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Abstract

Recently, neural implicit surfaces learning by volume rendering has become popular
for multi-view reconstruction. However, one key challenge remains: existing
approaches lack explicit multi-view geometry constraints, hence usually fail to
generate geometry-consistent surface reconstruction. To address this challenge,
we propose geometry-consistent neural implicit surfaces learning for multi-view
reconstruction. We theoretically analyze that there exists a gap between the volume
rendering integral and point-based signed distance function (SDF) modeling. To
bridge this gap, we directly locate the zero-level set of SDF networks and explicitly
perform multi-view geometry optimization by leveraging the sparse geometry from
structure from motion (SFM) and photometric consistency in multi-view stereo.
This makes our SDF optimization unbiased and allows the multi-view geometry
constraints to focus on the true surface optimization. Extensive experiments show
that our proposed method achieves high-quality surface reconstruction in both
complex thin structures and large smooth regions, thus outperforming the state-of-
the-arts by a large margin. Code: https://github.com/GhiXu/Geo-Neus.

1 Introduction

Reconstructing surfaces from calibrated multi-view images is a long-standing problem in computer
vision and graphics. In the past years, traditional methods [30, 37, 15, 17] have adopted a multi-step
pipeline to achieve impressive reconstruction results. Such a pipeline requires depth maps or point
clouds to generate surface meshes. These intermediate representations inevitably introduce accu-
mulated errors for the final reconstructed geometry. Recently, directly reconstructing surfaces from
images [25, 43, 35, 42, 26] has attracted great interest for its potential to alleviate the accumulated
errors and produce high-quality reconstructions. To achieve this, existing approaches represent
surfaces as neural implicit representations and leverage volume rendering [21] to optimize them.

Inspired by neural volume rendering [23, 45] that simultaneously learns volume density and radiance
field from input images, recent works [35, 42] use signed distance functions (SDF) [27] for surface
representation and introduce the SDF-induced density function to enable the volume rendering to
learn an implicit SDF representation. In essence, these works still focus on direct color field modeling
by volume rendering integral rather than explicit multi-view geometry optimization. Therefore,
existing approaches usually fail to generate geometry-consistent surface reconstruction. Intuitively,
volume rendering samples multiple points along each ray and expresses the output pixel colors as the
integral of the radiance field, or the weighted sum of sampled colors along the ray (cf. Fig. 1(a)). It
means that the volume rendering integral directly optimizes the integral of geometry instead of the
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Figure 1: (a) Illustration of volume rendering. (b) A visual example. The volume rendering in NeuS
uses integral colors to implicitly supervise surface modeling. Although its rendered colors achieve
good results, the colors of estimated surface fail to preserve object geometry information. This
shows the bias between rendered colors and geometry. In contrast, our approach achieves structure-
preserving colors of estimated surface and produces geometry-consistent surface reconstruction.

single surface intersection along the ray. This obviously introduces bias for geometry modeling, thus
hindering true surface optimization. In Fig.1(b), we show the reconstruction case of NeuS [35], in
which the bias between rendered colors and object geometry can be observed intuitively. Rendered
colors are obtained by the color network via volume rendering. Surface colors are formed by the
predicted colors of the surface where the SDF values are zeroes. It can be easily seen that there exists
a gap between the rendered colors and the surface colors. Thus the reconstructed surface is imprecise
despite the high-quality rendered image, indicating the bias between the color rendering and implicit
geometry. (Detailed theoretical analysis will be elaborated later).

To address the above problem, we propose Geo-Neus to devise an explicit and accurate neural
geometry optimization model for geometry-consistent neural implicit surfaces learning by volume
rendering, leading to better multi-view 3D reconstruction. Specifically, we directly locate the zero-
level set of SDF networks and explicitly perform multi-view geometry optimization by leveraging
the sparse geometry from structure from motion (SFM) and photometric consistency in multi-view
stereo. This model has several benefits. First, directly locating the zero-level set of SDF networks
guarantees that our geometry modeling is unbiased. This enables our method to focus on true surface
optimization. Second, we show that explicitly enforcing multi-view geometry constraints on the
located zero-level set of SDF networks allows our method to generate geometry-consistent surface
reconstruction. Previous neural implicit surfaces learning mainly uses the rendering loss to implicitly
optimize SDF networks. This results in geometry ambiguity during the training optimization. Our
introduced two types of explicit multi-view constraints encourage our SDF networks to reason about
the correct geometry, including both complex thin structures and large smooth regions.

