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A.1 Basics of Riemannian Manifolds

In this section, we review the main concepts from Riemannian manifold theory essential to this work.
Our main references are Sakai [36] and Do Carmo [23]. Throughout, d ∈ N denotes the dimension.
We use the word smooth to mean infinitely differentiable.

Manifolds. A smooth manifold M of dimension d is a Hausdorff, second countable topological
space together with an atlas: a set Atlas := {(Uα, φα)}α∈A where 1). {Uα}α∈A is an open cover
of M , 2). for each α ∈ A, φα : Uα → φα(Uα) ⊆ Rd is a homeomorphism onto its image, and 3).
φα ◦ φ−1

β : φβ(Uα ∩ Uβ) → φ−1
α (Uα ∩ Uβ) is smooth for each pair α, β ∈ A. An element (U,φ)

of Atlas is called a chart.

Smooth maps. A real-valued function f : M → R is a smooth function if f ◦ φ−1 is smooth
(in the elementary calculus sense) for all charts (U,φ). The set of all smooth functions is denoted
Fn(M), which forms an R-vectorspace. Let N be another smooth manifold with atlas B. A function
Φ :M → N is a smooth map if g ◦ Φ ∈ Fn(M) for all g ∈ Fn(N).

Tangent space. Let x ∈ M . A derivation at x is a linear function v : Fn(M) → R satisfying
the product rule: v[fg] = f(x)v[f ] + g(x)v[g] for all f, g ∈ Fn(M). The tangent space at x,
denoted TxM , is the vector space of all derivations at x. Elements of TxM are referred to as tangent
vectors at x. For a given chart (U,φ) where x ∈ U , define a derivation at x, denoted ∂i|x, by
f 7→ d(f◦φ−1)

dzi
(φ(x)) where d

dzi
is the i-th partial derivative in ordinary calculus. It is a fact that

{∂i|x : i = 1, . . . , d} is a basis for TxM .

Although the above definition of a tangent vector is abstract, it can be concretely interpreted in terms
of derivative along a curve. Let a < t0 < b be real numbers. A curve through x is a smooth map
γ : (a, b) →M such that γ(t0) = x. Then Fn(M) ∋ f 7→ d

dtf(γ(t))|t=t0 ∈ R defines a derivation
at x. Oftentimes, this derivation is denoted γ̇(t0) ∈ TxM

Riemannian metric. The tangent bundle is the set TM :=
⋃

x TxM , which itself is a smooth
manifold of dimension 2d. A vector field on M is a smooth map V : M → TM such that
V(x) ∈ TxM for all x ∈M . The set of all vectors fields on M is denoted Vf(M).

A Riemannian metric on M is a choice of an inner product ⟨·, ·⟩x (and thus, a norm ∥ · ∥x) on TxM
for each x ∈ M such that the function M → R given by x 7→ ⟨V(x),U(x)⟩x is smooth for all
V,U ∈ Vf(M). As shorthands, when x is clear from context, we drop the subscripts and simply write
⟨·, ·⟩ and ∥ · ∥ instead. Choosing an orthonormal basis for TxM with respect to ⟨·, ·⟩x for each x, we
can identify TxM with Rd with the ordinary dot inner product.

Let x ∈ M and (U,φ) be a chart such that x ∈ U . Define gij(x) = ⟨∂i|x, ∂j |x⟩x. Denote by G(x)
the d×d positive definite matrix [gij(x)]ij . Below, we will refer to the functionG : U → Rd×d as the
coordinate representation of the Riemannian metric. Define gij(x) := [G(x)−1]ij . The Christoffel
symbols with respect to (U,φ) are defined by Γk

ij :=
1
2

∑d
ℓ=1 g

kℓ(∂i|xgjℓ + ∂j |xgiℓ − ∂ℓ|xgij). Note
that gkℓ, gkℓ, G, Γk

ij , and ∂i|xgjℓ are all functions with domain U .

Geodesics. Fix a chart (U,φ). Consider a smooth curve γ : [a, b] → U . Let ζi(t) := [φ(γ(t))]i be
the i-th component functions. The curve γ is a geodesic if ζ is a solution to the following system
of second order ordinary differential equations (ODEs): d2ζi

dt2 +
∑d

j,ℓ=1 Γ
i
jℓ ◦ γ

dζj
dt

dζℓ
dt = 0 for all

i = 1, . . . , d at all time t ∈ [a, b].

