
A Details about EGSDE

A.1 Assumptions about EGSDE

Notations. f(·, ·) : RD × R→ RD is the drift coefficient. g(·) : R→ R is the diffusion coefficient.
s(·, ·) : RD × R → RD is the score-based model. E(·, ·, ·) : RD × RD × R → R is the energy
function. x0 is the given source image.

Assumptions. EGSDE defines a valid conditional distribution p(y0|x0) under following assumptions:

(1) ∃C > 0,∀t ∈ R,∀x,y ∈ RD : ||f(x, t)− f(y, t)||2 ≤ C||x− y||2.
(2) ∃C > 0,∀t, s ∈ R,∀y ∈ RD : ||f(y, t)− f(y, s)||2 ≤ C|t− s|.
(3) ∃C > 0,∀t ∈ R,∀x,y ∈ RD : ||s(x, t)− s(y, t)||2 ≤ C||x− y||2.
(4) ∃C > 0,∀t, s ∈ R,∀y ∈ RD : ||s(y, t)− s(y, s)||2 ≤ C|t− s|.
(5) ∃C > 0,∀t ∈ R,∀x,y ∈ RD : ||∇xE(x,x0, t)−∇yE(y,x0, t)||2 ≤ C||x− y||2.
(6) ∃C > 0,∀t, s ∈ R,∀y ∈ RD : ||∇yE(y,x0, t)−∇yE(y,x0, s)||2 ≤ C|t− s|.
(7) ∃C > 0,∀t, s ∈ R : |g(t)− g(s)| ≤ C|t− s|.

A.2 An Extention of EGSDE

Following SDEdit [9], we further extend the original EGSDE by repeating it K times. The general
sampling procedure is summarized in Algorithm 1.

Algorithm 1 An extention of EGSDE for unpaired image-to-image translation

Require: the source image x0, the initial time M , denoising steps N , weighting hyper-parameters
λs, λi, the similarity function Ss(·, ·, ·),Si(·, ·, ·), the score function s(·, ·), repeating times K
h = M

N
y0 ← x0

for k = 1 to K do
y ∼ qM |0(y|y0) # the start point
for i = N to 1 do
s← ih
x ∼ qs|0(x|x0) # sample perturbed source image from the perturbation kernel
E(y,x, s)← λsSs(y,x, s)− λiSi(y,x, s) # compute energy with one Monte Carlo
y ← y − [f(y, s)− g(s)2(s(y, s)−∇yE(y,x, s))]h
z ∼ N (0, I) if i > 1, else z = 0

y ← y + g(s)
√
hz

end for
y0 ← y

end for
y0 ← y
return y0

A.3 Variance Preserve Energy-guided SDE (VP-EGSDE)

In this section, we show a specific EGSDE: variance preserve energy-guided SDE (VP-EGSDE) [12,
7], which is conducted in our experiments. The VP-EGSDE is defined as follows:

dy = [−1

2
β(t)y − β(t)(s(y, t)−∇yE(y,x0, t))]dt+

√
β(t)dw, (1)

where x0 is the given source image, β(·) : R → R is a positive function, w is a reverse-time
standard Wiener process, dt is an infinitesimal negative timestep, s(·, ·) : RD × R → RD is
the score-based model in the pretrained SDE and E(·, ·, ·) : RD × RD × R → R is the energy
function. The perturbation kernel qt|0(yt|y0) is N (y0e

− 1
2

∫ t
0
β(s)ds, (1− e−

∫ t
0
β(s)ds)I) and β(t) =

1



βmin + t(βmax− βmin) in practice. Following [9, 7], we use βmin = 0.1, βmax = 20. The iteration
rule from s to t = s− h of VP-EGSDE in Eq. (1) is:

yt =
1√

1− β(s)h
(ys + β(s)h(s(ys, s)−∇yE(ys,x0, s)) +

√
β(s)hz, z ∼ N (0, I), (2)

where h is a small step size. [12] showed the iteration rule in Eq. (2) is equivalent to that using Euler-
Maruyama solver when h is small in Appendix E. In other words, the score network is modified to
s̃(y,x0, t) = s(y, t)−∇yE(y,x0, t) in EGSDE . Accordingly, we can modify the noise prediction
network to ϵ̃(y,x0, t) = ϵ(y, t) +

√
β̄t∇yE(y,x0, t) and take it into the sampling procedure in

DDPM [7].

