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Abstract

Recent research in the theory of overparametrized learning has sought to establish
generalization guarantees in the interpolating regime. Such results have been estab-
lished for a few common classes of methods, but so far not for ensemble methods.
We devise an ensemble classification method that simultaneously interpolates the
training data, and is consistent for a broad class of data distributions. To this
end, we define the manifold-Hilbert kernel for data distributed on a Riemannian
manifold. We prove that kernel smoothing regression and classification using
the manifold-Hilbert kernel are weakly consistent in the setting of Devroye et al.
[22]. For the sphere, we show that the manifold-Hilbert kernel can be realized
as a weighted random partition kernel, which arises as an infinite ensemble of
partition-based classifiers.

1 Introduction

Ensemble methods are among the most often applied learning algorithms, yet their theoretical
properties have not been fully understood [12]. Based on empirical evidence, Wyner et al. [42]
conjectured that interpolation of the training data plays a key role in explaining the success of
AdaBoost and random forests. However, while a few classes of learning methods have been analyzed
in the interpolating regime [6, 4], ensembles have not.

Towards developing the theory of interpolating ensembles, we examine an ensemble classification
method for data distributed on the sphere, and show that this classifier interpolates the training data
and is consistent for a broad class of data distributions. To show this result, we develop two additional
contributions that may be of independent interest. First, for data distributed on a Riemannian manifold
M , we introduce the manifold-Hilbert kernel KH

M , a manifold extension of the Hilbert kernel [39].
Under the same setting as Devroye et al. [22], we prove that kernel smoothing regression with KH

M
is weakly consistent while interpolating the training data. Consequently, the classifier obtained by
taking the sign of the kernel smoothing estimate has zero training error and is consistent.

Second, we introduce a class of kernels called weighted random partition kernels. These are kernels
that can be realized as an infinite, weighted ensemble of partition-based histogram classifiers. Our
main result is established by showing that when M = Sd, the d-dimensional sphere, the manifold-
Hilbert kernel is a weighted random partition kernel. In particular, we show that on the sphere, the
manifold-Hilbert kernel is a weighted ensemble based on random hyperplane arrangements. This
implies that the kernel smoothing classifier is a consistent, interpolating ensemble on Sd. To our
knowledge, this is the first demonstration of an interpolating ensemble method that is consistent for a
broad class of distributions in arbitrary dimensions.
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Figure 1: An example of the weighted infinite-ensemble û(x∥Dn,Krp
M ) (defined in Eqn. 4) of his-

togram classifiers ĥ(x∥Dn,P) (defined in Eqn. 2). The partitions P1,P2 are induced by hyperplane
arrangements (denoted by dotted lines).

1.1 Problem statement

Consider the problem of binary classification on a Riemannian manifold M . Let (X,Y ) be random
variables jointly distributed on M × {±1}. Let Dn := {(Xi, Yi)}ni=1 be the (random) training
data consisting of n i.i.d copies of X,Y . A classifier, i.e., a mapping from Dn to a function
f̂(•∥Dn) : M → {±1}, has the interpolating-consistent property if, when X has a continuous
distribution, both of the following hold: 1) f̂(Xi∥Dn) = Yi, for all i ∈ {1, . . . , n}, and 2)

Pr{f̂(X∥Dn) ̸= Y } → inf
f :M→{±1} measurable

Pr{f(X) ̸= Y } in probability as n→ ∞. (1)

Our goal is to find an interpolating-consistent ensemble of histogram classifiers, to be defined below.

A partition on M , denoted by P , is a set of subsets of M such that P ∩P ′ = ∅ for all P, P ′ ∈ P and
M =

⋃
P∈P P . Given x ∈M , let P[x] denote the unique element P ∈ P such that x ∈ P . The set

of all partitions on a space M is denoted Part(M). The histogram classifier with respect to Dn over
P is the sign of the function ĥ(•∥Dn,P) :M → R given by

ĥ(x∥Dn,P) :=

n∑
i=1

Yi · I{x ∈ P[Xi]}, (2)

where I is the indicator function. See Figure 1-left panels.
Definition 1.1. A weighted random partition (WRP) over M is a 3-tuple (Θ,P, α) consisting of (i)
parameter space of partitions: a set Θ where Pθ ∈ Part(M) for each θ ∈ Θ, (ii) random partitions:
a probability measure P on Θ, and (iii) weights: a nonnegative function α : Θ → R≥0 that is
integrable with respect to the measure P.
Example 1.2 (Regular partition of the d-cube). Let M = [0, 1]d and Θ = {1, 2 . . . } =: N+. For
each n ∈ N+, denote by Pn the regular partition of M into nd d-cubes of side length 1/n. For any
probability mass function P on N+ and weights α : N+ → R≥0, the 3-tuple (Θ,P, α) is a WRP.

