −5. For Theorem
3.2, we take

1. t = n−0.5−0.2ζ ,

2. ϵ = Θ(n−1.5),

3. δ be a sufficiently small constant,

4. η = 1/3, and,

5. m′ = c(ϵ/t)m, where c is a sufficiently small positive constant.

One can easily check that the conditions in Condition 3.1 are satisfied. According to our parameters
of choice, the remaining parameters for the hardness are:

1. N = nO(t/ϵ) ≤ nO(n1−0.2ζ),

2. OPT = exp(−Ω(t4/ϵ2)) = 2−Ω(n1−0.8ζ) ≤ c2−n
1−ζ ≤ c2− log1−ζ N , for any constant c,
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3. m′ = c(ϵ/t)m = Ω(n−Θ(1−0.2ζ)2O(nβ)) ≥ 2O(n1−0.11ζ) ≥ N
O

(
log

1−0.11ζ
1−0.19ζ N

)
≥

NO(logχN), and

4. the time complexity lower bound is

2Ω(n
1−0.1ζ) = Nω(logχN) .

Therefore, according to Theorem 3.2, there is no NO(logχN)-time algorithm that solves
Massart(m′ = NO(logχN), N, η = 1/3,OPT = 1/2log

1−ζ N ) with 1/3 advantage. This com-
pletes the proof.

The above theorem gives the following corollary. We note that Corollary D.2 implies our informal
Theorem 1.2, and Corollary D.2 has stronger parameters.

Corollary D.2. Under Assumption 2.4, for any ζ ∈ (0, 1), there exists χ > 0 such that noNO(logχN)

time and sample complexity algorithm can achieve an error of 2O(log1−ζ N) · OPT in the task of
learning LTFs on RN with η = 1/3 Massart noise.
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