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A Additional Information for C-Mixup

A.1 Illustration of How C-Mixup Improves Out-of-Distribution Robustness

In Figure 1, we use the ShapeNet1D to illustrate how C-Mixup improves out-of-distribution robustness.
Here, we color the images to construct different domains. We train the model on red and blue domains
and then generalize it to the green one. In Figure 1, we can see that C-Mixup can recognize more
reasonable mixing pairs compared with vanilla mixup. Mixup with feature similarity fails to cancel
out the domain information since it may be easier to mix unreasonable example pairs within the
same domain. C-Mixup instead is naturally suitable to average out domain information by mixing
examples with close labels.
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Figure 1: Illustration of C-Mixup for out-of-distribution robustness. Here, we color the ShapeNet1D
and regard color as the domain information. λ represents the interpolation ratio. (a) Colored
ShapeNet1D pose prediction task, aiming to generalize the model trained on red and blue domains
to the green domain; (b) Two mixing pairs with interpolated images and labels; (c) Illustration of
a rough comparison of sampling probabilities between two mixing pairs in (b). Here, C-Mixup is
capable of assigning higher sampling probability to more reasonable pairs and eliminate the effect of
domain information.

A.2 Algorithm of Meta-Training with C-Mixup

In this section, we summarize the algorithm of applying C-Mixup to MetaMix [17] in Alg. 1. Here,
we adopt MetaMix with mixup version, which could be easily adapted to other mixup variants (e.g.,
CutMix, Manifold Mixup)
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Algorithm 1 Meta-Training Process of MetaMix with C-Mixup

Require: Outer-loop learning rate η; Inner-loop learning rate ξ (we change α in Eqn. (4) of the main
paper to ξ to avoid notation conflict); Shape parameter α; Task distribution p(T )

1: Randomly initialize model parameters θ
2: while not converge do
3: Sample a batch of tasks {Ti}|M |

i=1 with the corresponding dataset Dm

4: for all Tm do
5: Sample a support set Ds

m and a query set Dq
m from Dm

6: Calculate pairwise distance matrix P between query set and support set via Eqn. (6).
7: Calculate the task-specific parameter ϕm via the inner-loop gradient descent, i.e., ϕm =

θ − ξ∇θL(fθ;Ds
m)

8: for each query example (xq
m,i, y

q
m,i) do

9: Sample MetaMix parameter λ ∼ Beta(α, α)
10: Sample support set example (xs

m,j , ysm,j) according to the probability P (· | (xq
m,i, y

q
m,i))

11: Linearly interpolate (xq
m,i, y

q
m,i) and (xs

m,j , ysm,j) to get (x̃q
m,i, ỹ

q
m,i)

12: Replace (xq
m,i, y

q
m,i) with (x̃q

m,i, ỹ
q
m,i)

13: Use interpolated examples to update the model via θ ← θ − η 1
|M |

∑|M |
i=1 L(fϕm

; D̃q
m)

Algorithm 2 Training with C-Mixup-batch

Require: Learning rates η; Shape parameter α
Require: Training data D := {(xi, yi)}Ni=1

1: Randomly initialize model parameters θ
2: while not converge do
3: Sample two batches of examples B1,B2 ∼ D
4: Calculate pairwise distance matrix P between B1 and B2 via Eqn. (6)
5: for each example (xi, yi) ∈ B1 do
6: Sample example (xj , yj) from B2 according to the probability P (· | (xi, yi))
7: Sample λ from Beta(α, α)
8: Linearly interpolate (xi, yi) and (xj , yj) to get (x̃, ỹ)
9: Use interpolated examples to update the model via Eqn. (3)

A.3 Efficiency Discussion of C-Mixup

Assume the number of examples are n, the dimension of features and labels are Mf and Ml,
respectively. The time complexity of calculating the pairwise distance matrix P with feature distance
or label distance is O(n2Mf ) or O(n2Ml), respectively. Generally, since Ml ≪ Mf , using label
distance (i.e., C-Mixup) substantially reduces the cost of calculating the pairwise distance matrix.

Furthermore, the calculation of pairwise distance matrix can be accelerated using parallelized
operations, but it is still challenging if n is sufficiently large, e.g., billions of examples. We thus
propose an alternative solution that applies C-Mixup only to every example batch, which is named
as C-Mixup-batch. In Alg. 2, we summarize the training process of C-Mixup-batch. We compare
C-Mixup and C-Mixup-batch, and report the results of in-distribution generalization and out-of-
distribution robustness in Table 1 and Table 2, respectively. Notice that we have used C-Mixup-batch
for Echo, RCF-MNIST, ProvertyMap since calculating pair-wise distance metrics for these large
datasets is time-consuming. Hence, we only report the results for other datasets. According to the
results, we observe that C-Mixup-batch achieves comparable performance to C-Mixup. Nevertheless,
the downside of C-Mixup-batch is that we must calculate the pairwise distance matrix for every batch.
Accordingly, original C-Mixup is suitable to most datasets, while C-Mixup-batch is more appropriate
to large datasets (e.g., Echo).

A.4 Discussion between C-Mixup and Mixup

In this paper, we regard C-Mixup is an complementary approach to mixup and its most representative
variants (e.g., Manifold Mixup [15], CutMix [19]). Here, we use vanilla mixup as an exemplar to
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Table 1: Comparison between C-Mixup and C-Mixup-batch to in-distribution generalization. Since
Echo is a large dataset and C-Mixup-batch is used by default, we only report the results of Airfoil,
NO2, Exchange-Rate and Electricity here.

Dataset Airfoil NO2 Exchange-Rate Electricity

RMSE ↓ C-Mixup-batch 2.792 ± 0.135 0.510 ± 0.007 0.0205 ± 0.0017 0.0576 ± 0.0002
C-Mixup 2.717 ± 0.067 0.509 ± 0.006 0.0203 ± 0.0011 0.0570 ± 0.0006

MAPE ↓ C-Mixup-batch 1.616 ± 0.053% 12.894 ± 0.180% 2.064 ± 0.218% 13.697 ± 0.155%
C-Mixup 1.610 ± 0.085% 12.998 ± 0.271% 2.041 ± 0.134% 13.372 ± 0.106%

Table 2: Comparison between C-Mixup and C-Mixup-batch to out-of-distribution robustness. Since
we have applied C-Mixup-batch to PovertyMap, we report the results of Crime, SkillCraft, DTI.