In summary, our contributions are: 1) We theoretically analyze that there exists a gap between volume
rendering integral and point-based SDF modeling. This demonstrates that it is necessary to directly
supervise the SDF networks to boost the neural implicit surfaces learning. 2) Based on our theoretical
analysis, we propose to directly locate the zero-level set of SDF networks and leverage multi-view
geometry constraints to explicitly supervise the training of SDF networks. In this way, the SDF
networks are encouraged to focus on true surface optimization. Extensive experiments further validate
the effectiveness of our theoretical analysis and the proposed direct optimization of SDF networks.
We show that our proposed Geo-Neus is capable to reconstruct both complex thin structures and large
smooth regions. Therefore, it greatly outperforms the state-of-the-art surface reconstruction methods,
including traditional methods and neural implicit surface learning methods.

2 Related work

Traditional multi-view 3D reconstruction. Traditional multi-view 3D reconstruction is the clas-
sical pipeline of surface reconstruction from multi-view images. Given multi-view input images,
traditional multi-view 3D reconstruction uses structure from motion (SFM) [33, 29] to extract and
match features of neighbor views, and estimate camera parameters and sparse 3D points. After that,
multi-view stereo (MVS) [30, 9, 37, 38, 36] is applied to estimate dense depth maps for each view
and then all the depth maps are fused into dense point clouds. Finally, the surface reconstruction
method [15, 17, 6], e.g., screened Poisson Surface Reconstruction [15] is used to reconstruct surfaces
from point clouds. Traditional methods have achieved great success on various occasions, but there

2



exists incompleteness of surface in some cases because their multiple intermediate steps are not
made into an ensemble. With the development of deep learning, many attempts have been made on
learning-based multi-view reconstruction [14, 40, 39, 27, 22], but the problem still exists.

Implicit representation of surface. Surface reconstruction methods can be generally divided
into explicit methods and implicit methods, depending on the representation of surface. Explicit
representation includes voxels [5, 31] and triangular mesh [3, 4, 16], which are limited by the
resolution. Implicit representation uses an implicit function to represent the surface and thus is
continuous. The surface can be extracted using the implicit function at any resolution. Traditional
reconstruction methods, e.g., screened Poisson Surface Reconstruction [15], use basic functions to
form the implicit function. As for learning-based methods, the most commonly used forms are the
occupancy function [22, 28] and the signed distance function (SDF) [27] represented by the network.
Based on these functions, many implicit surface reconstruction methods from point clouds have been
proposed, e.g., ONet [22], DeepSDF [27], Point2Surf [8] and etc. For these methods, point clouds
are obtained by scanner devices or multi-view stereo methods. That is, these point clouds are uniform
and complete. Therefore, these methods are rarely applied on the sparse point clouds produced by
SFM to reconstruct surfaces (In fact, we show that these methods degrade on sparse point clouds from
SFM in our supplementary material). In this work, we use the sparse points from SFM as an explicit
geometry supervision and show that they can facilitate the neural implicit surface reconstruction.