Below, WRPs will be denoted with 2-letter names in the sans-serif font, e.g., “rp” for a generic WRP,
and “ha” for the weighted hyperplane arrangement random partition (Definition 5.1). The weighted
random partition kernel associated to rp = (Θ,P, α) is defined as

Krp
M :M ×M → R≥0 ∪ {∞}, Krp

M (x, z) := Eθ∼P[α(θ)I{x ∈ Pθ[z]}]. (3)
When α ≡ 1, we recover the notion of unweighted random partition kernel introduced in [21]. Note
that the kernel is symmetric since I{x ∈ Pθ[z]} = I{z ∈ Pθ[x]}. IfKrp

M <∞, thenKrp
M is a positive

definite (PD) kernel. When Krp
M can evaluate to ∞, the definition of a PD kernel is not applicable

since the positive definite property is defined only for to kernels taking finite values [10].

Let sgn : R∪{±∞} → {±1} be the sign function. For a WRP, define the weighted infinite-ensemble

û(x∥Dn,Krp
M ) :=

n∑
i=1

Yi ·Krp
M (x,Xi) = Eθ∼P[α(θ)ĥ(x∥Dn,Pθ)]. (4)

Note that the equality on the right follows immediately from linearity of the expectation and the
definition of ĥ(•∥Dn,Pθ) in Equation (2). See Figure 1-right panel.

Main problem. Find a WRP such that sgn(û(•∥Dn,Krp
M )) has the interpolating-consistent property.
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1.2 Outline of approach and contributions

In the regression setting, we have (X,Y ) jointly distributed on M × R. Let m(x) := E[Y |X = x].
Recall from Belkin et al. [8, Equation (7)] the definition of the kernel smoothing estimator with a
so-called singular1 kernel K :M ×M → [0,+∞]:

m̂(x∥Dn,K) :=


Yi : ∃i ∈ [n] such that x = Xi∑n

i=1 YiK(x,Xi)∑n
j=1 K(x,Xj)

:
∑n

j=1K(x,Xj) > 0

0 : otherwise.

(5)

We note that Equation (5) is referred as the Nadaraya-Watson estimate in [8]. Now, we simply write
m̂n(x) instead of m̂(x∥Dn,K) when there is no ambiguity. Similarly, we write ûn(x) instead of
û(x∥Dn,K) from earlier. Note that sgn(m̂n(x)) = sgn(ûn(x)) if

∑n
j=1K(x,Xj) > 0.

Observe that m̂n is interpolating by construction. Let µX denote the marginal distribution of X . The
L1-error of m̂n in approximating m is Jn :=

∫
M

|m̂n(x) −m(x)|µX(dx). For M = Rd and the
Hilbert kernel defined by KH

Rd(x, z) := ∥x− z∥−d, Devroye et al. [22] proved L1-consistency for
regression: Jn → 0 in probability when Y is bounded and X is continuously distributed.

Our contributions. Our primary contribution is to demonstrate an ensemble method with the
consistent-interpolating property. Toward this end, in Section 3, we introduce the manifold-Hilbert
kernel KH

M on a Riemannian manifold M . When show that when M is complete, connected, and
smooth, kernel smoothing regression with KH

M has the same consistency guarantee (Theorem 3.2) as
KH

Rd mentioned in the preceding paragraph. In Section 5, we consider the case when M = Sd, and
show that the manifold-Hilbert kernel KH

Sd is a weighted random partition kernel (Proposition 5.2).

Devroye et al. [22, Section 7] observed that the L1-consistency of m̂n for regression implies the
consistency for classification of sgn◦ ûn. Furthermore, m̂n is interpolating for regression implies that
sgn ◦ ûn is interpolating for classification. These observations together with our results demonstrate
the existence of a weighted infinite-ensemble classifier with the interpolating-consistent property.

1.3 Related work

Kernel regression. Kernel smoothing regression, or simply kernel regression, is an interpolator
when the kernel used is singular, a fact known to Shepard [39] in 1968. Devroye et al. [22] showed
that kernel regression with the Hilbert kernel is interpolating and weakly consistent for data with a
density and bounded labels. Using singular kernels with compact support, Belkin et al. [8] showed
that minimax optimality can be achieved under additional distributional assumptions.