Geodesics are minimizers of the so-called energy functional E(γ) = 1
2

∫ b

a
∥γ̇(t)∥2γ(t)dt. The above

system of ODEs are the analog of the “first derivative test” for local minimizers of E. Thus, geodesics
are defined independently of the choice of the chart.

Exponential map. For x ∈ M and v ∈ TxM , there exists ϵ > 0 and a unique geodesic curve
γv : [−ϵ, ϵ] → M such that γv(0) = x and γ̇v(0) = v. This follows from the existence and
uniqueness of the solution to an ODE given initial conditions where the ODE is as discussed above.
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Note that although geodesics are previously defined in U where (U,φ) is a chart, they can be extended
outside of U using additional charts.

Let x ∈ M and v ∈ TxM be fixed and let γv : [−ϵ, ϵ] → M be as in the preceding paragraph. If
∥v∥x ≤ ϵ, then define expx(v) := γv(1). A fundamental fact is that expx, known as the exponential
map at x, can be defined on an open set of TxM containing the origin.

Distance function. Let x, ξ ∈ M and a < b be real numbers. A piecewise smooth curve from x
to ξ is a piecewise smooth map γ : [a, b] → M such that γ(a) = x and γ(b) = ξ. Assume that
M is connected. Then for all x, ξ ∈ M , there exists a piecewise smooth curve from x to ξ. The
length of γ is defined as len(γ) :=

∫ b

a
∥γ̇(t)∥γ(t)dt. Define distM (x, ξ) := inf{len(γ) : γ is a

piecewise smooth curve from x to ξ}, which is a metric on M in the sense of metric spaces (see [36,
Proposition 1.1]). For x ∈ M and r ∈ (0,∞), the open ball centered at x of radius r is denoted
Bx(r,M) := {z ∈M : distM (x, z) < r}.

Complete Riemannian manifolds. A Riemannian manifold is complete if it is a complete metric
space under the metric distM . The Hopf-Rinow theorem ([23, Ch. 8, Theorem 2.8]) states that if M
is connected and complete, then the exponential expx can be defined on the entire TxM .

A.2 Proof of Lemma 4.1

This section uses definitions and notations introduced in Section 4.1. In particular, recall the cut
locus Cx, the tangent cut locus C̃x, the interior set Ix and the tangent interior set Ĩx. The proof of
Lemma 4.1 is presented towards the end of the section. At this point, we compile some facts from
various sources about the cut locus.
Lemma A.1. For all x ∈M , we have

1. Cx is a closed subset of M (Hebda [29, Proposition 1.2]).
2. Ix ∩ Cx = ∅ and Ix ∪ Cx =M (Sakai [36, Ch II, Lemma 4.4 (1)])
3. Ix is an open subset of M (immediate from 1 and 2 above)
4. expx : Ĩx → Ix is a diffeomorphism ([36, Ch II, Lemma 4.4 (2)])
5. λM (Cx) = 0, where λM is the Riemann-Lebesgue measure ([36, Lemma 4.4 (3)])
6. τx is continuous and infu∈UxM τx(u) > 0 ([36, Ch II, Propositions 4.1 (2) and 4.13 (1)])

While the following lemma is elementary, we provide a proof since we could not find one in the
literature.
Lemma A.2. For all x ∈ M , the (topological) closure of Ĩx in TxM is D̃x. Furthermore, for all
x ∈M , we have expx(D̃x) =M .

Proof of Lemma A.2. Take a convergent sequence {tiui}i∈N ⊆ Ĩx where ui ∈ UxM and 0 ≤ ti <

τx(ui). Let v∗ = limi tiui. Our goal is to show that v∗ ∈ D̃x = Ĩx ∪ C̃x.

Since UxM is compact, we may assume that u∗ := limi ui exists after passing to a subsequence if
necessary. Furthermore, ∥tiui∥x = ti implies that t∗ := limi ti exists as well (i.e., t∗ <∞). Hence,
v∗ = t∗u∗.

Consider the case that τx(u∗) = ∞. Then 0 ≤ t∗ < τx(u
∗) implies that v∗ = t∗u∗ ∈ Ĩx. For the

other case that t(u) < ∞, we first note that tiui ∈ Ĩx implies that ti < τx(ui). Taking the limit of
both sides, we have t∗ = limi ti ≤ limi τx(ui) = τx(u

∗). Note that the last limit can be exchanged
since τx is continuous (Lemma A.1 part 6). Thus, either t∗ < τx(u

∗) in which case v∗ ∈ Ĩx, or
t∗ = τx(u

∗) in which case v∗ = τx(u
∗)u∗ ∈ C̃x.