Neural implicit surface reconstruction. Neural implicit field is a new way to represent the
geometry of objects. With NeRF [23] first using the neural radiance field represented by Multi-Layer
Perceptron (MLP) in novel view synthesis, plenty of works [32, 18, 20] have sprung up using neural
networks to represent scenes. IDR [43] reconstructs surfaces with neural networks by representing
the geometry as the zero level set of an MLP that is considered to be an SDF. MVSDF [44] imports
information from the MVS network to arrive at more geometry priors. VolSDF [42] and NeuS [35]
use the weight function that involved SDF during the rendering process to make colors and geometry
closer. UNISURF [26] explores the balance between surface rendering and volume rendering. The
surface reconstructed by the neural network shows better completeness compared with the traditional
multi-view reconstruction methods, especially when dealing with non-Lambertian cases. However,
complex structures are not handled well. Meanwhile, flat planes and sharp corners could not be
guaranteed. NeuralWarp [7], a concurrent work, also explores the use of patch-match on neural
surface reconstruction. It combines volumetric rendering with a patch warping integration technique,
which aggregates colors from points sampled along the camera ray from source views with patch
warping. This way of patch aggregation is similar with volume rendering and shares the same sampled
points and the same weights with those used by color integration. Note that NeuralWarp uses patch
match with the color aggregation to optimize weights of sampled points, and thus to optimize the
geometry indirectly. As we will analyze later, this kind of color integration operation will cause
bias in the colors and the geometry. Therefore, NeuralWarp could not be trained from scratch and
relies on the pre-trained model of VolSDF. Differently from NeuralWarp, our method locates the
predicted surface of the SDF network using SDF-based interpolation and uses patch match to measure
the photometric consistency among neighboring views. In this way, Geo-Neus can be trained from
scratch and gets much better performance.

3 Method

Given posed multi-view images of an object, we aim at reconstructing the surface by neural volume
rendering without mask supervision. The spatial field of the object is represented by a signed distance
function (SDF), and the corresponding surface is extracted using the zero level set of the SDF. In the
process of volume rendering, our goal is to optimize the signed distance function. In this section, we
first analyze the inherent bias in color rendering which causes the inconsistency between rendered
colors and implicit geometry. Then we introduce explicit SDF optimization to achieve geometry
consistency. An overview of our approach is shown in Fig. 2.

3.1 Bias in color rendering

In the process of volume rending, there is a gap between the rendered colors and the geometry of the
object. The rendered colors are not consistent with the real colors of the surface.
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Figure 2: Overview of Geo-Neus. Previous neural implicit surfaces learning methods mainly depend
on the color loss to implicitly supervise the SDF network. Our proposed Geo-Neus explicitly
supervises the SDF network by introducing the SDF loss from sparse 3D points and photometric
consistency loss from multi-view stereo.

For an opaque solid object Ω ∈ R3, the opacity can be represented by an indicator function O(p):

O(p) =
{

1, p ∈ Ω
0, p /∈ Ω

. (1)

When we see some colors or we capture some colors with cameras, the colors are the light that
transfers along the light ray into our eyes or cameras. Based on the inherent optical properties of the
opaque solid object, we approximately assume that the colors C of image set {Ii} are the colors c of
object intersecting with the light ray v from the corresponding camera position o:

C (o, v) = c (o + t∗v) , (2)

where t∗ = argmin {t|o + tv = p, p ∈ ∂Ω, t ∈ (0, ∞)}. ∂Ω represents geometry surfaces. The
assumption is appropriate because light that transmits through the opaque object can be omitted. The
intensity of light decays to about zero drastically when passing through the surface of the opaque
object. Let us represent the surface of the object mathematically with the signed distance function.
The signed distance function sdf(p) is the signed distance between a spatial point p and the surface
∂Ω. In this way, the surface ∂Ω can be represented as:

∂Ω = {p|sdf (p) = 0} . (3)

With neural volume rendering, we estimate the signed distance function ˆsdf and color field ĉ by
Multi-Layer Perceptron (MLP) networks FΘ and GΦ :

ˆsdf (p) = FΘ (p) , (4)

ĉ (o, v, t) = GΦ (o, v, t) . (5)
Thus the estimated colors of the image with camera position o can be represented as:

Ĉ =

∫ +∞

0

w (t) ĉ (t)dt, (6)

where t is the depth along the ray that comes from o with the direction v and w(t) is a weight for the
point at t. For simplicity, the notes o and v are omitted. To obtain discrete counterparts of w and ĉ,
we also sample ti discretely along the ray and use the Riemann sum:

Ĉ =

n∑
i=1

w (ti) ĉ (ti). (7)