Dataset Crime (RMSE ↓) SkillCraft (RMSE ↓) DTI (R ↑)

Avg C-Mixup-batch 0.125 ± 0.001 5.619 ± 0.212 0.490 ± 0.005
C-Mixup 0.123 ± 0.000 5.201 ± 0.059 0.498 ± 0.008

Worst C-Mixup-batch 0.152 ± 0.007 7.665 ± 0.875 0.453 ± 0.006
C-Mixup 0.146 ± 0.002 7.362 ± 0.244 0.458 ± 0.004

show the difference. According to our description of mixup in Section 2 of the main paper, the entire
mixup process includes three stages:

• Stage I: sample two instances (xi, yi), (xj , yj) from the training set.

• Stage II: sample the interpolation factor λ from the Beta distribution Beta(α, α).

• Stage III: mixing the sampled instances with interpolation factor λ according to the following
mixing formulation:

xmix = λxi + (1− λ)xj , ymix = λyi + (1− λ)yj , λ ∼ Beta(α, α).

In the original mixup, the interpolation factor λ sampled in the stage II controls how to mix these
two instances. C-Mixup instead manipulates stage I and pairs with closer labels are more likely to be
sampled.

In addition to the discussion of the complementarity of C-Mixup, the original mixup paper further
shows that randomly interpolating examples from the same label performs worse than completely
random mixing examples in classification. Compared to classification, randomly mixing examples in
regression may be easier to generate semantically wrong labels. Intuitively, linearly mixing one-hot
labels in classification is easy to generate semantically meaningful artificial labels, where the mixed
label represents the probabilities of mixed examples to some extent. While in regression, the mixed
labels may be semantically meaningless (e.g., pairs 2 and 3 in Figure ??) and more significantly
affect the performance. By mixing examples with closer labels, C-Mixup mitigates the influence
of semantically wrong labels and improves the in-distribution and task generalization in regression.
Additionally, C-Mixup further shows its superiority in improving out-of-distribution robustness in
regression, which is not discussed in the original mixup paper.

B Detailed Proofs

In this section, we provide detailed proofs of Theorem 1, 2, 3. To avoid symbol conflict, we would
like to point out that we use h to denote the bandwidth of kernel in the nonparametric estimation step,
which is different from the bandwidth σ in Eqn. (6) of the main paper, which was used to measure
the similarity in mixup. In Section B.4, we provide proofs for all used Lemmas.
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B.1 Proof of Theorem 1

We first state the kernel estimator.

ĝ(t; θ) =

∑n
i=1 K(θ⊤xi, t)yi∑n
i=1 K(θ⊤xi, t)

,

this kernel function can take, for example, the uniform kernel function K(t1, t2) = 1{|t1 − t2| < h}
or a Gaussian kernel function K(t1, t2) = exp(−|t1 − t2|2/h2) where h is the bandwidth.

To make the proof easier to follow, we restate Theorem 1 below. Suppose θ ∈ Rp is sparse with
sparsity s = o(min{p, σ2

ξ}), p = o(N) and g is smooth with c0 < g′ < c1, c2 < g′′ < c3 for some
universal constants c0, c1, c2, c3 > 0. There exists a distribution on x with a kernel function, such
that when the sample size N is sufficiently large, with probability 1− o(1),

MSE(θ∗C−Mixup) < min(MSE(θ∗feat),MSE(θ∗mixup)). (1)

Proof. For identifiability, we consider the case where θ has ℓ2 norm of 1. Let us construct the
distribution of x as z ∼ 1

K

∑K
k=1 Np(µk, σ

2
zIp) with µk = k

∥θ∥θ for a fixed positive integer K. We
break out the entire proof into three steps.

Step 1. We first analyze the behavior of the three mixup methods. First, we have

θ⊤z ∼ 1

K

K∑
k=1

Np(µ
⊤
k θ, σ

2
z∥θ∥2),

and

θ⊤ξ ∼ 1

K

K∑
k=1

Np(0, σ
2
ξ∥θ∥2).

We then have

|yk′ − yk| = |g(µ⊤
k θ)− g(µ⊤

k′θ)| ±Θ((σξ + σx)∥θ∥) = |g(k)− g(k′)| ±Θ((σξ + σx)∥θ∥)

∥xk′ − xk∥ = ∥µk − µ′
k∥ ±Θ((σξ + σx) ·

√
d) = |k − k′| ±Θ((σξ + σx) ·

√
d)

As a result, if we take (σξ + σx)∥θ∥ = o(1), and (σξ + σx) ·
√
d→∞, C-Mixup only interpolates

examples within the same cluster, while mixup with feature similarity and vanilla mixup interpolate
examples across different clusters.

Step 2. We then show that θ̂ obtained by all the three methods is consistent (the estimation error goes
to 0 when the sample size goes to infinity). We first present a lemma showing that in expectation, the
solution would recover θ.
Lemma 1. Suppose xi’s are i.i.d. sampled from Np(µ, I), then we have

E[yixi] = (E[g′(x⊤
i θ)] + E[g(x⊤

i θ)]) · θ.

The proof of Lemma 1 is deferred to Section B.4.

This lemma implies that if x̃ = λxk + (1− λ)x′
k, ỹ = λyk + (1− λ)y′k, we have

E[ỹx̃] = ck,k′θ,

for some constant ck,k′ . Additionally, we have E[x̃x̃⊤] = cI + c′k,k′θθ⊤. Therefore,
E[x̃x̃⊤]−1E[ỹx̃] = c̃k,k′θ (via the Sherman–Morrison formula), for some constant c̃k,k′ .

Since we assume g is c1-Lipschitz for some universal constant c1, which also implies c̃k,k′ = O(1).
We then analyze the convergence of θ̂. By definition, we have

θ̂ = (
1

N

N∑
i=1

x̃ix̃
⊤
i )

−1(
1

N

N∑
i=1

x̃iỹi).

Using Bernstein inequality, we have with probability at least 1− p−2,

∥ 1
N

N∑
i=1

x̃ix̃
⊤
i − E[x̃x̃⊤]∥ = O(

√
p

N
),
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and

∥ 1
N

N∑
i=1

x̃iỹi − E[x̃ỹ]∥ = O(

√
p

N
).

Then using Lemma 1, since λmin(E[x̃x̃⊤]) ≳ c1, when n is sufficiently large, we then have

∥θ̂ − θ∥2 ≲

√
p

N
= o(1).

Step 3. We finally proceed to the nonparametric estimation step.

For C-Mixup, since we only interpolates the samples within the same Gaussian cluster, using the fact
that σξ = o(1), K being Lipschitz, and ∥θ̂ − θ∥2 = o(1), we have that

∥ĝ(t; θ̂)−
∑N

i=1 K(z⊤i θ, t)yi∑N
i=1 K(z⊤i θ, t)

∥ = ∥
∑N

i=1 K(x⊤
i θ̂, t)yi∑N

i=1 K(x⊤
i θ̂, t)

−
∑N

i=1 K(z⊤i θ, t)yi∑N
i=1 K(z⊤i θ, t)

∥ = o(1), (2)

here the function norm of h is defined as ∥h∥ =
√

E[h2(x)].