Random forests. Wyner et al. [42] proposed that interpolation may be a key mechanism for the
success of random forests and gave a compelling intuitive rationale. Belkin et al. [6] studied
empirically the double descent phenomenon in random forests by considering the generalization
performance past the interpolation threshold. The PERT variant of random forests, introduced by
Cutler and Zhao [20], provably interpolates in 1-dimension. Belkin et al. [7] pose as an interesting
question whether the result of Cutler and Zhao [20] extends to higher dimension. Many work
have established consistency of random forest and its variants under different settings [15, 11, 38].
However, none of these work addressed interpolation.

Boosting. For classification under the noiseless setting (i.e., the Bayes error is zero), AdaBoost is
interpolating and consistent (see Freund and Schapire [26, first paragraph of Chapter 12]). However,
this setting is too restrictive and the result does not answer if consistency is possible when fitting the
noise. Bartlett and Traskin [5] proved that AdaBoost with early stopping is universally consistent,
however without the interpolation guarantee. To the best of our knowledge, whether AdaBoost or any
other variant of boosting can be interpolating and consistent remains open.

Random partition kernels. Breiman [16] and Geurts et al. [28] studied infinite ensembles of
simplified variants of random forest and connections to certain kernels. Davies and Ghahramani
[21] formalized this connection and coined the term random partition kernel. Scornet [37] further
developed the theory of random forest kernels and obtained upper bounds on the rate of convergence.
However, it is not clear if these variants of random forests are interpolating.

1The “singular” modifier refers to the fact that K(x, x) = +∞ for all x ∈ M .
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Previously defined (unweighted) random partition kernels are bounded, and thus cannot be singular.
On the other hand, the manifold-Hilbert kernel is always singular. To bridge between ensemble
methods and theory on interpolating kernel smoothing regression, we propose weighted random
partitions (Definition 1.1), whose associated kernel (Equation 3) can be singular.

Learning on Riemannian manifolds. Strong consistency of a kernel-based classification method on
manifolds has been established by Loubes and Pelletier [32]. However, the result requires the kernel
to be bounded and thus the method is not guaranteed to be interpolating. See Feragen and Hauberg
[25] for a review of theoretical results regarding kernels on Riemannian manifolds.

Beyond kernel methods, other classical methods for Euclidean data have been extended to Riemannian
manifolds, e.g., regression [40], classification [43], and dimensionality reduction and clustering
[44][34]. To the best of our knowledge, no previous works have demonstrated an interpolating-
consistent classifiers on manifolds other than Rd.

In many applications, the data naturally belong to a Riemannian manifold. Spherical data arise
from a range of disciplines in natural sciences. See the influential textbook by Mardia and Jupp [33,
Ch.1§4]. For applications of the Grassmanian manifold in computer vision, see Jayasumana et al.
[30] and the references therein. Topological data analysis [41] presents another interesting setting of
manifold-valued data in the form of persistence diagrams [3, 31].

2 Background on Riemannian Manifolds

We give an intuitive overview of the necessary concepts and results on Riemannian manifolds. A
longer, more precise version of this overview is in the Supplemental Materials Section A.1.

A smooth d-dimensional manifold M is a topological space that is locally diffeomorphic2 to open
subsets of Rd. For simplicity, suppose that M is embedded in RN for some N ≥ d, e.g., Sd ⊆ Rd+1.
Let x ∈ M be a point. The tangent space at x, denoted TxM , is the set of vectors that is tangent
to M at x. Since linear combinations of tangent vectors are also tangent, the tangent space TxM
is a vector space. Tangent vectors can also be viewed as the time derivative of smooth curves. In
particular, let x ∈ M . If ϵ > 0 is an open set and γ : (−ϵ, ϵ) → M is a smooth curve such that
γ(0) = x, then dγ

dt (0) ∈ TxM .

A Riemannian metric on M is a choice of inner product ⟨·, ·⟩x on TxM for each x such that
⟨·, ·⟩x varies smoothly with x. Naturally, ∥z∥x :=

√
⟨z, z⟩x defines a norm on TxM . The length

of a piecewise smooth curve γ : [a, b] → M is defined by len(γ) :=
∫ b

a
∥γ̇(t)∥γ(t)dt. Define

distM (x, ξ) := inf{len(γ) : γ is a piecewise smooth curve from x to ξ}, which is a metric on M
in the sense of metric spaces (see Sakai [36, Proposition 1.1]). For x ∈M and r ∈ (0,∞), the open
metric ball centered at x of radius r is denoted Bx(r,M) := {ξ ∈M : distM (x, ξ) < r}.