Following NeuS [35], w(ti) is computed as w(ti) = T (ti)α(ti), where T (ti) =
∏i−1

j=1(1 − α(tj))

represents accumulated transmittance, α(ti) = max(Φs(sdf(pi))−Φs(sdf(pi+1))

Φs(sdf(pi))
, 0) is opacity, and pi

represents the sampled spatial point at ti. Φs(x) = (1 + e−sx)−1 is a Sigmoid function, where s is a
learnable parameter which controls the smoothness of the transition at the surface.
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Notably, the goal of novel view synthesis is to make an accurate prediction of the colors Ĉ, and bend
efforts to minimize the difference between the colors of ground truth images C and the prediction Ĉ:

C = Ĉ =

n∑
i=1

w (ti) ĉ (ti). (8)

In surface reconstruction tasks, what we concentrate more is the surface of the object rather than the
color. In this way, the above formula can be rewritten as:

C =

j−1∑
i=1

w (ti) ĉ (ti) + w (tj) ĉ
(
t̂∗
)
+ w (tj) (ĉ (tj)− ĉ

(
t̂∗
)
) +

n∑
i=j+1

w (ti) ĉ (ti)

= w (tj) ĉ
(
t̂∗
)
+ εsample +

n∑
i=1
i ̸=j

w (ti) ĉ (ti)

= w (tj) ĉ
(
t̂∗
)
+ εsample + εweight,

(9)

where ˆsdf(t̂∗) = 0, tj denotes the nearest sample point from t̂∗, εsample denotes the bias caused
by sampling operation and εweight denotes the bias caused by weighted sum operation of volume
rendering. With Formula (2), it can be rewritten as:

w (tj) ĉ
(
t̂∗
)
+ εsample + εweight = c (t∗) , (10)

ĉ
(
t̂∗
)
=

c (t∗)− εsample − εweight

w (tj)
. (11)

There the total bias between the colors of object surface and estimated surface is:

∆c = ĉ
(
t̂∗
)
− c (t∗) =

(1− w (tj))c (t
∗)− εsample − εweight

w (tj)
. (12)

The relative bias is:
δc =

∆c

c (t∗)
=

1

w (tj)
− 1− εsample + εweight

w (tj) c (t∗)
. (13)

(a) Single plane (b) Multiplane

Figure 3: Simulated weight in color rendering
process of neural reconstruction methods.

When w (tj) approaches to 1, εweight approaches
to 0 and δc approaches to εsample/c(t∗). In this
case, the total bias is only caused by discrete sam-
pling, which is small (but still exists). Simulated
weights of some existing neural reconstruction
methods are shown in Fig. 3. As can be seen, it
is nearly impossible to get right there in practice,
especially without any geometric constraints. Fur-
thermore, the problem becomes more intractable
when dealing with cases of occlusion. Therefore,
the weighted manner of volume rendering integral
introduces a bias to implicit geometry modeling.
Because the supervision of the whole network al-
most depends exclusively on the difference be-
tween rendered colors and ground truth colors, the
bias would make it difficult to supervise the colors of surface and the SDF network, leading to a gap
between the colors and the geometry.

A trivial solution is to directly supervise the geometry of the object. In this way, we design explicit
supervision on the SDF network and geometry-consistent supervision with multi-view constraints.

3.2 Explicit supervision on SDF network

The SDF network, which estimates the signed distance from any spatial point to the surface of the
object, is the key network that we need to optimize. So we propose an explicit supervision method on
the SDF network to ensure its accuracy directly with points in 3D space.
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For less extra cost, we use points generated by structure from motion (SFM) [29, 33] to supervise the
SDF network. In fact, SFM is a canonical solution to compute the camera parameters of input images,
where 2D feature matches X and sparse 3D points P are also generated as byproducts. Thus, these
sparse 3D points can be used as "free" explicit geometry information. Approximately, we suppose
that these sparse points are on the surface of the object. That is, the SDF values of the sparse points
are zeroes: sdf (pi) = 0,where pi ∈ P. In practice, after obtaining sparse 3D points, a radius filter is
applied to exclude some outliers [46].