Using the standard nonparametric regression results (e.g., see Tsybakov [14]), when the feature is
observed without noise, the kernel estimator is consistent:

∥g(t)−
∑N

i=1 K(z⊤i θ, t)yi∑N
i=1 K(z⊤i θ, t)

∥ = o(1). (3)

Combining the two inequalities (2) and (3), we find that the ĝ obtained by C-Mixup satisfies

∥ĝ − g∥ = o(1).

For vanilla mixup and mixup with feature similarity, we have show that with a nontrivial positive
probability, the samples are from two different clusters. Therefore using the assumption on g′ and g′′,
we have ỹ − yi ≥ c for some constant c > 0 with Jensen’s inequality. As a result,

|
∑N

i=1 K(x⊤
i θ̂, t)yi∑N

i=1 K(x⊤
i θ̂, t)

−
∑N

i=1 K(x⊤
i θ̂, t)ỹi∑N

i=1 K(x⊤
i θ̂, t)

| ≥ c.

Combining with the two inequalities (2) and (3), we have the ĝ obtained by vanilla mixup or mixup
with feature similarity satisfies

∥ĝ − g∥ > c.

Since MSE(θ) ≍ ∥ĝ(·; θ)− g(·)∥, we then have

MSE(θ∗C−Mixup) < min(MSE(θ∗feat),MSE(θ∗mixup)).

B.2 Proof of Theorem 2

We first restate Theorem 2. Let N =
∑M

m=1 Nm and Nm is the number of examples of Tm. Suppose
θk is sparse with sparsity s = o(min{d, σ2

ξ}), p = o(N) and gm’s are smooth with 0 < g′m < c1,
c2 < g′′m < c3 for some universal constants c1, c2, c3 > 0 and m ∈ [M ] ∪ {t}. There exists a
distribution on x with a kernel function, such that when the sample size N is sufficiently large, with
probability 1− o(1),

MSETarget(θ
∗
Meta−C−Mixup) < min(MSETarget(θ

∗
Meta−feat),MSETarget(θ

∗
MetaMix)). (4)

Again, we consider the distribution of x to be z ∼ 1
K

∑K
k=1 Np(µk, σ

2
zIp) with µk = k

∥θ∥θ for a
fixed positive integer K. The proof of Theorem 2 largely follows Theorem 1, with the only difference
in the step 2. We prove the step 2 for Theorem 2 in the following.

By Lemma 1, for augmented data in the m-th task, x̃(m) = λx
(m)
k + (1 − λ)x

(m)′

k , ỹ(m) =

λy
(m)
k + (1− λ)y

(m)′

k , we have
E[ỹ(m)x̃(m)] = c

(m)
k,k′θ,
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for some constant c(m)
k,k′ .

Additionally, we have E[x̃(m)x̃(m)⊤] = c(m)I + c
(m)′

k,k′ θθ⊤. Therefore,

(
∑T

m=1 E[x̃(m)x̃(m)⊤])−1(
∑T

m=1 E[ỹ(m)x̃(m)]) = c̃k,k′θ, for some constant c̃k,k′ .

We then analyze the convergence of θ̂. By definition, we have

θ̂ = (
1

N

T∑
m=1

1

nm

nt∑
i=1

x̃
(m)
i x̃

(m)⊤
i )−1(

1

N

T∑
m=1

1

nm

nt∑
i=1

x̃
(m)
i ỹ

(m)
i ).

Using Bernstein inequality, we have with probability at least 1− p−2,

∥ 1
N

T∑
m=1

1

nm

nm∑
i=1

x
(m)
i x

(m)⊤
i − 1

N

T∑
m=1

E[x̃(m)x̃(m)⊤]∥ = O(

√
p

N
),

and

∥ 1
T

T∑
m=1

1

nm

nm∑
i=1

x
(m)
i y

(m)
i − E[

1

T

T∑
t=1

E[x(m)y(m)]]∥ = O(

√
p

N
).

Then using Lemma 1, when N is sufficiently large, we then have

∥θ̂ − θ∥2 ≲

√
p

N
= o(1).

B.3 Proof of Theorem 3

Similarly we restate Theorem 3.

Supposed for some max(exp(−n1−o(1)), exp(− p21
2n

)) < δ ≪ 1, we have variance constraints: σa = c1σx

, σx ≥ c2 max(n
5/2

∥θ∥δ σϵ,
√
p2∥θ∥√
np1

) and σ2
ϵ ≤ c3

pn3/2 . Then for any penalty k satisfies c4
√

p2
p1
n1/4+o(1) <

k < c5 min( σx
∥θ∥

√
p1n1−o(1), n) and bandwidth h satisfies 0 < h ≤ c6

l√
log(n2/p1)

in C-Mixup, when n

is sufficiently large, with probability at least 1− o(1), we have

MSE(θ∗C−Mixup) < min(MSE(θ∗feat),MSE(θ∗mixup)), (5)

where c1 ≥ 1, c2, c3, c4, c5, c6 > 0 are universal constants, l = mini ̸=j |yi − y′
j | and p1 ≪ n < p21.

Let p = p1 + p2, and θ1 represents the subvectors that contain the first p1 coordinates of θ. Further-
more, let X̂ ∈ Rn×p be an arbitrary noise-less data matrix and λ̂0 ≥ λ̂1 ≥ ... ≥ λ̂p be the singular
values of X̂ . Similarly, let E ∈ Rn×p be the noise matrix which contains iid. sub-Gaussian entries
with variance proxy σ2

ϵ , and λ0 ≥ λ1 ≥ ... ≥ λp be the singular values of input matrix X = X̂ + E.

Firstly we show that the noise matrix only makes a small difference between the singular values of
noise-less data matrix X̂ and that of input matrix X .
Lemma 2. If e−n < δ1 ≪ 1 and σ2

ϵ ≤ c
pn3/2 , then with probability at least 1− δ1 we have:

|λ̂u − λu| ≤ 16cn−1/2, (6)

for every u satisfies 1 ≤ u ≤ p.

Before analyzing the effectiveness of C-Mixup, we first present the following lemma to analyze
the C-Mixup with truncated label distance measurements. Specifically, we only apply C-Mixup to
examples within a label distance threshold.