A curve γ : [a, b] →M is a geodesic if γ is locally distance minimizing and has constant speed, i.e.,
∥dγ

dt (τ)∥γ(τ) is constant. Now, suppose x ∈M and v ∈ TxM are such that there exists a geodesic
γ : [0, 1] → M where γ(0) = x and dγ

dt (0) = v. Define expx(v) := γ(1), the element reached by
traveling along γ at time = 1. See Figure 2 for the case when M = S2.

For a fixed x ∈M , the above function expx, the exponential map, can be defined on an open subset
of TxM containing the origin. The Hopf-Rinow theorem ([23, Ch. 8, Theorem 2.8]) states that if
M is connected and complete with respect to the metric distM , then expx can be defined on all of
TxM .

3 The Manifold-Hilbert kernel

Throughout the remainder of this work, we assume that M is a complete, connected, and smooth
Riemannian manifold of dimension d.

Definition 3.1. We define the manifold-Hilbert kernel KH
M :M ×M → [0,∞] for each x, ξ ∈M

by KH
M (x, ξ) := distM (x, ξ)−d if x ̸= ξ and KH

M (x, x) := ∞ otherwise.

2A diffeomorphism is a smooth bijection whose inverse is also smooth.
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Figure 2: An illustration of the exponential map expx for the manifold M = S2, where x is the
“northpole” (blue) and −x the “southpole” (orange). The logarithm map logx, discussed in Section 4.1,
is a right-inverse to expx, i.e., expx ◦ logx is the identity. Panel 1. The tangent space TxS2 visualized
as R2. The dashed circle encloses a disc of radius π. Panel 2. The tangent space realized as the
hyperplane tangent to sphere at x. Panels 3-5. Animation showing expx as a bijection from the open
disc of radius π to S2 \ {−x}. The entire dashed circle in Panel i is mapped to −x the southpole.
Thus, logx maps the southpole −x to a point z on the dashed circle.

Let λM be the Riemann–Lebesgue volume measure of M . Integration with respect to this measure is
denoted

∫
M
fdλM for a function f :M → R. For details of the construction of λM , see Amann and

Escher [1, Proposition 1.5]. When M = Rd, λM is the ordinary Lebesgue measure and
∫
Rd fdλRd is

the ordinary Lebesgue integral. For this case, we simply write λ instead of λRd .

We now state our first main result, a manifold theory extension of Devroye et al. [22, Theorem 1].
Theorem 3.2. Suppose that X has a density fX with respect to λM and that Y is bounded. Let
PY |X be a conditional distribution of Y given X and mY |X be its conditional expectation. Let
m̂n(x) := m̂(x∥Dn,KH

M ). Then

1. at almost all x ∈M with fX(x) > 0, we have m̂n(x) → mY |X(x) in probability,
2. Jn :=

∫
M

|m̂n(x)−mY |X(x)|fX(x)dλM (x) → 0 in probability.

In words, the kernel smoothing regression estimate m̂n based on the manifold-Hilbert kernel is
consistent and interpolates the training data, provided X has a density and Y is bounded. As a
consequence, following the same logic as in Devroye et al. [22], the associated classifier sgn ◦ ûn
has the interpolating-consistent property. Before proving Theorem 3.2, we first review key concepts
in probability theory on Riemannian manifolds.

3.1 Probability on Riemannian manifolds

Let BM be the Borel σ-algebra of M , i.e., the smallest σ-algebra containing all open subsets of M .
We recall the definition of M -valued random variables, following Pennec [35, Definition 2]:
Definition 3.3. Let (Ω,P,A) be a probability space with measure P and σ-algebra A. A M -valued
random variable X is a Borel-measurable function Ω →M , i.e., X−1(B) ∈ A for all B ∈ BM .
Definition 3.4 (Density). A random variable X taking values in M has a density if there exists a
nonnegative Borel-measurable function f :M → [0,∞] such that for all Borel sets B in M , we have
Pr(X ∈ B) =

∫
B
fdλM . The function f is said to be a probability density function (PDF) of X .

Next, we recall the definition of conditional distributions, following Dudley [24, Ch. 10 §2]:
Definition 3.5 (Conditional distribution3). Let (X,Y ) be a random variable jointly distributed on
M × R. Let PX(·) be the probability measure corresponding to the marginal distribution of X .
A conditional distribution for Y given X is a collection of probability measures PY |X(·|x) on R
indexed by x ∈M satisfying the following:

1. For all Borel sets A ⊆ R, the function M ∋ x 7→ PY |X(A|x) ∈ [0, 1] is Borel-measurable.
2. For all A ⊆ R and B ⊆M Borel sets, Pr(Y ∈ A,X ∈ B) =

∫
B
PY |X(A|x)PX(dx).