Occlusion handling. Because we focus on opaque objects, some parts of objects are invisible from
view of a certain camera position. Therefore, there are only some of the sparse points visible for each
view. For an image Ii with camera position oi, the visible points Pi are consistent with feature points
Xi of Ii:

Xi = Ki [Ri|ti]Pi, (14)
where Ki is the internal calibration matrix, Ri is the rotation matrix and ti is the translation vector for
image Ii. The coordinates of Xi and Pi are all homogeneous coordinates. The scale index before Xi

is omitted for simplicity. According to feature points of each image, we get visible points for each
view and use them to supervise the SDF network while rendering image from the corresponding view.

View-aware SDF loss. While rendering image Ii from view Vi, we use the SDF network to estimate
SDF values for the visible points Pi of Vi (see supplementary for the SDF loss by random sampling
from sparse 3D points). Based on the approximation that the SDF values of sparse points are zeroes,
we propose the view-aware SDF loss:

LSDF =
∑

pj∈Pi

1

Ni
| ˆsdf

(
pj
)
− sdf

(
pj
)
| =

∑
pj∈Pi

1

Ni
| ˆsdf

(
pj
)
|, (15)

where Ni is the number of points in Pi and | · | denotes the L1 distance. It is worth noting that the
loss we use to supervise the SDF network varies according to the view being rendered. In this way,
the introduced SDF loss is consistent with the process of color rendering.

With the explicit supervision on the SDF network, our network could converge faster owing to the
use of geometry prior. Besides, because the complex geometric structures with strong textures are
the concentrated distribution areas of the sparse points, our method could capture more meticulous
geometries.

3.3 Geometry-consistent supervision with multi-view constraints

With SDF loss, our network could capture complex geometric details with strong textures. Since the
sparse 3D points mainly provide the explicit constraints on the areas with rich textures, large smooth
regions still lack explicit geometry constraints. To go a step further, we design geometry-consistent
supervision on the implicit surface with multi-view stereo constraints.

Occlusion-aware implicit surface capture. We use the implicit representation of the surface, and
extract surface with the zero-level set of the implicit function. So the question is: Where is our
implicit surface? According to Formula (3), the estimated surface is:

ˆ∂Ω =
{

p| ˆsdf(p) = 0
}
. (16)

We aim to optimize ˆ∂Ω with geometry-consistent constraints among different views. Because the
number of points on the surface is infinite, we need to sample points from ˆ∂Ω in practice. To maintain
consistency with the process of color rendering using view rays, we sample the surface points on
these rays. As mentioned in 3.1, we sample t discretely along the view ray and use the Riemann sum
to obtain the rendered colors. Based on the sampled points, we use linear interpolation to get the
surface points, which is similar to the root-finding used in [25, 26] to estimate the surface.

Specifically, with sampled point t on the ray, the corresponding 3D point is p = o + tv, and the
predicted SDF value is ˆsdf(p). For simplicity, we further represent ˆsdf(p) as ˆsdf(t), which is the
function of t. We find the sample point ti, the sign of whose SDF value is different from the next
sample point ti+1. The sample points set T formed by ti is:

T =
{
ti| ˆsdf(ti) · ˆsdf(ti+1) < 0

}
. (17)
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In this situation, the line titi+1 intersects with the surface ˆ∂Ω. The intersection points set T̂ ∗ is:

T̂ ∗ =

{
t|t =

ˆsdf(ti)ti+1 − ˆsdf(ti+1)ti
ˆsdf(ti)− ˆsdf(ti+1)

, ti ∈ T

}
. (18)

The ray that interacts with the object may have more than one intersection with the surface. Specifi-
cally speaking, there may be at least two intersections. Similar to the SDF supervision mechanism,
we just use the first intersection point along the ray considering the occlusion problem:

t∗ = argmin
{
t|t ∈ T̂ ∗

}
. (19)

The selection of t∗ guarantees the sample points of the implicit surface are all visible for the
corresponding view and makes the supervision consistent with the process of color rendering.