Lemma 3. Assume exp(−n1−o(1)) < δ1 ≪ 1, σx ≥ c2
n5/2

∥θ∥δ σϵ for some c2 that satisfies cgap :=
c2

√
π

4
√

2+|θ1|2
> 1. Here cgap is the ratio of mini̸=j |yi − y′

j | to max
i

|yi − y′
i|. Then if we use C-Mixup,

there exists some thresholds such that with probability at least 1− δ1, the training data (xi, yi) will
only be mixed with (x′

i, y
′
i). Here, we point out that xi and x′

i are defined in Line 206-207 in the main
paper.
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Then we consider replacing the truncated kernel with the gaussian kernel, which applies C-Mixup
to all the examples with a smoother probability distribution. And we claim that there exist some
bandwidths such that the data pairs with almost identical invariant features and opposite domain-
changeable features will be mixed up together with high probability.

Lemma 4. Assume exp(− p21
2n

) < δ1 ≪ 1 and for l = mini ̸=j |yi − y′
j |, we have 0 < h ≤ c6

l√
log(n2/p1)

for some c6 : 0 < c6 ≤ c−1
gap

√
(c2gap − 1)/4, where cgap follows the definition in Lemma 3. We define

the mixed input as X̃ , and let Si be a random variable that denotes if (xi, yi) is mixed with (x′
i, y

′
i).

Then with probability at least 1− δ1, we have:

n− p1
2
≤

n∑
i=1

Si ≤ n.

Next, we find that the input matrix X corresponding to C-Mixup will have just p1, rather than p,
singular values that are much bigger than zero.

Lemma 5. Assume the conditions of Lemma 2 and Lemma 4 still hold and the mixup ratio λ = 0.5. If
noise-less data matrix X̂ is obtained by C-Mixup, then the singular values of input matrix X satisfy:

(1− b(n))2n ≤λi ≤ (1 + b(n))2n, 1 ≤ i ≤ p1,

|λi| ≤ 16
c√
n
, p1 ≤ i ≤ p.

(7)

Finally, we can complete the proof of Theorem B.3 according to the lemmas above.

Proof of Theorem 3. Denote the input matrix as X ∈ Rn×p and its singular values as λ0 ≥ λ1 ≥
... ≥ λp. Then, for ridge estimator with penalty k, we have Hoerl and Kennard [6] :

E[|θ∗(k)− θ|2] = E[|(XTX + kI)−1XTY − θ|2]

= σ2
x

p∑
i=1

λi

(λi + k)2
+ k2θT (XTX + kI)−2θ

= σ2
x

p1∑
i=1

λi

(λi + k)2
+ σ2

x

p1+p2∑
i=p1+1

λi

(λi + k)2
+ k2θT (XTX + kI)−2θ

= γ1(k) + γ2(k) + γ3(k)

For the first term, we have

γC−Mixup
1 (k) = σ2

x

p1∑
i=1

λi

(λi + k)2

≤ σ2
x

p1∑
i=1

1

(min1≤i≤p1
λi)

≤ σ2
xp1

(1− b(n))2n
, (Lemma 5)

and

γmixup
1 (k) ∧ γfeat

1 (k) ∧ γC−Mixup
1 (k) ≥ σ2

x

p1∑
i=1

1

4k
≥ σ2

xp1
4c5n

. (k < c5n, c5 ≥
1

4
)

To bound the last term, we perform orthogonal decompose on XTX , i.e., XTX = PTΛP . P is
orthogonal transformation and we denote α = Pθ. Since the last p2 coordinates of θ are 0, with
probability at least 1− δ1, for C-Mixup we have:
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γC−Mixup
3 (k) = k2θT (XTX + kI)−2θ

= k2
p∑

i=1

α2
i

(λi + k)2

=

p1∑
i=1

α2
i

(λi/k + 1)2

≤ k2|θ|2

(min1≤i≤p1
λi)2

(

p1∑
i=1

α2
i = |θ|2)

≤ c25
(1− b(n))4no(1)

σ2
xp1
n

(k < c5
σx

∥θ∥
√
p1n1−o(1), Lemma 5).

For the second term, we bound C-Mixup as

γC−Mixup
2 (k) = σ2

x

p1+p2∑
i=p1+1

λi

(λi + k)2

≤ σ2
x

p1+p2∑
i=p1+1

λi

k2

≤ 16c

c24n
o(1)

σ2
xp1
n

. (k > c4

√
p2
p1

n1/4+o(1), Lemma 5)

(8)

For mixup and mixup with feature similarity, we bound the second term as:

γfeat
2 (k) ∧ γmixup

2 (k) ≥ σ2
x

p1+p2∑
i=p1+1

1

4k
≥ σ2

xp2
4c5n

. (k < c5n)

Thus there exists some constants c, c4, c5 (for example, c4 = 4
√
c and c5 = 1/4), such that when n

is sufficiently large, with probability at least 1− o(1):

E|θ∗C−Mixup(k)− θ|2 < min(E|θ∗feat(k)− θ|2,E|θ∗mixup(k)− θ|2).
which can reduce to the results immediately.

B.4 Proofs of Lemmas

Proof of Lemma 1. In order to prove Lemma 1, let us invoke the First-order Stein’s Identity [13].
Lemma 6. Let X ∈ Rd be a real-valued random vector with density p. Assume that p: Rd → R is
differentiable. In addition, let g : Rd → R be a continuous function such that E[∇g(X)] exists. Then
it holds that

E[g(X) · S(X)] = E[∇g(X)],

where S(X) = −∇p(x)/p(x) is the score function of p.

Now, let us plug in the density of Nd1
(0,ΣX), p(x) = cex

⊤Σ−1
X x/2 for some constant c. We then

have∇p(x) = cex
⊤Σ−1

X x/2 · Σ−1
X x and∇p(x)/p(x) = Σ−1

X x.

As a result, we have
E[p∗(x)Σ−1

X x] = E[∇p∗(x)],
implying

E[p∗(x)x] = ΣXE[∇p∗(x)].
Then recall that p∗(x) = g(θ⊤x), so we have ∇p∗(x) = g′(θ⊤x)θ. Combining all the piece, we
obtain

E[p∗(x)x] = ΣXE[g′(θ⊤x)]θ.
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Now plugging in x ∼ N(θ, I), we have

E[yixi] = (E[g′(x⊤
i θ)] + E[g(x⊤

i θ)]) · θ.