Algorithm 2 VP-EGSDE for unpaired image-to-image translation

Require: the source image x0, the initial time M , denoising steps N , weighting hyper-parameters
λs, λi, the similarity function Ss(·, ·, ·),Si(·, ·, ·), the score function s(·, ·)
y ∼ qM |0(y|x0) # the start point
h = M

N
for i = N to 1 do
s← ih
x ∼ qs|0(x|x0) # sample perturbed source image from the perturbation kernel
E(y,x, s)← λsSs(y,x, s)− λiSi(y,x, s) # compute energy with one Monte Carlo
y ← 1√

1−β(s)h
(y + β(s)h(s(ys, s)−∇yE(ys,x, s)) # the update rule in Eq. (2)

z ∼ N (0, I) if i > 1, else z = 0

y ← y +
√

β(s)hz
end for
y0 ← y
return y0

A.4 EGSDE as Product of Experts

In this section, we provide more details about the product of experts [6] explanation for the discretized
sampling process of EGSDE. Recall that we construct the p̃(yt|ys) as follows:

p̃(yt|ys) =
p(yt|ys)pe(yt|x0)

Z̃t(ys)
, (3)

where Z̃t(ys) is the partition function, p(yt|ys) = N (µ(ys, h),Σ(s, h)I) is the transition kernel
of the pretrained SDE, i.e., µ(ys, h) = ys − [f(ys, s) − g(s)2s(ys, s)]h and Σ(s, h) = g(s)2h.
For brevity, we denote µ = µ(ys, h),Σ = Σ(s, h). Assuming that E(yt,x0, t) has low curvature
relative to Σ−1, then we can use Taylor expansion around µ to approximate it:

E(yt,x0, t) ≈ E(µ,x0, t) + (yt − µ)⊤g, (4)

where g = ∇y′E(y′,x0, t)|y′=µ. Taking it into Eq. (3), we can get:

log p̃(yt|ys) ≈ −
1

2
(yt − µ)⊤Σ−1(yt − µ)− (yt − µ)⊤g + constant (5)

= −1

2
y⊤
t Σ

−1yt +
1

2
y⊤
t Σ

−1µ+
1

2
µ⊤Σ−1yt (6)

− 1

2
y⊤Σ−1Σg − 1

2
g⊤ΣΣ−1y + constant (7)

= −1

2
(yt − µ+Σg)⊤Σ−1(yt − µ+Σg) + constant. (8)

Therefore,

p̃(yt|ys) ≈ N (µ− Σg,ΣI) (9)

= N (µ− Σ∇y′E(y′,x0, t)|y′=µ,ΣI). (10)

Therefore, solving the EGSDE in a discretization manner is approximately equivalent to drawing
samples from a product of experts.
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Figure 1: More qualitative results on three unpaired I2I tasks.

A.5 The Connection with Classifier Guidance

In this section, we show the classifier guidance[4] can be regarded as a special design of energy
function and provide an alternative explanation of the classifier guidance as a product of experts.

Recall that the EGSDE, which leverages an energy function to guide the inference process of a
pretrained SDE, is defined as follows:

dx = [f(x, t)− g(t)2(s(x, t)−∇xE(x, c, t))]dt+ g(t)dw, (11)

which defines a distribution p(x0|c) conditioned on c. Let E(x, c, t) ∝ − log pt(c|x)λ, where pt(c|x)
is a time-dependent classifier and c is the class label, the EGSDE can be rewritten as:

dx = [f(x, t)− g(t)2(s(x, t) + λ∇x log pt(c|x))]dt+ g(t)dw. (12)

Sovling variance preserve energy-guided SDE (VP-EGSDE) in Eq. 12 with Euler-Maruyama solver
is equal to the classifier guidance in [4, 12].

Assuming
∫
e−E(x,c,t)dx <∞, we can define a conditional distribution qt(x|c) at time t as follows:

qt(x|c) =
e−E(x,c,t)∫
e−E(x,c,t)dx

(13)
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Table 1: The used codes and license.