Multi-view photometric consistency constraints. We capture our estimated implicit surface, of
which the geometric structures are supposed to be consistent among different views. Based on this
intuition, we use the photometric consistency constraints in multi-view stereo (MVS) [9, 37, 10] to
supervise our extracted implicit surface.

For a small area s on the surface, the projection of s on the image is a small pixel patch q. The
patches corresponding to s are supposed to be geometry-consistent among different views, except for
occlusion occasions. Similar to patch warping in traditional MVS methods, we use the central point
and its normal to represent s. For convenience, we represent the plane equation of s in the camera
coordinate of the reference image Ir:

nT p + d = 0, (20)

where p is the intersection point computed through Formula (19) and nT is the normal computed
with automatic differentiation of SDF network at p. Then the image point x in the pixel patch qi of
reference image Ir is related to the corresponding point x′ in the pixel patch qis of the source image
Is via the plane-induced homography H [12]:

x = Hx′,H = Ks(RsRT
r − Rs(RT

s ts − RT
r tr)nT

d
)K−1

r , (21)

where K donates the intrinsic matrix, R donates the rotation matrix and t donates the translation
vector. The index indicates which image the donation belongs to. To concentrate on the geometric
information, we convert color images {Ii} into gray images {I ′i}, and supervise our implicit surface
with the photometric consistency among patches in {I ′i} (see supplementary for RGB image settings).

Photometric consistency loss. To measure the photometric consistency, we use the normalization
cross correlation (NCC) of patches in the reference gray image {I ′r} and the source gray image {I ′s}:

NCC(I ′r(qi), I
′
s(qis)) =

Cov(I ′r(qi), I
′
s(qis))√

V ar(I ′r(qi))V ar(I ′s(qis))
, (22)

where Cov denotes covariance and V ar donates variance. While rendering colors for an image, we
use the patches which take the pixels being rendered as center and the patch size is 11× 11. We take
the rendered image as the reference image and compute NCC scores between its sampled patches
and their corresponding patches on all source images. To handle occlusions, we find the best four
of the computed NCC scores for each sampled patch following [10], and use them to compute the
photometric consistency loss for the corresponding view:

Lphoto =

∑N
i=1

∑4
s=1 1−NCC(I ′r(qi), I

′
s(qis))

4N
, (23)

where N is the number of sampled pixels on the rendered image. With the photometric consistency
loss, the geometric consistency of the implicit surface among multiple views is guaranteed.

3.4 Loss function

During rendering colors from a specific view, our total loss is:

L = Lcolor + αLreg + βLSDF + γLphoto. (24)
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Lcolor is the difference between the ground truth colors and the rendered colors:

Lcolor =
1

N

N∑
i=1

|Ci − Ĉi|. (25)

And Lreg is an eikonal term [11] to regularize the gradients of SDF network:

Lreg =
1

N

N∑
i=1

(|∇ ˆsdf(pi)| − 1)2. (26)

In our experiments, we choose α, β and γ as 0.1, 1.0 and 0.5 respectively.

4 Experiments

4.1 Experimental setting

Datasets. Following previous practices [43, 35, 42], we reconstruct surfaces from 15 scans of DTU
dataset [1] to evaluate our method. DTU dataset has objects of various categories, which are quite
different in terms of appearance and geometries. There are 49 or 64 images at a resolution of 1200 ×
1600 in each scan with camera parameters. We also test on 7 challenging scenes from the low-res set
of the BlendedMVS dataset [41] (CC-4 License). Scenes in BlendedMVS have various numbers of
views and camera parameters. The scenes are captured by images at a resolution of 768 × 576, and
the numbers of views vary from 31 to 143. We evaluate our reconstructed surfaces on DTU dataset
with the Chamfer Distance provided by DTU evaluation metrics [1]. For the BlendedMVS dataset,
we show the visual effects of the reconstructed surfaces.

Baselines. To better evaluate our method, we compare it with the-state-of-art learning-based
methods and the traditional reconstruction method, colmap [30]. For learning-based methods, we
compare with IDR [43], VolSDF [42], NeuS [35] and NeuralWarp [7]. For colmap, we use the
reconstructed surface with trim parameter 7 (the best performance) [26].