Proof of Lemma 2. Denote the entry of E as ϵij , ϵij ∼ subG(σ2
ϵ ), i.e. sub-gaussian distribution with

variance proxy σ2
ϵ . From Rigollet and Hütter [12], we find ϵ2ij ∼ subE(16σ2

ϵ ), i.e. sub-exponential
distribution with variance proxy 16σ2

ϵ . Thus we choose δ1 from the Bernstein’s inequality:

P(
1

np

∑
ij

ϵ2i,j > t) ≤ exp[−np

2
min(

t2

(16σ2
ϵ )

2
,

t

16σ2
ϵ

)] = δ1 (9)

Since p1, p2 ≥ 1 we get δ1 > e−n ≥ e−np/2, then:

t = 16σ2
ϵ max(

√
2

np
log

1

δ1
,
2

np
log

1

δ1
)

= 16σ2
ϵ

√
2

np
log

1

δ1

≤ 16σ2
ϵ

Thus, based on σ2
ϵ ≤ c3

pn3/2 , with probability at least 1− δ1, we have:

∥E∥F =
∑
i,j

ϵ2ij ≤ npt ≤ 16
c√
n
,

where ∥ · ∥F represents Frobenius norm. Then, with Hoffman-Weilandt’s inequality [12] we prove
that:

max
u
|λ̂u − λu| ≤ ∥E∥F

Proof of Lemma 3. Since zi ∼ Np1
(0, σ2

xIp1
), we have (zi − zj)

T θ1 ∼ N (0, 2σ2
x|θ1|2) for every

i ̸= j. Then for t satisfies 0 < t≪ 1, we have:

pij := P(|(zi − zj)
T θ1| < t)

≤ 2Φ(
t√

2σx|θ|
)− 1

=
t√

πσx|θ|
+ o(t2),

(10)

where Φ(u) = 1√
2π

∫ u

−∞ e−q2/2dq is the distribution function of standard normal distribution. Thus

if t =
√
πσx|θ|

n(n−1) δ1, we have:

P(min
i ̸=j
|(zi − z′j)

T θ1| ≥ t) = 1− P(min
i ̸=j
|(zi − z′j)

T θ1| ≤ t)

= 1− P(
⋃
i ̸=j

{|(zi − z′j)
T θ1| ≤ t})

≥ 1−
∑
j ̸=i

n∑
i=1

pij

≥ 1− n(n− 1)

2
(

2t√
πσx|θ|

) (Eqn. (10))

= 1− δ1.

(11)

On the other hand, max
i
|yi − y′i| = max

i
|θT1 ϵ′i + ϵi − ϵi′ |, and for every i, (θT1 ϵ

′
i + ϵi − ϵi′) ∼

subG((2+ |θ1|2)σ2
ϵ ), then by maximum inequality [12], when n is sufficiently large, with probability
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at least 1− δ1:

max
i
|yi − y′i| ≤

√
2(2 + |θ1|2) log(n/δ1) · σϵ

≤ 2σϵ

√
(2 + |θ1|2)n (e−n < δ1 ≪ 1)

≤
2
√
2 + |θ1|2
c2
√
π

t (σx ≥ c2
n5/2

∥θ∥δ
σϵ)

≤
2
√

2 + |θ1|2
c2
√
π

min
i ̸=j
|(zi − z′j)

T θ1| (Eqn. (11))

≤
2
√

2 + |θ1|2
c2
√
π

(min
i ̸=j
|yi − y′j |+

√
2 log nσϵ)

≤
4
√
2 + |θ1|2
c2
√
π

min
i ̸=j
|yi − y′j | (t ≥ c2

√
πnσϵ ≥ 2

√
2 log nσϵ)

(12)

Choose c2 such that cgap := c2
√
π

4
√

2+|θ1|2
> 1 and denote l = mini̸=j |yi−y′j |, then we finish the proof

with feasible threshold range l
cgap

< h < l.

Proof of Lemma 4. We define Qi = 1− Si. From C-Mixup, we obtain:

P ((x′
j , y

′
j)|(xi, yi)) ∝ exp

(
−
(yi − y′j)

2

2h2

)
Then, by max

i
|yi − y′i| ≤ l

cgap
, we have

E(S) ≥ 1

K
exp(− l2

2h2c2gap
)

E(Q) ≤ 1

K
(n− 1) exp(− l2

2h2
)

where K =
∑n

j=1(exp
(
−(y′j − yi)

2/(2h2)
)
) is used for normalization. The upper bound of

bandwidth h is:

h < c6
l√

log(n2/p1)
< l ·

√
c2gap − 1

2c2gap
log−

1
2 (

(n− 1)(n− p1/4)

p1/4
).

Since Si +Qi = 1, we obtain

E(S) ≥ n− p1/4

n
, E(Q) ≤ p1/4

n
.

Finally, since Si, Qi ∈ [0, 1], we apply Hoeffding’s inequality and obtain:

P(
1

n

n∑
i=1

Si − E(S) < −t) ≤ exp(−2nt2) = δ1

Then with probability at least 1− δ1, we have:
n∑

i=1

Si ≥ n(E(S)−
√

1

2n
log(

1

δ1
))

≥ n− p1
2

Proof of Lemma 5 For C-Mixup, according to Lemma 4, the corresponding noise-less matrix X̂ is
close to (Z,O) when n is sufficient large. Here, Z ∈ Rn×p1 has rows zi and O ∈ Rn×p2 is a matrix
with at most rank(max( 12p1, p2)). We now simplify O to be a zero matrix. In fact, Eqn. 8 in the
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following proof just scale at most 3/2 when O is rank(max( 12p1, p2)), which does not affect the
final results. From Theorem 4.6.1 in Vershynin [16], we find that there exists some positive absolute
constants, such that with probability at least 1− δ1,

√
n− C(

√
p1 +

√
log(2/δ1)) ≤ λ̂p1

≤ λ̂1 ≤
√
n+ C(

√
p1 +

√
log(2/δ1))

And λ̂i = 0 for p1 < i ≤ p. From Eqn.(6) and log(1/δ1) < n1−o(1), we get Eqn. (7).

C Additional Experiments of In-Distribution Generalization

C.1 Detailed Dataset Description

In this section, we provide detailed descriptions of datasets used in the experiments of in-distribution
generalization.

Airfoil Self-Noise [3] contains aerodynamic and acoustic test results for different sizes NACA 0012
airfoils at various wind tunnel speeds and angles of attack. Specifically, each input have 5 features,
including frequency, angle of attack, chord length, free-stream velocity, and suction side displacement
thickness. The label is one-dimensional scaled sound pressure level. Min-max normalization is used
to normalize input features. Follow [8], the number of examples in training, validation, and test sets
are 1003, 300, and 200, respectively.

NO2. The NO2 emission dataset [1] originated from the study where air pollution at a road is related
to traffic volume and meteorological variables. Each input contains 7 features, including logarithm of
the number of cars per hour, temperature 2 meter above ground, wind speed, temperature difference
between 25 and 2 meters above ground, wind direction, hour of day and day number from October
1st. 2001. The hourly values of the logarithm of the concentration of NO2, which was measured at
Alnabru in Oslo between October 2001 and August 2003, are used as the response variable, i.e., the
label. Follow [8], the number of training, validation and test sets are 200, 200 and 100, respectively.

