
Geo-Neus: Geometry-Consistent Neural Implicit
Surfaces Learning for Multi-view Reconstruction

–Supplementary Material–

In this supplementary document, we first provide the details of the depth integral used in Geometric
bias of volumetric integration in Section A. In Section B, we show the comparison results of other
baseline methods (such as Points2Surf [1] and DVR [2]) on DTU. Next, we provide more analysis of
our method in Section C and provide the rendering quality of our method in Section D. Additional
results on DTU and BlendedMVS dataset can be found in Section E. We discuss the performance
of our method with sparse input views in Section F. Finally, we try to evaluate the bias with our
proposed losses in Section G.

A Details of the depth integral used in Geometric bias of volumetric
integration

In our main paper, we use the depth integral to demonstrate the geometric bias of volumetric integra-
tion. Specifically, in volume rendering, the expected color is calculated as: Ĉ =

∑n
i=1 w (ti) ĉ (ti),

where w(ti) is the weight converted from the SDF value of point ti and ĉ (ti) is the predicted color
value at point ti. Similarly, we calculate the expected depth d̂ as: d̂ =

∑n
i=1 w (ti) d (ti), where

d (ti) is the distance between the point ti and the image plane.

B Comparison with other baselines

In this section, we show the comparison results of other baseline methods on DTU. Note that, since
our method uses sparse 3D points as supervision signal, it is very interesting to explore if existing
implicit surface reconstruction methods from point clouds can be used to reconstruct reasonable
surfaces in this special case. To this aim, we select Points2Surf [1], a method can generalize well to
new shapes, to conduct experiments on DTU sparse 3D points. We show experiments in Fig 1. As can
be seen, the sparse 3D points from SFM methods are distributed very irregularly, which poses great
challenges to existing reconstruction methods. Therefore, the performance of Points2Surf degrades
in this very challenging case. In addition, we also show the reconstruction results of DVR in Table 1.
It shows that our method surpasses DVR a lot.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 mean
DVR 4.10 4.54 4.24 2.61 4.34 2.81 2.53 2.93 3.03 3.24 2.51 4.80 3.09 1.63 1.58 3.20

Geo-Neus 0.375 0.537 0.336 0.357 0.800 0.454 0.408 1.032 0.843 0.548 0.460 0.473 0.294 0.355 0.345 0.508
Table 1: Reconstruction results on DTU.

C More analysis

C.1 GPU memory consumption

We show the GPU memory consumption of our proposed strategies in Table 2. We observe that,
compared with the Baseline, the SDF loss function barely introduces extra GPU memory consumption
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Figure 1: Surface reconstruction from SFM points.

while the photometric loss function only causes an 8% increase in GPU memory consumption. This
demonstrates that both our introduced loss functions are GPU memory-friendly to neural surfaces
learning methods.

Method Lcolor LSDF Lphoto GPU memory [M]
Baseline ✓ 7033
Model-A ✓ ✓ 7045
Model-B ✓ ✓ 7615
Geo-Neus ✓ ✓ ✓ 7619

Table 2: GPU memory consumption.

Reference Image NeuS NeuS-1024 Ours Ours-1024

Figure 2: Qualitative comparisons of surfaces reconstructed with higher volume resolution.

C.2 Reconstruction with higher volume resolution

After network training, the surface is usually extracted from the SDF values in a predefined bounding
box by the Marching Cube algorithm with the volume size of 5123. In practice, we find that the
resolution of 512 limits the reconstruction quality of our method. Fig. 2 shows the reconstruction
results with the resolution of 1024 on DTU Scan 97. With Marching Cubes of higher resolution, more
details can be preserved by our method. This is because our proposed method can locate sub-pixel
zero-level set of SDF values by our interpolation operation on the SDF values. Our quantitative
results are reported in Table 3. There is no prominent improvement in terms of the evaluation metric
due to the limitation of the ground truth resolution, but it can be observed in Fig. 2 that the surface
quality of our method is significantly enhanced.
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Scan NeuS NeuS-1024 Ours Ours-1024
97 1.06 1.01 0.843 0.840

Table 3: Reconstruction results with higher volume resolution.