URL citations License

https://github.com/openai/guided-diffusion [4] MIT License
https://github.com/taesungp/contrastive-unpaired-translation [10] BSD License

https://github.com/jychoi118/ilvr_adm [2] MIT License
https://github.com/ermongroup/SDEdit [9] MIT License
https://github.com/mseitzer/pytorch-fid [5] Apache V2.0 License

According to the analysis in section ??, solving the EGSDE in Eq. 12 is approximately equivalent to
drawing samples from a product of experts as follows:

p̃t(x|c) =
pt(x)qt(x|c)

Zt
, (14)

where pt(x) is the marginal distribution at time t defined by a pretrained SDE. Therefore, the
generated samples in classifier guidance approximately follow the distribution:

p̃0(x|c) =
p0(x)q0(x|c)

Z0
. (15)

Similarly, combining a conditional socre-based model and a classifier in [4] is approximately equiva-
lent to drawing samples from a product of experts as follows:

p̃0(x|c) =
p0(x|c)q0(x|c)

Z0
, (16)

where p0(x|c) is the marginal distribution at time t defined by a pretrained SDE.

B Implementation Details

B.1 Datasets

To validate our method, we conduct experiments on the following datasets:

(1) CelebA-HQ [8] contains high quality face images and is separated into two domains: male and
female. For training data, it contains 10057 male images and 17943 female images. Each category
has 1000 testing images. Male→Female task was conducted on this dataset.

(2) AFHQ [3] consists of high-resolution animal face images including three domains: cat, dog and
wild, which has relatively large variations. For training data, it contains 5153, 4739 and 4738 images
for cat, dog and wild respectively. Each domain has 500 testing images. We performed Cat→Dog,
Wild→Dog and multi-domain translation on this dataset.

During training, all images are resized 256×256, randomHorizontalFliped with p = 0.5, and scaled to
[−1, 1]. During sampling, all images are resized 256×256 and scaled to [−1, 1].

B.2 Code Used and License

All used codes in this paper and its license are listed in Table 1.

B.3 Details of the Score-based Diffusion Model

On Cat→Dog and Wild→Dog, we use the public pre-trained score-based diffusion model (SBDM)
provided in the official code https://github.com/jychoi118/ilvr_adm of ILVR [2]. The pretrained
model includes the variance and mean networks and we only use the mean network.

On Male→ Female, we trained a SBDM for 1M iterations on the training set of female category
using the recommended training code by SDEdit https://github.com/ermongroup/ddim. We use the
same setting as SDEdit [9] and DDIM [11] for a fair comparison, where the models is trained with a
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Table 2: Computation cost comparison.

Methods sec/iter↓ Mem(GB)↓

CUT 0.24 2.91
ILVR 60 1.84
SDEdit 33 2.20
EGSDE 85 3.64

Source Ours Source Ours Source Ours

Cat Dog Wild Dog Male Female

Figure 2: Selected failure cases. On Cat→ Dog, the EGSDE sometimes fails to generate eyes and
noses. On Wild→ Dog, the EGSDE sometimes preserves some undesired features of the source
image like tiger stripes. On Male→ Female, the EGSDE fails to change the hairstyle.

batch size of 64, a learning rate of 0.00002, the Adam optimizer with β1 = 0.9, β2 = 0.999 and grad
clip = 1.0, an exponential moving average (EMA) with a rate of 0.9999. The U-Net architecture is
the same as [7]. The timesteps N is 1000 and the noise schedule is linear as described in A.3.

B.4 Details of the Domain-specific Feature Extractor

The domain-specific feature extractor Es(·, ·) is the all but the last layer of a classifier that is trained
on both the source and target domains. The time-dependent classifier is trained using the official
code https://github.com/openai/guided-diffusion of [4]. We use the ImageNet (256×256) pretrained
classifier provided in https://github.com/openai/guided-diffusion as the initial weight and train 5K
iterations for two-domain I2I and 10K iterations for multi-domain I2I. We train the classifier with a
batch size of 32, a learning rate of 3e − 4 with the AdamW optimizer (weight decay = 0.05). For
the architecture, the depth is set to 2, the channels is set to 128, the attention resolutions is set to
32,16,8 and the other hyperparameters are the default setting. The timesteps N is 1000 and the noise
schedule is linear.

B.5 Training and Inference Time

On Cat→ Dog, training the domain-specific feature extractor for 5K iterations takes 7 hours based
on 5 2080Ti GPUs. The computation cost comparison for sampling is shown in Table 2, where the
batch size is set 1. Compared with the ILVR, ours takes 1.42 times as long as ILVR. The speed of
inference can be improved further by the latest progress on faster sampling [11, 1].