For the “furthermore” part, note that

expx(D̃x) = expx(Ĩx ∪ C̃x) = expx(Ĩx) ∪ expx(C̃x) = Ix ∪ Cx =M

where the last equality is Lemma A.1 part 2.

Proof of Lemma 4.1. Denote by cl(TxM) the set of closed subsets of TxM . Define ψ : M →
cl(TxM) by ψ(ξ) := {x ∈ D̃x : expx(x) = ξ} = exp−1

x (ξ) ∩ D̃x. Note that ψ(ξ) is a closed set by
Lemma A.2.
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We claim that ψ is weakly-measurable, i.e., for every open set Ũ ⊆ TxM , the subset of M defined
by {ξ ∈M : ψ(ξ) ∩ Ũ ̸= ∅} is Borel. To see this, note that

{ξ ∈M : ψ(ξ) ∩ Ũ ̸= ∅}
= {ξ ∈M : exp−1

x (ξ) ∩ D̃x ∩ Ũ ̸= ∅}
= {ξ ∈M : expx(D̃x ∩ Ũ) ∋ ξ}
= expx(D̃x ∩ Ũ).

As inner product spaces, TxM and Rd are isomorphic (see Section A.1-Riemannian metric). Since,
TxM and Rd are homeomorphic as topological spaces, Rd being locally compact implies TxM is
locally compact as well. Thus, we can write Ũ =

⋃
i∈N K̃i as a countable union of compact sets

K̃i ⊆ TxM . Furthermore, D̃x∩ Ũ =
⋃

i∈N D̃x∩ K̃i and so expx(D̃x∩ Ũ) =
⋃

i∈N expx(D̃x∩ K̃i).

Since expx is continuous, expx(D̃x∩K̃i) is a compact subset ofM , and hence closed and bounded by
the Hopf-Rinow theorem ([23, Ch. 8, Theorem 2.8]). Thus, expx(D̃x ∩ Ũ) =

⋃
i∈N expx(D̃x ∩ K̃i)

is a countable union of closed sets, which is Borel. This proves the claim that ψ is weakly Borel
measurable.

By the Kuratowski–Ryll-Nardzewski measurable selection theorem (see [14, Theorem 6.9.3]), there
exists a Borel measurable function M → TxM , which we denote by logx, such that logx(ξ) ∈
ψ(ξ) = exp−1

x (ξ) for all ξ ∈ M , as desired. By construction, logx(ξ) ∈ exp−1
x (ξ) for all ξ ∈ M ,

and so expx(logx(ξ)) = ξ is immediate.

For the “furthermore” part, let ξ ∈ M be arbitrary and let z := logx(ξ) ∈ D̃x. Let {zi} ⊆ Ĩx be a
sequence such that limi zi = z. By Equation (6), we have distM (x, expx(zi)) = ∥zi∥x. By continu-
ity of distM and expx, we have distM (x, ξ) = distM (x, expx(z)) = limi distM (x, expx(zi)).
To conclude, we have limi distM (x, expx(zi)) = limi ∥zi∥x = ∥z∥x = ∥ logx(ξ)∥x, as desired.

A.3 Proof of Proposition 4.2

Recall from Section A.1-Riemannian metric, given a chart (U,φ), one can define the matrix-valued
function G : U → Rd×d referred to earlier as the coordinate representation of the Riemannian metric.
Now, Lemma A.1 part 3 states that Ix is an open neighborhood of x. Furthermore, Ĩx is an open
subset of TxM , which is identified with Rd using an orthonormal basis (see Section A.1-Riemannian
metric). Hence, {(Ix, logx |Ix)}x∈M is an atlas of M (see Section A.1-Manifolds).
Definition A.3. The chart (Ix, logx |Ix) is called a normal coordinate system at x. Let G : Ix →
Rd×d be the coordinate representation of the Riemannian metric for this chart. To emphasize the
dependency on x, we write Gx := G. Denote by G⊥

x :M → Rd×d the zero extension of Gx to the
rest of M , i.e., G⊥

x (ξ) = Gx(ξ) for ξ ∈ Ix and G⊥
x (ξ) is the zero matrix for ξ ̸∈ Ix.