The conditional expectation4 is defined as mY |X(x) :=
∫
R yPY |X(dy|x).

3also known as disintegration measures according to Chang and Pollard [18].
4More often, the conditional expectation is denoted E[Y |X = x]. However, our notation is more convenient

for function composition and compatible with that of [22].
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The existence of a conditional probability for a joint distribution (X,Y ) is guaranteed by Dudley
[24, Theorem 10.2.2]. When (X,Y ) has a joint density fXY and marginal density fX , the above
definition gives the classical formula PY |X(A|x) =

∫
A
fXY (x, y)/fX(x)dy when ∞ > fX(x) > 0.

See the first example in Dudley [24, Ch. 10 §2].

3.2 Lebesgue points on manifolds

Devroye et al. [22] proved Theorem 3.2 when M = Rd and, moreover, that part 1 holds for the
so-called Lebesgue points, whose definition we now recall.

Definition 3.6. Let f :M → R be an absolutely integrable function and x ∈M . We say that x is a
Lebesgue point of f if f(x) = limr→0

1
λM (Bx(r,M))

∫
Bx(r,M)

fdλM .

For an integrable function, the following result states that almost all points are its Lebesgue points.
For the proof, see Fukuoka [27, Remark 2.4].

Theorem 3.7 (Lebesgue differentation). Let f :M → R be an absolutely integrable function. Then
there exists a set A ⊆M such that λM (A) = 0 and every x ∈M \A is a Lebesgue point of f .

Next, for the reader’s convenience, we restate Devroye et al. [22, Theorem 1], emphasizing the
connection to Lebesgue points. The result will be used in our proof of Theorem 3.2 in the next
section.

Theorem 3.8 (Devroye et al. [22]). Let M = Rd be the flat Euclidean space. Then Theorem 3.2
holds. Moreover, Part 1 holds for all x that is a Lebesgue point to both fX and mY |X · fX .

4 Proof of Theorem 3.2

The focal point of the first subsection is Lemma 4.1 which shows the Borel measurability of extensions
of the so-called Riemannian logarithm. The second subsection contains two key results regarding
densities of M -valued random variables transformed by the Riemannian logarithm. The final
subsection proves Theorem 3.2 leveraging results from the preceding two subsections.

4.1 The Riemannian logarithm

Throughout, x is assumed to be an arbitrary point of M . Let UxM = {v ∈ TxM : ∥v∥x = 1} ⊆
TxM denote the set of unit tangent vectors. Define a function τx : UxM → (0,∞] as follows5:

τx(u) := sup{t > 0 : t = distM (x, expx(tu))}.

The tangent cut locus is the set C̃x ⊆ TxM defined by C̃x := {τx(u)u : u ∈ UxM, τx(u) < ∞}.
Note that it is possible for τx(u) = ∞ for all u ∈ UxM in which case C̃x is empty. The cut locus is
the set Cx := expx(C̃x) ⊆M .

The tangent interior set is Ĩx := {tu : 0 ≤ t < τx(u), u ∈ UxM} and the interior set is the set
Ix := expx(Ĩx). Finally, define D̃x := Ĩx ∪ C̃x. Note that for each z = tu ∈ Ĩx, we have

∥z∥x = t = distM (x, expx(tu)) = distM (x, expx(z)). (6)

Consider the example where M = S2 as in Figure 2. Then τx(u) = π for all u ∈ UxM . Thus, the
tangent interior set Ĩx = B0(π,R2), the open disc of radius π centered at the origin.

When restricted to Ĩx, the exponential map expx |Ĩx : Ĩx → Ix is a diffeomorphism. Its functional
inverse, denoted by logx |Ix , is called the Riemannian Logarithm [9, 45]. In previous works, logx |Ix
is only defined from Ix to Ĩx. The next result shows that the domain of logx |Ix : Ix → Ĩx can be
extended to logx :M → D̃x while remaining Borel-measurable.

Lemma 4.1. For all x ∈ M , there exists a Borel measurable map logx : M → TxM such that
logx(M) ⊆ D̃x and expx ◦ logx is the identity on M . Furthermore, for all x, ξ ∈ M , we have
distM (x, ξ) = ∥ logx(ξ)∥x.

5Positivity of τx is asserted at Sakai [36, eq. (4.1)]
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Proof sketch. The full proof of the lemma is provided in Section A.2 of the Supplemental Materials6.
Below, we illustrate the idea of the proof using the example when M = S2 as in Figure 2.