B.6 Evaluation

FID. We evaluate the FID metric using the code https://github.com/mseitzer/pytorch-fid. On AFHQ
dataset, following CUT [10], we use the test data as reference without any data preprocessing.
On CelebA-HQ dataset, following StarGANv2 [10], we use the training data as reference and
conduct the following data preprocessing: resize images to 256, 299 and then normalize data with
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Table 3: The results of different similarity metrics. NS L2 denote negative square L2 distance. Cosine
similarity for Ss and NS L2 for Si is the default setting.

Ss Si λs λi FID ↓ L2 ↓ PSNR ↑ SSIM ↑

Cosine Cosine 500 500 61.47 52.16 18.69 0.407
Cosine Cosine 500 10000 64.23 50.97 18.89 0.408
NS L2 NS L2 5e-07 2 77.01 45.91 19.84 0.431
NS L2 NS L2 5e-05 2 65.90 51.05 18.89 0.403
Cosine NS L2 500 2 65.23 47.15 19.32 0.415
Cosine NS L2 500 1 63.78 47.88 19.19 0.413

mean = 0.485, 0.456, 0.406, std = 0.229, 0.224, 0.225. Note that the FID evaluation in StarGANv2
is still different with ours because it generates 10 images for each source image.

Human evaluation. We evaluate the human preference from both faithfulness and realism aspects
via the Amazon Mechanical Turk (AMT). Given a source image, the AMT workers are instructed to
select which translated image is more satisfactory in the pairwise comparisons between the baselines
and EGSDE. The reward for each pair of picture comparison is kept as 0.02$. Since each task takes
around 4 s, the wage is around 18$ per hour.

B.7 Reproductions

All baselines are reproduced based on the public code. Specifically, CUT [10] is reproduced based
on the official code https://github.com/taesungp/contrastive-unpaired-translation. On Cat→Dog,
we use the public pretrained model directly without training. Following the setting on Cat→Dog,
we train the CUT 2M iterations for other tasks. ILVR [2] is reproduced using the official code
https://github.com/jychoi118/ilvr_adm. The diffusion steps is set to 1000. The down_N of low-
pass filter is set to 32. The range_t is set to 20. SDEdit [9] is reproduced using the official code
https://github.com/ermongroup/SDEdit, where we use the default setting. For StarGANv2, we use
the public checkpoint in https://github.com/clovaai/stargan-v2 for evaluation.

C Ablation Studies

C.1 Choice of the Similarity Metrics

In this section, we perform two popular similarity metrics: cosine similarity and negative squared L2

distance, for the similarity function Ss(·, ·, ·) and Si(·, ·, ·). As shown in Table 3, the cosine similarity
for Ss(·, ·, ·) helps to improve the FID score notably and the negative squared L2 distance helps to
preserve more domain-independent features of the source image empirically, which are used finally
in our experiments.

C.2 An Alternative of Energy Function

In this section, we consider a simpler energy function that only involves the original source image x
as follows:

E(y,x, t) = λsSs(y,x, t)− λiSi(y,x, t), (17)

which does not require to take the expectation w.r.t. xt. As shown in Table 4, it did not perform well
because it is not reasonable to measure the similarity between the noise-free source image and the
transferred sample in a gradual denoising process.

C.3 Choice of Initial Time M

In this section, we explore the effect of the initial time M . The quantitative results are shown in Table
5. We found that the larger M results in more realistic and less faithful images, because it preserve
less information of the source image at start time with the increase of M .
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Table 4: The results of different energy function. Variant denotes the choice of simpler energy
function. The experiments are repeated 5 times to eliminate randomness.

Model FID ↓ L2 ↓ PSNR ↑ SSIM ↑

Cat→ Dog

Variant 79.01 ± 0.92 55.95 ± 0.06 17.86 ± 0.01 0.369 ± 0.000
EGSDE 65.82 ± 0.77 47.22 ± 0.08 19.31 ± 0.02 0.415 ± 0.001

Wild→ Dog

Variant 67.87 ± 0.99 60.32 ± 0.05 17.23 ± 0.01 0.325 ± 0.001
EGSDE 59.75 ± 0.62 54.34 ± 0.08 18.14 ± 0.01 0.343 ± 0.001

Male→ Female

Variant 41.86 ± 0.36 56.18 ± 0.03 17.89 ± 0.01 0.494 ± 0.000
EGSDE 41.93 ± 0.11 42.04 ± 0.03 20.35 ± 0.01 0.574 ± 0.000

Table 5: The results of different initial time M . The larger M results in more realistic and less faithful
images.