Exchange-Rate is a time-series dataset that contains the collection of the daily exchange rates of
8 countries, including Australia, British, Canada, Switzerland, China, Japan, New Zealand and
Singapore ranging from 1990 to 2016. The length of the entire time series is 7,588, and they adopt
daily sample frequency. The slide window size is 168 days. The input dimension is 168× 8 and the
label dimension is 1× 8 data. The dataset has been split into training (60%), validation set (20%)
and test set (20%) in chronological order as used in Lai et al. [10].

Electricity [4] is also a time-series dataset collected from 321 clients, which covers the electricity
consumption in kWh every 15 minutes from 2012 to 2014. The length of the entire time-series is
26,304 and we use the hourly sample rate. Similar to Exchange-Rate data, the window size is set
to 168, thus the input dimension is 168 × 321 the corresponding label dimension is 1 × 321. The
dataset is also split as Lai et al. [10].

Echocardiogram Videos (Echo) [11] includes 10,030 apical-4-chamber labeled echocardiogram
videos from different aspects and human expert annotations to study cardiac motion and chamber
sizes. These videos were collected from individuals who underwent imaging at Stanford University
Hospital between 2016 and 2018. To identify the area of the left ventricle, we first preprocess the
videos with frame-by-frame semantic segmentation. This method outputs video clips that contain 32
frames of 112× 112 RGB images, which are be used to predict ejection fraction. The entire dataset
are split into training, validation and test sets with size 7,460, 1,288, and 1,276, respectively.

C.2 Hyperparameters

We list the hyperparameters for every dataset in Table 3. Here, as we mentioned in Line 235-236
in the main paper, we apply k-Mixup, Local Mixup, MixRL, and C-Mixup to both mixup and
Manifold Mixup, and report the best-performing one. Thus, we also treat the mixup type as another
hyperparameter. All hyperparameters are selected by cross-validation. In addition, in Section F.3.1 of
Appendix, we provide some guidance about how to tune and pick bandwidth σ. The guidance is also
suitable to tasks beyond in-distribution generalization, i.e., task generalization and out-of-distribution
robustness.
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Table 3: Hyperparameter settings for the experiments of in-distribution generalization. Here, FCN3
means 3-layer fully connected network and ManiMix means Manifold Mixup.

Dataset Airfoil NO2 Exchange-Rate Electricity Echo

Learning rate 1e-2 1e-2 1e-3 1e-3 1e-4
Weight decay 0 0 0 0 1e-4
Scheduler n/a n/a n/a n/a StepLR
Batch size 16 32 128 128 10
Type of mixup ManiMix mixup ManiMix mixup mixup
Architecture FCN3 FCN3 LST-Attn LST-Attn EchoNet-Dynamic
Horizon n/a n/a 12 24 n/a
Optimizer Adam Adam Adam Adam Adam
Maximum Epoch 100 100 100 100 20
Bandwidth σ 1.75 1.2 5e-2 0.5 50.0
α in Beta Dist. 0.5 2.0 1.5 2.0 2.0

C.3 Overfitting

In Figure 2, we visualize additional overfitting analysis on Electricity and the results corroborate our
findings in the main paper, where C-Mixup reduces the generalization gap and achieves better test
performance.
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Figure 2: Additional overfitting analysis of electricity

C.4 Full Results

In Table 4, we report the full results of in-distribution generalization.

Table 4: Full results of in-distribution generalization. We compute the mean and standard deviation
for results of three seeds.

Airfoil NO2 Exchange-Rate Electricity Echo

RMSE

ERM 2.901 ± 0.067 0.537 ± 0.005 0.0236 ± 0.0031 0.0581 ± 0.0011 5.402 ± 0.024
mixup 3.730 ± 0.190 0.528 ± 0.005 0.0239 ± 0.0027 0.0585 ± 0.0004 5.393 ± 0.040
Mani mixup 3.063 ± 0.113 0.522 ± 0.008 0.0242 ± 0.0043 0.0583 ± 0.0004 5.482 ± 0.066
k-Mixup 2.938 ± 0.150 0.519 ± 0.005 0.0236 ± 0.0029 0.0575 ± 0.0002 5.518 ± 0.034
Local Mixup 3.703 ± 0.151 0.517 ± 0.004 0.0236 ± 0.0024 0.0582 ± 0.0004 5.652 ± 0.043
MixRL 3.614 ± 0.293 0.527 ± 0.003 0.0238 ± 0.0037 0.0585 ± 0.0006 5.618 ± 0.071

C-Mixup (Ours) 2.717 ± 0.067 0.509 ± 0.006 0.0203 ± 0.0011 0.0570 ± 0.0006 5.177 ± 0.036

MAPE

ERM 1.753 ± 0.078% 13.615 ± 0.165% 2.423 ± 0.365% 13.861 ± 0.152% 8.700 ± 0.015%
mixup 2.327 ± 0.159% 13.534 ± 0.125% 2.441 ± 0.286% 14.306 ± 0.048% 8.838 ± 0.108%
Mani mixup 1.842 ± 0.114% 13.382 ± 0.360% 2.475 ± 0.346% 14.556 ± 0.057% 8.955 ± 0.082%
k-Mixup 1.769 ± 0.035% 13.173 ± 0.139% 2.403 ± 0.311% 14.134 ± 0.134% 9.206 ± 0.117%
Local Mixup 2.290 ± 0.101% 13.202 ± 0.176% 2.341 ± 0.229% 14.245 ± 0.152% 9.313 ± 0.115%
MixRL 2.163 ± 0.219% 13.298 ± 0.182% 2.397 ± 0.296% 14.417 ± 0.203% 9.165 ± 0.134%

C-Mixup (Ours) 1.610 ± 0.085% 12.998 ± 0.271% 2.041 ± 0.134% 13.372 ± 0.106% 8.435 ± 0.089%
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D Additional Experiments of Task Generalization

D.1 Detailed Dataset Description

ShapeNet1D. We adopt the same preprocessing strategy to preprocess the ShapeNet1D dataset [5].
The ShapeNet1D dataset contains 27 categories with 60 objects per category. For each category, we
randomly select 50 objects for meta-training and the rest ones are used for meta-testing. The model
takes a 128× 128 grey-scale image as the input, and the label is normalized to [0, 10].

PASCAL3D. In PASCAL3D, we follow [18] to preprocess the dataset, where 50 and 15 categories
are used for meta-training and meta-testing, respectively. The input image size and output label scale
are same as ShapeNet1D.

D.2 Hyperparameters.

We list the hyperparameters used in the experiments of ShapeNet1D and PASCAL3D in Table 5.

Table 5: Hyperparameters of task generalization experiments.