Let x ∈ S2 be the “northpole” (the blue point). The tangent cut locus C̃x is the dashed circle in the
left panel of Figure 2. The exponential map expx is one-to-one on D̃x except on the dashed circle,
which all gets mapped to −x, the “southpole” (the orange point). A consequence of the measurable
selection theorem7 is that logx can be extended to be a Borel-measurable right inverse of expx by
selecting z point on C̃x such that logx(−x) = z.

Thus, we’ve shown that logx :M → TxM is Borel-measurable. Now, recall that TxM is equipped
with the inner product ⟨·, ·⟩x, i.e., the Riemannian metric. Below, for each x ∈ M choose an
orthonormal basis on TxM with respect to ⟨·, ·⟩. Then TxM is isomorphic as an inner product space
to Rd with the usual dot product.

Our next two results are “change-of-variables formulas” for computing the densities/conditional
distributions of M -valued random variables after the logx transform. Recall that λM is the Riemann-
Lebesgue measure on M and λ is the ordinary Lebesgue measure on Rd = TxM .

Proposition 4.2. Let x ∈M be fixed. There exists a Borel measurable function νx :M → R with
the following properties:

(i) Let X be a random variable on M with density fX and let Z := logx(X). Then Z is a random
variable on TxM with density fZ(z) := fX(expx(z)) · νx(expx(z)).

(ii) Let f : M → R be an absolutely integrable function such that x is a Lebesgue point of f .
Define f : TxM → R by h(z) := f(expx(z)) · νx(expx(z)). Then 0 ∈ TxM is a Lebesgue
point for h.

Proposition 4.3. Let (X,Y ) have a joint distribution on M × R such that the marginal of X
has a density fX on M . Let PY |X(·|·) be a conditional distribution for Y given X . Let x ∈ M .
Define Z := logx(X) and consider the joint distribution (Z, Y ) on TpM × R. Then PY |Z(·|·) :=
PY |X(·| expx(·)) is a conditional distribution for Y given Z. Consequently, mY |X ◦ expx = mY |Z .

The above propositions are straightforward manifold-theoretic extensions of well-known results on
Euclidean spaces. For completeness, the full proofs are in Supplemental Materials Section A.4. An
anonymous reviewer brought to our attention that Proposition 4.2 is the consequence of a well-known
formula from geometric measure theory, called the area formula [2, p. 44-45].

4.2 Proof of Theorem 3.2

Fix x ∈M such that x is a Lebesgue point of fX and mY |X · fX . Note that by Theorem 3.7, almost
all x ∈M has this property. Next, let Z = logx(X) and fZ be as in Proposition 4.2-(i). Then

1. fZ = (fX ◦ expx) · (νx ◦ expx), and
2. (mY |X ◦ expx) · fZ = (mY |X ◦ expx) · (fX ◦ expx) · (νx ◦ expx).

Now, proposition 4.2-(ii) implies that 0 is a Lebesgue point of both fZ and (mY |X ◦ expx) · fZ .
Furthermore, by Proposition 4.3, we have mY |X ◦ expx = mY |Z . Thus, 0 is a Lebesgue point of fZ
and mY |Z · fZ .

Now, let Dn := {(Xi, Yi)}i∈[n]. Define Zi := logx(Xi), which are i.i.d copies of the random
variable Z := logx(X), and let D̃n := {(Zi, Yi)}i∈[n]. Then we have

m̂(x∥Dn,KH
M )

(a)
=

∑n
i=1 Yi · distM (x,Xi)

−d∑n
j=1 distM (x,Xj)−d

(b)
=

∑n
i=1 Yi · ∥Zi∥−d

x∑n
j=1 ∥Zj∥−d

x

(c)
=

∑n
i=1 Yi · distRd(0, Zi)

−d∑n
j=1 distRd(0, Zj)−d

(d)
= m̂(0∥D̃n,KH

Rd)

6An anonymous reviewer has provided a shorter, alternative proof of Lemma 4.1. See https://openreview.
net/forum?id=zqQKGaNI4lp&noteId=VYOugBMOil

7Kuratowski–Ryll-Nardzewski measurable selection theorem (see [14, Theorem 6.9.3])
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where equations marked by (a) and (d) follow from Equation (5), (b) from Lemma 4.1, and (c) from
the fact that the inner product space TxM with ⟨·, ·⟩x is isomorphic to Rd with the usual dot product.
By Theorem 3.8, we have m̂(0∥D̃n,KH

Rd) → mY |Z(0) in probability. In other words, for all ϵ > 0,

lim
n→∞

Pr{|m̂(0∥D̃n,KH
Rd)−mY |Z(0)| > ϵ} = 0.