C.3 The robustness to noisy SFM sparse points

In our main paper, we use a strict radius filter to remove the noise from sparse 3D points from SFM
methods. Here we show the performance of our method with the raw sparse 3D points from SFM
methods. With these sparse 3D points, we train our model from scratch on DTU scan 24, 37 and 40.
The results in Tabel 4 show that our method could also perform well with noisy sparse points directly
from SFM methods. This shows the robustness of our method.

settings scan24 scan37 scan40
unfiltered 0.42 0.63 0.34

filtered 0.38 0.54 0.34
Table 4: Reconstruction results with unfiltered and filtered sparse 3D points.

C.4 The effect of linear interpolation in surface points extraction

We perform an ablation study on the surface points extraction methods used in the multi-view
photometric consistency constraints. We replace our linear interpolation by the hierarchical sampling
used in NeuS to extract the surface points. We show the evaluation results in Table 5. As can be
seen, the performance of hierarchical sampling is worse than that of linear interpolation. This further
validates the gap between the volume rendering and SDF modeling, supporting our assumption and
theoretical analysis.

settings scan24 scan37
hierarchical sampling 0.537 0.677
linear interpolation 0.375 0.537

Table 5: Comparison of hierarchical sampling and linear interpolation in surface points extraction.

C.5 View-aware SDF loss

We perform an ablation study on the construction of SDF loss. To handle occlusions, we use view-
aware SDF loss as supervision. Given sparse points of SFM, we also try to randomly sample a subset
of the sparse points and use it as the SDF supervision. The results in Table 6 show that the view-aware
sampling strategy performs better than the random sampling strategy. This verifies the effectiveness
of view-aware sampling.

settings scan24 scan37
random sampling 0.43 0.58

view-aware sampling 0.38 0.54
Table 6: Comparison of random sampling and view-aware sampling in SDF loss construction.

C.6 Grey-scale images vs. RGB images for photometric consistency loss

In our main paper, we use grey-scale images to construct photometric consistency loss for less time
and memory consumption. We also try to use RGB images to construct photometric consistency loss
and train our model on DTU scan24. The results in Table 7 show that the performance of our method
with RGB images degrades a little bit. We think this is because grey-scale images may reflect more
geometric information compared with RGB images.
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settings Chamfer distance [mm] Running time [h] GPU memory [G]
RGB images 0.44 24 8.1

grey-scale images 0.38 16 7.6
Table 7: Comparison of grey-scale images and RGB images in photometric consistency computation
on DTU scan24.

C.7 Other metrics for photometric consistency loss

In our main paper, we use NCC to compute the photometric consistency loss. Here we investigate
other metrics to measure the photometric consistency loss. We replace the NCC by SSIM [3] to
retrain our model from scratch on DTU scan24. The performance of using SSIM becomes 0.408,
which a little worse than that of using NCC, 0.375.

D Rendering quality

We report PSNR of train image reconstructions on DTU for reference. Quantitative and qualitative
results are shown in Table 8 and Fig. 3, respectively. These results show that our method achieves
similar rendering performance with the Baseline, NeuS. This is because we focus on reconstructing
the geometry of the scenes and do not introduce special mechanisms for rendering optimization.
Therefore, our proposed method can facilitate geometry reconstruction without degrading rendering
quality.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 mean
NeRF 26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.00 35.59 35.51 30.65
IDR 23.29 21.36 24.39 22.96 23.22 23.94 20.34 21.87 22.95 22.71 22.81 21.26 25.35 23.54 27.98 23.20

VolSDF 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 30.38
NeuS 28.20 27.10 28.13 28.80 32.05 33.75 30.96 34.47 29.57 32.98 35.07 32.74 31.69 36.97 37.07 31.97

Geo-Neus 28.49 27.09 27.78 28.51 33.37 33.78 30.76 34.12 29.94 33.35 34.53 32.50 31.12 36.42 36.85 31.91
Table 8: Rendering results on DTU.

E Additional experimental results

E.1 Detailed ablation results with our proposed strategies

We present the detailed results of the ablation study in Table 9. As can be seen, our proposed strategies
almost greatly boost the reconstruction of each scan from DTU dataset, thus leading to significant
overall performance improvement.