The normal coordinate system has the property that Gx(x) = G⊥
x (x) is the identity matrix. This is

the result of Sakai [36, Ch. II §2 Exercise 4].
Lemma A.4 (Change-of-Variables). Let x ∈ M be fixed. Define the function νx : M → R by
νx(ξ) =

√
|detG⊥

x (ξ)| whereG⊥
x is as in Definition A.3. Then νx is Borel-measurable. Furthermore,

νx satisfies the following property: Let f :M → R be an absolutely integrable function. Define the
function

h : TxM → R by h(z) := f(expx(z)) · νx(expx(z)).
Then (i) h(0) = f(x) and (ii) for all Borel set B̃ ⊆ TxM we have

∫
B
fdλM =

∫
B̃
hdλ where

B := expx(B̃ ∩ Ĩx).

Proof of Lemma A.4. We first show that νx is Borel-measurable. Recall that G⊥
x :M → Rd×d is the

zero extension of Gx : Ix → R, which is by definition smooth (see Section A.1-Riemannian metric).
In particular, Gx : Ix → R is continuous and so

√
det(Gx(•)) is Borel-measurable. Now, note that√

det(G⊥
x (•)) is the zero extension of

√
det(Gx(•)) from Ix to M . Hence,

√
det(G⊥

x (•)), which
is νx by definition, is Borel-measurable.
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Next, we prove the “Furthermore” part (i). Note that expx(0) = x. Moreover, G⊥
x (x) = Gx(x)

is the identity matrix as asserted after Definition A.3 (see Sakai [36, Ch. II §2 Exercise 4]). Thus,
h(0) = f(expx(0))

√
|detG⊥

x (expx(0))| = f(x)
√
1 = f(x), as desired.

For the “Furthermore” part (ii), we first note that B̃ = (B̃ ∩ Ĩx)∪ (B̃ ∩ C̃x) expresses B̃ as a disjoint
union. Thus, B = expx(B̃) = expx(B̃ ∩ Ĩx)∪ exp(B̃ ∩ C̃x) expresses B as a disjoint union as well.
Moreover, exp(B̃ ∩ C̃x) ⊆ exp(C̃x) = Cx, which has λM -measure zero (Lemma A.1 part 5).

Recall that λ is the shorthand for the ordinary Lebesgue measure λRd (see paragraph right after
Definition 3.1). Now, we directly compute to obtain the formula∫

B̃

hdλ =

∫
B̃∩Ĩx

f ◦ expx
√
|det(G⊥

x ◦ expx)|dλ

=

∫
logx(expx(B̃∩Ĩx))

f ◦ expx
√
|det(G⊥

x ◦ expx)|dλ

=

∫
expx(B̃∩Ĩx)

fdλM ∵ Amann and Escher [1, Ch XII, Thm 1.10]

=

∫
expx(B̃∩Ĩx)

fdλM +

∫
expx(B̃∩C̃x)

fdλM

=

∫
B

fdλM ,

as desired.

Proposition A.5. Let x ∈ M be fixed. Let X be a random variable on M with density fX where
the underlying probability space is (Ω,P,A) (see Definition 3.3). Define Z := logx(X). Then Z
is a random variable on TxM such that for all events E ∈ A and Borel sets B̃ ⊆ TxM we have
Pr(E ∩ {Z ∈ B̃}) = Pr(E ∩ {X ∈ expx(B̃ ∩ Ĩx)}),

Proof of Proposition A.5. To start with, we have

Pr(E ∩ {Z ∈ B̃})
= Pr(E ∩ {Z ∈ B̃ ∩ D̃x}) ∵ logx(M) ⊆ D̃x

= Pr(E ∩ {Z ∈ B̃ ∩ Ĩx}) + Pr(E ∩ {Z ∈ B̃ ∩ C̃x}) ∵ D̃x = Ĩx ∪ C̃x, ∅ = Ĩx ∩ C̃x

= Pr(E ∩ {logx(X) ∈ B̃ ∩ Ĩx}) + Pr(E ∩ {logx(X) ∈ B̃ ∩ C̃x}).
Since expx : Ĩx → Ix is a diffeomorphism (Lemma A.1-part 4) with inverse logx, we have

E ∩ {logx(X) ∈ B̃ ∩ Ĩx} = E ∩ {X ∈ expx(B̃ ∩ Ĩx)}
as sets. On the other hand,

E ∩ {logx(X) ∈ B̃ ∩ C̃x} ⊆ {X ∈ Cx}.
Finally, Pr(X ∈ Cx) =

∫
Cx
fXdλM = 0 since Cx has λM -measure zero (Lemma A.1-part 5).