By Proposition 4.3, we have mY |Z(0) = mY |Z(expx(0)) = mY |Z(x). Therefore,{
|m̂(0∥D̃n,KH

Rd)−mY |Z(0)| > ϵ
}
=

{
|m̂(x∥Dn,KH

M )−mY |X(x)| > ϵ
}

as events. Thus, m̂(x∥Dn,KH
M ) → mY |X(x) converges in probability, proving Theorem 3.2 part 1.

As noted in Devroye et al. [22, §2], part 2 of Theorem 3.2 is an immediate consequence of part 1.

5 Application to the d-Sphere

The d-dimensional round sphere is Sd := {x ∈ Rd+1 : x21 + · · ·+ x2d+1 = 1}. Here, a round sphere
assumes that Sd has the arc-length metric:

distSd(x, z) = ∠(x, z) = cos−1(x⊤z) ∈ [0, π]. (7)

Let S be a set and σ :M → S be a function. The partition induced by σ is defined by {σ−1(s) : s ∈
Range(σ)}. For example, when M = Sd and W ∈ R(d+1)×h, then the function σW : Sd → {±1}h
defined by σW (x) = sgn(W⊤x) induces a hyperplane arrangement partition.

Let N = {1, 2, . . . } and N0 = N ∪ {0} denote the positive and non-negative integers.

Definition 5.1 (Random hyperplane arrangement partition). Let d ∈ N and M = Sd. Let q < 0 be a
negative number, and let H be a random variable with probability mass function pH : N0 → [0, 1]
such that pH(h) > 0 for all h. Define the following weighted random partition ha := (Θ,P, α):

1. The parameter space Θ =
⊔∞

h=0 R(d+1)×h is the disjoint union of all (d+ 1)× h matrices.
Element of Θ are matrices θ = W ∈ R(d+1)×h where the number of columns h ∈
{0, 1, 2, . . . } varies. By convention, if h = 0, the partition Pθ = PW is the trivial partition
{Sd}. If h > 0, PW is the partition induced by x 7→ sgn(W⊤x).

2. The probability P is constructed by the procedure where we first sample h ∼ pH(h), then
sample the entries of W ∈ Rd×h i.i.d according to Gaussian(0, 1).

3. For θ ∈ Θ, define α(θ) := πqpH(h)−1(−1)h
(
q
h

)
, where

(
q
h

)
:= 1

h!

∏h−1
j=0 (q − j).

Note that (−1)h
(
q
h

)
= 1

h!

∏h−1
j=0 (−q + j) > 0 when q < 0.

Theorem 5.2. Let ha = (Θ,P, α) be as in Definition 5.1. Then

Kha
Sd(x, z) =

{
∠(x, z)q : ∠(x, z) ̸= 0

+∞ : otherwise.

When q = −d, we have Kha
Sd = KH

Sd where the right hand side is the manifold-Hilbert kernel.

Proof of Theorem 5.2. Before proceeding, we have the following useful lemma:

Lemma 5.3. Let rp = (Θ,P, α) be a WRP. LetH be a random variable. Let θ ∼ P. Suppose that for
all x, z ∈M , the random variables α(θ) and I{x ∈ Pθ[z]} are conditionally independent given H .

Then we haveKrp
M (x, z) = EH

[
α(H)·Eθ∼P[I{x ∈ Pθ[z]}|H]

]
whereα(h) := Eθ∈P [α(θ)|H = h]

for a realization h of H .

The lemma follows immediately from the Definition of Krp
M (x, z) in Equation 3 and the conditional

independence assumption. Now, we proceed with the proof of Theorem 5.2.

Let ϕ := ∠(x, z)/π. Let H ∼ pH and θ ∼ P be the random variables in Definition 5.1. Note that
by construction, the following condition is satisfied: for all x, z ∈ M , the random variables α(θ)
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and I{x ∈ Pθ[z]} are conditionally independent given H . In fact, α(θ) = πqpH(h)−1(−1)h
(
q
h

)
is

constant given H = h. Hence, applying Lemma 5.3, we have

Kha
Sd(x, z) = EH

[
α(H) · Eθ∼P[I{x ∈ Pθ[z]}|H]

]
=

∞∑
h=0

πq(−1)h
(
q

h

)
· Eθ∼P[I{x ∈ Pθ[z]}|H = h] =

∞∑
h=0

πq(−1)h
(
q

h

)
· Pr{x ∈ Pθ[z]|H = h}.