Initial Time M FID ↓ L2 ↓ PSNR ↑ SSIM ↑

Cat→ Dog

0.3T 97.02 33.39 22.17 0.516
0.4T 78.64 39.95 20.70 0.461
0.5T 65.23 47.15 19.32 0.415
0.6T 57.31 55.98 17.88 0.374
0.7T 53.01 65.61 16.55 0.333

Wild→ Dog

0.3T 96.80 38.76 20.93 0.472
0.4T 73.86 46.50 19.43 0.395
0.5T 58.82 54.34 18.14 0.344
0.6T 55.53 62.52 16.94 0.307
0.7T 54.56 72.02 15.72 0.274

Male→ Female

0.3T 51.66 31.66 22.71 0.639
0.4T 47.13 36.74 21.48 0.605
0.5T 42.09 42.03 20.35 0.574
0.6T 36.07 48.94 19.09 0.534
0.7T 30.59 59.18 17.48 0.472
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Table 6: Comparison with SDEdit [9] under different K times.

Methods K
Wild→ Dog Cat→ Dog

FID↓ L2↓ PSNR↑ SSIM↑ FID↓ L2↓ PSNR↑ SSIM↑

SDEdit [9]
1

68.22 55.38 17.97 0.342 73.70 47.74 19.22 0.424
EGSDE 58.85 54.38 18.13 0.342 66.34 47.20 19.30 0.415

SDEdit [9]
2

60.91 62.32 16.97 0.312 65.59 55.10 18.01 0.395
EGSDE 55.47 60.25 17.28 0.314 62.23 53.45 18.26 0.385

SDEdit [9]
3

60.52 66.16 16.46 0.303 61.10 59.69 17.33 0.382
EGSDE 55.07 63.15 16.86 0.304 59.78 56.41 17.81 0.376

Table 7: The results of different λs and λi. λs = λi = 0 corresponds to SDEdit [9].

λs, λi
Cat→ Dog Male→ Female

FID↓ L2↓ PSNR↑ SSIM ↑ FID↓ L2↓ PSNR ↑ SSIM↑

λs = 0, λi = 0 73.85 47.87 19.19 0.423 49.68 43.68 20.03 0.572
λs = 100, λi = 0 66.17 48.56 19.07 0.419 44.97 44.26 19.92 0.569
λs = 500, λi = 0 62.44 51.02 18.64 0.405 38.44 45.92 19.6 0.559
λs = 800, λi = 0 60.14 52.92 18.33 0.397 36.14 47.05 19.39 0.551
λs = 0, λi = 0.5 74.09 45.58 19.61 0.428 50.77 41.67 20.43 0.58
λs = 0, λi = 2 77.05 44.23 19.86 0.431 51.42 40.29 20.71 0.585
λs = 0, λi = 5 79.12 43.63 19.98 0.433 52.13 39.57 20.87 0.588

C.4 Repeating K Times

In this section, we provide the comparison with SDEdit [9] under different K times on Cat→ Dog
and Wild→ Dog. The experimental results are reported in Table 6 and it is consistent with the results
in the main text on Male→ Female. With the increase of K, the faithful metrics of SDEdit decrease
sharply, because it only utilizes the source image at the initial time M .

C.5 Choice of λs and λi

In this section, we provide the effect of weighting hyper-parameter λs and λi on Cat→ Dog and
Male→ Female. The results are shown in Table 7 and Figure 3. It is consistent with the results in
the full text on Wild→ Dog. Larger λs results in more realistic images and larger λi results in more
faithful images.

C.6 More Qualitative Results

In this section, we show more qualitative results on three unpaired I2I tasks using the default hyper-
parameters in Figure 1. We also select some failure cases in Figure 2 and randomly selected
qualitative results in Figure 4.

C.7 Comparison with StarGAN v2

In this section, we compare the EGSDE with StarGAN v2[3] on the most popular benchmark
Cat→ Dog. Since the FID measurement in CUT we mainly follow and StarGAN v2 is different,
for fairness, we perform experiments under both FID metrics. The results are shown in Table 1 and
Table 8. The qualitative comparisons are shown in Figure 5.