Proof of Proposition 4.2 part (i). Recall that λ is the shorthand for the ordinary Lebesgue measure
λRd (see paragraph right after Definition 3.1). Let E = Ω in Proposition A.5. Then we have

Pr(Z ∈ B̃)

= Pr(X ∈ expx(B̃ ∩ Ĩx)) ∵ Part (i)

=

∫
expx(B̃∩Ĩx)

fXdλM ∵ fX is the density of X

=

∫
B̃∩Ĩx

(fX ◦ expx) · (νx ◦ expx)dλ ∵ Lemma A.4

=

∫
B̃

fZdλ ∵ Definition of fZ
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By assumption, fX is Borel-measurable. By Lemma A.4, νx is Borel-measurable. Since expx is
continuous, we have that both fX ◦ expx and νx ◦ expx are Borel-measurable. This proves that fZ is
Borel-measurable. Hence, the integrand is Borel-measurable and a density function for Z.

Proof of Proposition 4.2 part (ii). Recall that λ is the shorthand for the ordinary Lebesgue mea-
sure λRd (see paragraph right after Definition 3.1). By Lemma A.1 part 6, we have τ∗x :=

infu∈UxM τx(u) > 0. Now, let r ∈ (0, τ∗x ). By the definition of r, we have Bx(r,M) ⊆ Ĩx.
Hence letting z = logx(ξ) for ξ ∈ Bx(r,M), by Equation (6) we have

distM (x, ξ) = distM (x, expx(z)) = ∥z∥x. (8)

Thus,
logx(Bx(r,M)) = {z ∈ TxM : ∥z∥x < r} = B0(r, TxM) (9)

and
Bx(r,M) = expx(B0(r, TxM)). (10)

Thus, by Lemma A.4, we have ∫
Bx(r,M)

fdλM =

∫
B0(r,TxM)

hdλ. (11)

Before proceeding, we need the following lemma:

Lemma A.6. For all x ∈M , we have limr→0
λM (Bx(r,M))
λ(B0(r,TxM)) = 1.

Proof of Lemma A.6. Let ωd := πd/2/Γ(d2 + 1) be the volume of the unit ball in Rd where Γ is the
gamma function. Then λ(B0(r, TxM)) = ωdr

d. Next, [36, Ch II.5 Exercise 3] states that

lim
r→0

rdωd − λM (Bx(r,M))

rd+2
=

ωd

6(d+ 2)
Sx

where Sx ∈ R is a constant that depends only on x (it is the scalar curvature of M at x). By simple
algebra, the above yields

0 = lim
r→0

1

r2

(
1− λM (Bx(r,M))

ωdrd
− Sxr

2

6(d+ 2)

)
In particular, we have limr→0 1− λM (Bx(r,M))

ωdrd
= 0, as desired.

Now we continue with the proof of Proof of Proposition 4.2 part (ii). We observe that

f(x) = lim
r→0

∫
Bx(r,M)

fdλM

λM (Bx(r,M))
∵ x is a Lebesgue point of f

= lim
r→0

∫
B0(r,Tx(M))

hdλ

λM (Bx(r,M))
∵ definition of h and equation (11)

= lim
r→0

∫
B0(r,TxM)

hdλ

λM (Bx(r,M))

λM (Bx(r,M))

λ(B0(r, TxM))
∵ Lemma A.6

= lim
r→0

∫
B0(r,TxM)

hdλ

λ(B0(r, TxM))
.

Since f(x) = h(0) (Lemma A.4) , we’ve shown that

g(0) = lim
r→0

∫
B0(r,TxM)

hdλ

λ(B0(r, TxM))
.

Thus, 0 is a Lebesgue point of h, as desired.
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A.4 Proof of Proposition 4.3

Recall that λ is the shorthand for the ordinary Lebesgue measure λRd (see paragraph right after
Definition 3.1). Let A ⊆ R and B̃ ⊆ TxM be Borel subsets. Then∫

B̃

PY |Z(A|z)fZ(z)dλ(z)

=

∫
B̃

PY |X(A| expx(z))fZ(z)dλ(z) ∵ Definition of PY |Z=z

=

∫
expx(B̃∩Ĩp)

PY |X(A|x)fX(x)dλM (x) ∵ Lemma A.4 and Proposition 4.2 (ii)

= Pr(Y ∈ A,X ∈ expx(B̃ ∩ Ĩx))
= Pr(Y ∈ A,Z ∈ B̃) ∵ Proposition 4.2 (i) with E := {Y ∈ A}

This proves that PY |Z(·|·) is a conditional probability for Y given Z.
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