Next, we claim that Pr{x ∈ Pθ[z]|H = h} = (1−ϕ)h. When h = 0, x ∈ Pθ[z] is always true since
Pθ = {Sd} is the trivial partition. In this case, we have Pr{x ∈ Pθ[z]|H = h} = 1 = (1 − ϕ)0.
When h > 0, we recall an identity involving the cosine angle:

Lemma 5.4 (Charikar [19]). Let x, z ∈ Sd. Let w ∈ Rd+1 be a random vector whose entries are
sampled i.i.d according to Gaussian(0, 1). Then Pr{sgn(w⊤x) = sgn(w⊤z)} = 1− (∠(x, z)/π).

Let W = [w1, . . . , wh] be as in Definition 5.1 where wj denotes the j-th column of W . Then
by construction, wj is distributed identically as w in Lemma 5.4. Furthermore, wj and wj′ are
independent for j, j′ ∈ [h] where j ̸= j′. Thus, the claim follows from

Pr{x ∈ Pθ[z]|H = h} (a)
= Pr{sgn(W⊤x) = sgn(W⊤z)|H = h}
(b)
=

h∏
j=1

Pr{sgn(w⊤
j x) = sgn(w⊤

j z)}
(c)
=

h∏
j=1

(1− ϕ) = (1− ϕ)
h
.

where equality (a) follows from Definition 5.1, (b) from W ∈ R(d+1)×h having i.i.d standard
Gaussian entries given H = h, and (c) from Lemma 5.4. Putting it all together, we have

Kpart
P,α (x, z) =

∞∑
h=0

πq(−1)h
(
q

h

)
(1− ϕ)h = πq

∞∑
h=0

(
q

h

)
(ϕ− 1)h = ∠(x, z)q.

For the last step, we used the fact that for all q ∈ R the binomial series (1 + t)q =
∑∞

h=0

(
q
h

)
th

converges absolutely for |t| < 1 (when ϕ ∈ (0, 1]) and diverges to +∞ for t = −1 (when ϕ = 0).

Corollary 5.5. Let q := −d and Kha
Sd be as in Theorem 5.2. The infinite-ensemble classifier

sgn(û(•∥Dn,Kha
Sd)) (see Equation 4 for definition) has the interpolating-consistent property.

Proof. As observed in Devroye et al. [22, Section 7], for an arbitrary kernel K, the L1-consistency of
m̂(•∥Dn,K) for regression implies the consistency for classification of sgn(û(•∥Dn,K)). Further-
more, m̂(•∥Dn,K) is interpolating for regression implies that sgn(û(•∥Dn,K)) is interpolating for
classification. While the argument there is presented in the Rd case, the argument holds in the more
general manifold case mutatis mutandis.

Thus, by Theorem 3.2, we have sgn(û(•∥Dn,KH
Sd)) is consistent for classification, i.e., Equation (1)

holds. It is also interpolating since m̂(•∥Dn,K) is interpolating. By Proposition 5.2, we have
Kha

Sd = KH
Sd . Thus sgn(û(•∥Dn,Kha

Sd)) is an ensemble method having the interpolating-consistent
property.

6 Discussion

We have shown that using the manifold-Hilbert kernel in kernel smoothing regression, also known as
Nadaraya-Watson regression, results in a consistent estimator that interpolates the training data on a
Riemannian manifold M . We proposed weighted random partition kernels, a generalization of the
unweighted analogous definition by Davies and Ghahramani [21] which provided a framework for
analyzing ensemble methods such as random forest via kernels. When M = Sd is the sphere, we
showed that the manifold-Hilbert kernel is a weighted random partition kernel, where the random
partitions are induced by random hyperplane arrangements. This demonstrates an ensemble method
that has the interpolating-consistent property.

One limitation of this work is the lack of rate of convergence of the ensemble methods. The analogous
result for the Nadaraya-Watson regression have been obtained by Belkin et al. [8]. However, it is not
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clear if the kernels used in [8] are weighted random partition kernels. Resolving this is an interesting
future direction.

Similar to PERT [20], another limitation of this work is that the base classifiers in the ensemble are
data-independent. Such ensemble methods in these line of work (including ours) are easier to analyze
than the data-dependent ensemble methods used in practice. See Biau and Scornet [12] and [13]
for an in-depth discussion. We believe our work offers one theoretical basis towards understanding
generalization in the interpolation regime of ensembles of histogram classifiers over data-dependent
partitions, e.g., decision trees à la CART [17].
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