Implementation details. Similar to [43, 35, 42], the SDF network is modeled by an 8-layer
MLP with 256 hidden units and a skip connection in the middle. It is initialized by the geometric
initialization presented in [2]. The radiance network is parameterized by a 4-layer MLP with 256
hidden units. Positional encoding [20] is applied to 3D location with 6 frequencies and to viewing
direction with 4 frequencies. We sample 512 rays per batch and follow the hierarchical sampling
strategy in NeuS [35] to sample points for each ray. We train our model for 300k iterations for around
16 hours on a single NVIDIA RTX2080Ti GPU. After network training, a mesh can be extracted
from the SDF in a predefined bounding box by the Marching Cube [19] with the volume size of 5123.

4.2 Comparisons

with mask without mask
Scan IDR NeuS VolSDF NeuS NeuralWarp colmap Ours
24 1.63 1.15 1.14 1.37 0.49 0.45 0.375
37 1.87 0.95 1.26 1.21 0.71 0.91 0.537
40 0.63 0.80 0.81 0.73 0.38 0.37 0.336
55 0.48 0.39 0.49 0.40 0.38 0.37 0.357
63 1.04 1.26 1.25 1.20 0.79 0.90 0.800
65 0.79 0.72 0.70 0.70 0.81 1.00 0.454
69 0.77 0.69 0.72 0.72 0.82 0.54 0.408
83 1.33 0.94 1.29 1.01 1.20 1.22 1.032
97 1.16 1.14 1.18 1.16 1.06 1.08 0.843

105 0.76 0.77 0.70 0.82 0.68 0.64 0.548
106 0.67 0.66 0.66 0.66 0.66 0.48 0.460
110 0.90 1.35 1.08 1.69 0.74 0.59 0.473
114 0.42 0.39 0.42 0.39 0.41 0.32 0.294
118 0.51 0.51 0.61 0.49 0.63 0.45 0.355
122 0.53 0.52 0.55 0.51 0.51 0.43 0.345

mean 0.90 0.82 0.86 0.87 0.68 0.65 0.508

Table 1: Results on DTU scenes. The surfaces produced
by colmap are trimmed with trimming value 7.

We compare the reconstruction quality of
our method and baselines on DTU dataset.
Table 1 shows the quantitative results. No-
tably, our method outperforms baselines
by a large margin. Specifically, it out-
performs state-of-the-art neural implicit
surfaces learning methods by over 25%
and outperforms the traditional method
colmap by 22%. As shown qualitatively in
Fig. 4, our method achieves high-quality
surface reconstruction in both complex
thin structures and large smooth regions.
For example, our method can recover
abrupt depth changes in Scan 37 and re-
construct planar structures in Scan 24 and
40. To test the capability of handling
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Figure 4: Surfaces reconstructed on DTU and BlendedMVS. We use NeuS trained with mask
supervision and colmap with trimming value 7 (see supplementary for comparison with NeuralWarp).

Reference Image Baseline Model-A Model-B Geo-Neus

Figure 5: Surface quality of ablation models.

various scenes, we test on 7 challenging
scenes of the BlendedMVS dataset. Qualitative results in Fig. 4 show that our method yields more
smooth and consistent surface quality than other methods.