Method Lcolor LSDF Lphoto 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 mean
Baseline ✓ 1.37 1.21 0.73 0.40 1.20 0.70 0.72 1.01 1.16 0.82 0.66 1.69 0.39 0.49 0.51 0.87
Model-A ✓ ✓ 0.56 0.68 0.51 0.37 0.82 0.48 0.51 1.21 1.13 0.65 0.50 0.77 0.31 0.44 0.41 0.62
Model-B ✓ ✓ 0.46 0.54 0.34 0.39 0.87 0.46 0.42 1.13 0.88 0.58 0.49 0.47 0.30 0.37 0.38 0.54
Geo-Neus ✓ ✓ ✓ 0.38 0.54 0.34 0.36 0.80 0.45 0.41 1.03 0.84 0.55 0.46 0.47 0.29 0.36 0.34 0.51

Table 9: Detailed results of ablation study on DTU.

E.2 Additional qualitative results

We show additional qualitative results for the DTU dataset in Fig. 4 and Fig. 5. In Fig. 6, we show
reconstructions on more scenes from BlendedMVS dataset.

F Reconstruction with sparse input views

In this section, we show our proposed method can reconstruct satisfactory surfaces with sparse input
views. Specifically, we take 3 views as input and test our method and NeuS in this challenging case.
Note that, in this situation, our method only uses these 3 input views to extract SFM sparse points
and compute the SDF loss. Qualitative and quantitative results are shown in Table 10 and Fig. 7. In
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Figure 3: Rendered images on DTU.

addition, We use all input images to test their rendering quality in terms of PSNR. We surprisingly
find that our method can still achieve satisfactory results while the performance of NeuS degrades a
lot in this challenging case. We think that this is because our proposed explicit geometry constraints
can still help regularize the SDF network in this situation. Therefore, our method can still converge
with sparser training cameras.

metric method scan97 scan106 scan118

Chamfer distance NeuS 1.75 1.85 3.59
Ours 1.045 0.782 0.855

PSNR NeuS 10.70 17.27 16.82
Ours 15.26 22.48 25.78

Table 10: Reconstruction with 3 views.

G Evaluation on bias with the proposed losses

In this section, we try to evaluate the bias with proposed loss below. For the rendering color of
network, we have the formula:

C = w (tj) ĉ
(
t̂∗
)
+ εsample + εweight. (1)
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Figure 4: Surfaces reconstructed on DTU (1/2).

To consider the simple case in which the ray intersects once with the surface. We assume that the
weight function can be written as ϕ( ˆsdf(t)) and reaches its max at ˆsdf(t) = 0. The assumption is
reasonable and used by related methods such as NeuS, VolSDF, etc. In formula (1), tj is the nearest
sample point from predict intersection point t̂∗. With the first order of approximation, the weight
w(tj) can be written as:

w (tj) = w
(
t̂∗ + δ

)
= w(t̂∗) +

dϕ

d ˆsdf
( ˆsdf(t̂∗))

d ˆsdf

dt
(t̂∗)δ = w(t̂∗), (2)

where dϕ

d ˆsdf
( ˆsdf(t̂∗)) = dϕ

dx (0) = 0. In this way, the formula (1) can be written as:

C = w
(
t̂∗
)
ĉ
(
t̂∗
)
+ εsample + εweight. (3)

For a sparse point pi, we assume there is a ray Vi passing through pi. Following our assumption that
pi is on the surface, we get the intersection point t∗:

ˆsdf(t∗) = sdf(t∗) = sdf(pi) = 0. (4)

That is, the intersection predicted by SDF network is the same with the real intersection: t̂∗ = t∗.
Then the formula (3) is:

C = w (t∗) ĉ (t∗) + εsample + εweight. (5)
With the help of proposed losses, the network could better simulate the real color field. But the
sample bias and the weight bias still exist because of volume rendering.
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Figure 5: Surfaces reconstructed on DTU (2/2).
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Figure 6: Surfaces reconstructed on BlendedMVS.
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Figure 7: Surface reconstructed with 3 views.
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