Hyperparameters ShapeNet1D PASCAL3D

outer-loop learning rate 0.0005 0.001
inner-loop learning rate 0.002 0.01
# of inner-loop updates 5 5
α in Beta Dist. 0.5 0.5
batch size 10 10
support/query shot 15 15
max. iterations 15,000 15,000

E Additional Experiments of Out-of-Distribution Robustness

E.1 Detailed Dataset Description

We provide detailed descriptions for datasets that are used in the experiments of out-of-distribution
robustness. Table 6: Spurious correlation

analysis in RCF-MNIST. We
list the test performance w/
and w/o distribution shifts.

w/o shift w/ shift

RMSE ↓ 0.111 0.162

RCF-MNIST. The prefix "RCF" of RCF-MNIST means "Rotated-
Colored-Fashion". To construct RCF-MNIST, assume the normal-
ized RGB vector of red and blue is [1, 0, 0] and [0, 0, 1] and the
normalized angle of rotation (i.e., label) for one image is g ∈ [0, 1].
In training set, we color 80% images with RGB value [g, 0, 1− g]
and the rest images are colored with [1− g, 0, g]. Hence, the color
information is strongly spuriously correlated with the label in the
training set. In test set, we reverse spurious correlations to simulate distribution shift, where 80%
and 20% images are colored with RGB values [1− g, 0, g] and [g, 0, 1− g], respectively. We further
verify that the spurious correlation between color and label affects the performance. Here, we
compare the performance of same test set with or without distribution shift. The results are reported
in Table 6, where we observe that the subpopulation shift caused by spurious correlation does hurt
the performance as expected.

PovertyMap is included in the WILDS benchmark [9], which contains satellite images from 23
African countries that can be used to predict the village-level real-valued asset wealth index. The
input is a 224 × 224 multispectral LandSat satellite image with 8 channels, and the label is the
real-valued asset wealth index. The domains of the images consist the country, urban and rural area
information. This dataset includes 5 different cross validation folds, and all countries in these splits
are disjoint to support the out-of-distribution setting. All experimental settings follow Koh et al. [9].

Communities And Crimes (Crime) is a tabular dataset combining socio-economic data from the
1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime data from
the 1995 FBI UCR. The input features include 122 attributes that have some plausible connection
to crime, such as the median family income and percent of officers assigned to drug units. The
label attribute to be predicted is per capita violent crimes, which covers violent crimes including
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murder, rape, robbery, assault and so on. All numeric features are normalized into the decimal range
0.00 ∼ 1.00 by equal-interval binning method, and the missing values are filled with the average
values of the corresponding attributes. State identifications are used as the domain information,
resulting to 46 domains in total. We split the dataset into training, validation and test sets with size
1,390, 231 and 373, while they contain 31, 6 and 9 disjoint domains, respectively.

SkillCraft. SkillCraft is a UCI tabular dataset [2] originated from a study that used video game
telemetry data from real-time strategy (RTS) games to explore the development of expertise. Input
x contains 17 player-related parameters in the game, such as the Cognition-Action-cycle variables
and the Hotkey Usage variables. And the action latency in the game was considered as the label y.
Missing data are filled by mean padding on each attribute. We use "League Index", which correspond
to different levels of competitors, to be the identifier of domain. The dataset is split into training,
validation and test sets with size 1878, 806, 711 and disjoint domain number 4, 1, 3, respectively.

Drug-target Interactions (DTI). Drug-target Interactions dataset [7] originated aims to predict
the binding activity score between each small molecule and the corresponding target protein. The
input features contain both drug and target protein information, which are represented by one-hot
vectors. The output label is the binding activity score. The training and validation set are selected
from 2013-2018, and test set is drawn from 2019-2020. We regard "Year" as the domain information.

E.2 Hyperparameters

We list the hyperparameters for the experiments of out-of-distribution robustness in Table 7.

Table 7: Hyperparameter settings for the experiments of out-of-distribution robustness.
Dataset RCF-MNIST PovertyMap Crime SkillCraft DTI

Learning rate 7e-5 1e-3 1e-3 1e-2 5e-5
Weight decay 0 0 0 0 0
Scheduler n/a StepLR n/a n/a n/a
Batch size 64 64 16 32 64
Type of mixup ManiMix mixup ManiMix mixup ManiMix
Architecture ResNet-18 ResNet-50 FCN3 FCN3 DeepDTA
Optimizer Adam Adam Adam Adam Adam
Maximum Epoch 30 50 200 100 20
Bandwidth σ 0.2 0.5 1.0 5e-4 21.0
α in Beta Dist. 2.0 0.5 2.0 2.0 2.0

E.3 Full Results

In Table 8, we report the full results of out-of-distribution robustness.

F Additional Analysis of C-Mixup

F.1 Additional Compatibility Analysis

In Table 9, we report the full results of compatibility analysis. Here, the performances on ERM,
mixup, mixup+C-Mixup are also reported for comparison. In addition to the compatibility of C-
Mixup, we also observe that some powerful inter-class mixup policies (e.g., PuzzleMix) improve
the performance on part of regression tasks, e.g., RCF-MNIST. However, these approaches may also
yield worse performances than ERM in other datasets, e.g., PovertyMap. Nevertheless, integrating
C-Mixup on these mixup-based variants performs better than their vanilla versions, showing the
compatibility and complementarity of C-Mixup to the existing mixup-based approaches in regression.

F.2 Distance Metrics

In this section, we first discuss how to calculate the representation distance d(hi, hj). Then, we
provide complete analysis of distance metrics.
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Table 8: Full results of out-of-distribution robustness. The standard deviations are calculated by
5-fold data split in PovertyMap [9], or over 3 seeds in other datasets.

RCF-MNIST (RMSE) PovertyMap (R) Crime (RMSE)
Avg. ↓ Avg. ↑ Worst ↑ Avg. ↓ Worst ↓

ERM 0.162 ± 0.003 0.80 ± 0.04 0.50 ± 0.07 0.134 ± 0.003 0.173 ± 0.009
IRM 0.153 ± 0.003 0.77 ± 0.05 0.43 ± 0.07 0.127 ± 0.001 0.155 ± 0.003
IB-IRM 0.167 ± 0.003 0.78 ± 0.05 0.40 ± 0.05 0.127 ± 0.002 0.153 ± 0.004
V-REx 0.154 ± 0.011 0.83 ± 0.02 0.48 ± 0.03 0.129 ± 0.005 0.157 ± 0.007
CORAL 0.163 ± 0.016 0.78 ± 0.05 0.44 ± 0.06 0.133 ± 0.007 0.166 ± 0.015
GroupDRO 0.232 ± 0.016 0.75 ± 0.07 0.39 ± 0.06 0.138 ± 0.005 0.168 ± 0.009
Fish 0.263 ± 0.017 0.80 ± 0.02 0.30 ± 0.01 0.128 ± 0.000 0.152 ± 0.001
mixup 0.176 ± 0.003 0.81 ± 0.04 0.46 ± 0.03 0.128 ± 0.002 0.154 ± 0.001