4.3 Analysis

Ablation study. To evaluate the effect of our proposed contributions, we conduct an ablation study
on DTU dataset. NeuS is adopted as our baseline. Different modules are progressively added to
the baseline to investigate their efficacy. Results are reported in Table 2. We see that, with very
sparse 3D supervision on SDF networks, Model-A has begun to outperform colmap (0.62 vs 0.65).
This demonstrates that explicit SDF optimization is very beneficial to improve geometries. With
the proposed photometric consistency loss, Model-B can optimize SDF networks more completely,
leading to much more performance improvement. Fig. 5 shows how the proposed loss functions
improve the surface quality. Model-A reconstructs the apple stem finely but the surface is not smooth
enough. Model-B reconstructs the smooth surface but the apple stem is lost. That is, the SDF loss is
better to improve the reconstruction of complex thin structures, while the photometric loss is better
for the reconstruction of large smooth regions. Moreover, our full model, Geo-Neus absorbs their
individual advantages and achieves the best performance.
Geometry bias of volumetric integration. To further investigate the geometric bias of volumetric
integration, we render the depth images from a particular pose in a similar fashion to rendering RGB
pixels [20] (see supplementary for details), and then use the depth images to construct sparse 3D
points and photometric consistency constraints. NeuS is also used as the baseline. Comparison
results are shown in Table 3. As can be seen, compared with baseline (0.87), multi-view geometry
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Method Lcolor LSDF Lphoto mean
Baseline ✓ 0.87
Model-A ✓ ✓ 0.62
Model-B ✓ ✓ 0.54
Geo-Neus ✓ ✓ ✓ 0.51

Table 2: Ablation study on DTU scenes.

Constraint Setting mean

Sparse 3D points Depth integral 0.85
SDF location 0.62

Photometric consistency Depth integral 1.08
SDF location 0.57

Table 3: Comparison results between depth inte-
gral and SDF location.

constraints with depth integral bring little performance improvement or even degradation. It is a
remarkable fact that photometric consistency supervision with depth integral surface location could
not converge because of the initial immense bias while the SDF location model converges smoothly.
As an alternative, we train these two models based on the baseline model pretrained with 200k
iterations. The result of the depth integral model still degrades compared with the baseline. This
verifies the existence of geometric bias in volumetric integration. With our proposed SDF-oriented
optimization, surface reconstruction quality can be significantly boosted.

Figure 6: Convergence speed.

Convergence speed. We further study the convergence speed of
our proposed method, Geo-Neus, and baseline, NeuS. As shown
in Fig. 6, our method converges rapidly from scratch and becomes
stable after 200k iterations. In contrast, NeuS cannot extract the
reasonable surface from SDF networks in the beginning and starts
to become stable after 250k iterations. This demonstrates that our
proposed explicit SDF optimization also improves the efficiency of
neural surfaces learning by volume rendering, reducing the training
time from around 16 hours to around 10 hours.

Reference image Reconstructed surfaces

(a
)

(b
)

Figure 7: Failure cases.

Limitation. We show failure cases of our method on scenes with
strong specular highlights and transparent objects. Fig. 7(a) shows
our reconstructed surfaces on the scene with strong specular high-
lights, DTU scan77. In this case, the strong specular highlights lead
to large view-dependent effects, making the multi-view photometric
consistency loss unable to reliably measure multi-view geometry
constraints. Thus, our method cannot produce satisfactory surfaces
in this case. In addition, Fig. 7(b) shows our reconstructed surfaces
on the scene with transparent objects [13]. As proposed in Sec. 3.1,
we assume the target objects are all opaque and solid. For transparent objects, the proposed bias be-
tween rendered colors and implicit geometry is invalid. Furthermore, the geometric loss we proposed
may not work well, just like the photometric consistency used in traditional reconstruction methods.

5 Conclusion

We have proposed Geo-Neus, a new method to perform neural implicit surfaces learning by enforcing
explicit SDF optimization. In our paper, we first provide the theoretical analysis that there exists a
gap between volume rendering integration and neural SDF learning. With this theoretical support,
we propose to explicitly optimize neural SDF learning by introducing two multi-view geometry
constraints: sparse 3D points in structure from motion and photometric consistency in multi-view
stereo. In this way, Geo-Neus produces high-quality surface reconstruction in both complex thin
structures and large smooth regions. Therefore, it outperforms the state-of-the-arts by a large margin,
including both traditional and neural implicit surfaces learning methods. We note that although
our method greatly improves reconstruction quality, its efficiency is still limited. In the future, it
will be interesting to explore accelerating neural implicit surfaces learning by volume rendering
through super-fast per-scene radiance field optimization methods [34, 24]. We don’t see an immediate
negative societal impact of our work, but accurate 3D models may be used from malevolence.
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