As shown in Table 1 and Table 8, the EGSDE outperforms StarGAN v2 in all metrics under the two
different measurements. It also should be noted that the three faithful metrics for StarGAN v2 is
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Figure 3: The qualitative results about the ablation of experts.

Source Ours Source Ours Source Ours

Cat Dog Wild Dog Male Female

Figure 4: The randomly selected qualitative results with EGSDE.
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Table 8: The comparison with StarGAN v2[3] on Cat→ Dog following the FID measurement of
StarGAN v2. The EGSDE use the default-parameters (λs = 500, λi = 2,M = 0.5T ) and EGSDE†

use the parameters (λs = 700, λi = 10,M = 0.6T ).

Methods FID↓

StarGAN v2 [3] 36.37
EGSDE 48.20
EGSDE† 31.14

Source

O
ur
s

St
ar
G
A
N
v2

Figure 5: The qualitative comparisons with StarGAN v2. Each method generates five images by
random seed for each source image. StarGAN v2 loses much domain-independent features (e.g.
background and color) while EGSDE can still retain them.

much worse than ours. This is because the goal of StarGAN v2 is to generate diverse images over
multi-domains, which pays little attention into the faithfulness. The qualitative comparisons in Figure
5 shows that StarGAN v2 loses much domain-independent features (e.g. background and color) while
EGSDE can still retain them.

D Multi-Domain Image Translation

Following [2], we extend our method into multi-domain translation on AFHQ dataset, where the
source domain includes Cat and Wild and the target domain is Dog. In this setting, similar to
two-domain unpaired I2I, the EGSDE also employs an energy function pretrained on both the
source and target domains to guide the inference process of a pretrained SDE. The only difference
is the domain-specific feature extractor Es(, ) involved in the energy function is the all but the
last layer of a three-class classifier rather than two-class. All experiments are repeated 5 times to
eliminate randomness. The quantitative results are reported in Table 11. We can observe that the
EGSDE outperforms the baselines in almost all realism and faithfulness metrics, showing the great
generalization of our method.

Table 9: The results of replacing Es with classifier guidance on Cat→ Dog.

Methods FID↓ L2↓ PSNR↑ SSIM ↑

EGSDE (λs = 500, λi = 2) 65.82 47.22 19.31 0.415
EGSDE-Classifier(λs = 5, λi = 2 ) 73.36 46.4 19.75 0.430
EGSDE-Classifier (λs = 50, λi = 2) 71.90 46.8 19.67 0.428
EGSDE-Classifier (λs = 500, λi = 2) 68.80 47.89 19.46 0.423
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Table 10: The comparison with EGSDE-DDIM.

Methods FID↓ L2↓ PSNR↑ SSIM ↑

EGSDE-DDPM(λs = 0, λi = 0) 74.17 47.88 19.19 0.423
EGSDE-DDPM(λs = 500, λi = 2) 65.82 47.22 19.31 0.415
EGSDE-DDPM(λs = 500, λi = 0) 62.44 51.02 18.64 0.405
EGSDE-DDPM(λs = 0, λi = 2) 77.05 44.23 19.86 0.431
EGSDE-DDIM(λs = 0, λi = 0) 88.29 41.93 20.62 0.472
EGSDE-DDIM(λs = 500, λi = 2) 78.11 41.95 20.61 0.468
EGSDE-DDIM(λs = 500, λi = 0) 74.32 44.32 20.12 0.460
EGSDE-DDIM(λs = 0, λi = 2) 91.81 39.80 21.10 0.481

Table 11: Quantitative results in multi-domain translation, where the source domain includes Cat and
Wild and the target domain is Dog. All experiments are repeated 5 times to eliminate randomness.

Methods FID↓ L2↓ PSNR↑ SSIM ↑

ILVR [2] 74.85 ± 1.24 60.16 ± 0.14 17.31 ± 0.02 0.325 ± 0.001
SDEdit [9] 71.34 ± 0.64 51.62 ± 0.05 18.58 ± 0.01 0.383 ± 0.001
EGSDE 64.02 ± 0.43 50.74 ± 0.04 18.73 ± 0.01 0.373 ± 0.000
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