Ours 0.146 ± 0.005 0.81 ± 0.03 0.53 ± 0.07 0.123 ± 0.000 0.146 ± 0.002

n/a SkillCraft (RMSE) DTI (R)
n/a Avg. ↓ Worst ↓ Avg. ↑ Worst ↑

ERM n/a 5.887 ± 0.362 10.182 ± 1.745 0.464 ± 0.014 0.429 ± 0.004
IRM n/a 5.937 ± 0.254 7.849 ± 0.371 0.478 ± 0.007 0.432 ± 0.003
IB-IRM n/a 6.055 ± 0.503 7.650 ± 0.653 0.479 ± 0.009 0.435 ± 0.007
V-REx n/a 6.059 ± 0.429 7.444 ± 0.494 0.485 ± 0.009 0.435 ± 0.004
CORAL n/a 6.353 ± 0.102 8.272 ± 0.436 0.483 ± 0.010 0.432 ± 0.005
GroupDRO n/a 6.155 ± 0.537 8.131 ± 0.608 0.442 ± 0.043 0.407 ± 0.039
Fish n/a 6.356 ± 0.201 8.676 ± 1.159 0.470 ± 0.022 0.443 ± 0.010
mixup n/a 5.764 ± 0.618 9.206 ± 0.878 0.465 ± 0.004 0.437 ± 0.016

Ours n/a 5.201 ± 0.059 7.362 ± 0.244 0.498 ± 0.008 0.458 ± 0.004

Table 9: Full results (performance with standard deviation) of compatibility analysis.

Model RCF-MNIST PovertyMap

RMSE ↓ Worst R ↑
ERM 0.162 ± 0.003 0.50 ± 0.07

mixup 0.176 ± 0.003 0.46 ± 0.03
+C-Mixup 0.146 ± 0.005 0.53 ± 0.07

CutMix 0.194 ± 0.010 0.49 ± 0.05
+C-Mixup 0.186 ± 0.013 0.52 ± 0.06

PuzzleMix 0.159 ± 0.004 0.47 ± 0.03
+C-Mixup 0.150 ± 0.012 0.50 ± 0.04

AutoMix 0.152 ± 0.021 0.49 ± 0.07
+C-Mixup 0.146 ± 0.009 0.53 ± 0.07

Measuring Representation Distance. In this paper, we adopt a two-stage training process for each
iteration. In the first stage, we feed the data into the current backbone and get hidden representations
h, which is used to calculate the example distance, i.e., d(hi, hj). In the second stage, we apply
C-Mixup with representation distance.

Complete Analysis of Distance Metrics We report full results of the analysis of distance metrics
in Table 10. In addition to the existing analysis, we conduct one analysis by changing how to
calculate the distance between low-dimensional hidden representations, where we compare the
Euclidean distance and the cosine distance. We observe that C-Mixup performs better than using both
Euclidean and cosine distances to measure the similarity between low-dimensional representations,
corroborating the effectiveness of C-Mixup.

F.3 Additional Hyperparameter Sensitivity

In this section, we first provide more experiments for bandwidth analysis. Then, we conduct
experiments to show the effect of hyperparameter α in Beta distribution, i.e., Beta(α, α).
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Table 10: Full results (performance with standard deviation) of different distance metrics.

Model Exchange-Rate ShapeNet1D DTI

RMSE ↓ MSE ↓ Avg. R ↑
ERM/MAML 0.0236 ± 0.0031 4.698 ± 0.079 0.464 ± 0.014
mixup/MetaMix 0.0239 ± 0.0027 4.275 ± 0.082 0.465 ± 0.004

d(xi, xj) 0.0212 ± 0.0014 4.539 ± 0.082 0.478 ± 0.003
d(xi ⊕ yi, xj ⊕ yj) 0.0212 ± 0.0009 4.395 ± 0.085 0.484 ± 0.002
d(hi, hj) (Euclidean distance) 0.0213 ± 0.0006 4.202 ± 0.078 0.483 ± 0.001
d(hi, hj) (Cosine distance) 0.0209 ± 0.0012 4.411 ± 0.081 0.477 ± 0.004
d(hi ⊕ yi, hj ⊕ yj) 0.0208 ± 0.0016 4.176 ± 0.077 0.487 ± 0.001

d(yi, yj) (C-Mixup) 0.0203 ± 0.0011 4.024 ± 0.081 0.498 ± 0.008

F.3.1 Additional Bandwidth Analysis

We illustrate the bandwidth analysis for additional four datasets in Figure 3, including Airfoil, NO2,
PovertyMap, SkillCraft. The results corroborate our finding in the main paper that C-Mixup yields a
good model in a relative wide range of bandwidth, reducing the efforts to tune the bandwidth σ for
every specific dataset.

According to our empirical results, we conclude that roughly tuning the bandwidth in the range [0.01,
0.1, 1, 10, 100] is sufficient to get a relatively satisfying performance. To get the optimal bandwidth,
we suggest to perform grid search.
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Figure 3: Additional robustness analysis of bandwidth

F.3.2 Effect of Shape Parameter α in Beta Distribution
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Figure 4: Robustness analysis of α in Beta distribution

Finally, we analyze the effect of shape parameter α in the Beta distribution. The results of five
datasets are illustrated in Figure 4, including Airfoil, NO2, Exchange-Rate, PovertyMap, and DTI.
We observe that the performance is relatively stable with the change of α, indicating the robustness
of C-Mixup to the shape of Beta distribution.

F.4 Robustness Analysis to Label Noise

We conduct experiments to investigate the robustness of C-Mixup to label noise. Specifically, we
inject Gaussian noises into labels for all training examples. For each dataset, the noise is set as
30% of the standard deviation of the corresponding original labels, where adding noise significantly
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degrades the performance compared to that with clean data. The results and the corresponding
noise distributions on three datasets – Exchange-Rate, ShapeNet1D, DTI are reported in Table 11.
According to Table 11, C-Mixup still improves the performance over ERM and vanilla mixup,
showing its robustness to label noise.

Table 11: Robustness analysis to label noise.

Model Exchange-Rate ShapeNet1D DTI

RMSE ↓ MSE ↓ Avg. R ↑

Noise Type N (0, 1.18× 10−3) N (0, 0.874) N (0, 7.59× 10−3)

ERM/MAML 0.0381 ± 0.0014 5.553 ± 0.098 0.334 ± 0.018
mixup/MetaMix 0.0375 ± 0.0017 5.329 ± 0.101 0.307 ± 0.021
C-Mixup 0.0360 ± 0.0013 5.185 ± 0.096 0.356 ± 0.013
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