
6 Supplementary Material

6.1 Network Architecture

The section explains detailed CipherNav network architecture in Table 4, 5 and 6. The view encoder E✓ is shown
in Table 4 and map encoder E is shown in Table 5. The encoders are trained end-to-end during plaintext training
and freezed during ciphertext training. Each party has a copy of the encoder models and locally computes all
forward passes in ciphertext training. The action classification network G is shown in Table 6. The network G is
assumed to have public parameters, but the input values are private. Secret sharing protocols are used to jointly
compute an action prediction sequence without revealing any additional information on the private inputs.

Table 4: CipherNav view encoder detailed network struc-
ture. Layer type C indicates Conv2D layer and layer type
L indicates Linear layer. A ReLU activation function is
added in between each layer.

View Encoder

Number 1 2 3 4

Type C C L L
Input Size 3x45x60 6x21x28 648 128

Output Size 6x21x28 6x9x12 128 32
Kernel 5 5 - -
Stride 2 2 - -

Params 456 906 83072 4128

Table 5: CipherNav map encoder detailed
network structure. Layer type L indicates
Linear layer. A ReLU activation function is
added in between each layer.

Map Encoder

Number 1 2 3

Type L L L
Input Size 25 64 128

Output Size 64 128 128
Kernel - - -
Stride - - -

Params 1664 8320 16512

Table 6: CipherNav detailed network structure for the action classification network. Layer type L indicates
Linear layer. A ReLU activation function is added in between each layer.

Action Classification Network

Number 1 2 3 4

Type L L L L
Input Size 288 128 64 16

Output Size 128 64 16 5
Params 36992 8256 1040 85

6.2 Dataset Generation

The Obstacle World training and testing datasets are generated disjointly. In training dataset, the ground truth
actions and shortest paths are pre-generated based on breath-first-search (BFS). 1-3 obstacles are generated
across the borders of the map. The dataset assumes that at least one camera is able to see the obstacle. Then, the
goal location is generated in one of the reachable locations given the current location and obstacle locations.

During training, the network assumes teacher forcing. Regardless of the predicted training output, the network
will assume the ground truth label to update the map and environment. The map is represented by a 5x5 matrix
where each number has a separate meaning. Given an action, the current location on the map can be updated to
generate a new map. To update the environment, the agent moves through the maze, and its’ first person view is
recorded per time step.

The testing dataset is generated on the fly. A new environment is generated each time where the agent moves
through the Obstacle World based on actions given by the model prediction. The first person views and maps are
updated according to model outputs. As such, a new testing dataset of size 2250 is randomly generated each
time a new model is tested. The distribution of the test datasets remain the same across different baselines.

6.3 Arithmetic and binary secret sharing

There are two types of secret sharing protocols: arithmetic and binary protocols. The arithmetic secret sharing
protocol requires finite field and all operations are performed through addition and multiplication. All other
operations such as division and non-linear function involves approximation to convert them into addition and
multiplication based operations [16]. Note that all operations below are modular over finite field with Q elements.

Arithmetic addition Assume x, y indicate secrets, [x], [y] indicate arithmetic shares of secrets and p indicates
party, to calculate addition z = x+ y, we first break down x and y into shares x =

P
p2P [x]p mod Q and
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y =
P

p2P [y]p mod Q. Shares of z can be calculated through [z]p = [x]p+[y]p mod Q and z =
P

p2P [z]p
mod Q.

Arithmetic Multiplication Multiplication is more complicated because each multiplication requires Beaver’s
multiplication triplet ([a], [b], [c]) where c = ab. The triplet can either be pre-computed by trusted third parties or
securely generated on the fly through oblivious transfer. During multiplication computation z = xy, each party
has a share of x, y, a, b, c, but not the actual values. Each party performs computation on [✏]p = [x]p � [a]p and
[�]p = [y]p � [b]p, and then broadcast the share of [✏]p, [�]p in a communication round. All P shares of [✏], [�]
are used to reconstruct ✏,�. All parties are aware of the value of ✏ = x�a and � = y�b, but the remain agnostic
to the values of x, y, a, b, c. To compute share of [z]p, each party calculates [z]p = [c]p + ✏[b]p + [a]p� + ✏�
mod Q. A simple arithmetic calculation reveals that z = c+ ✏b+a�+ ✏� = ab+(x�a)b+(y� b)a+(x�
a)(y � b) = xy. The final product z =

P
p2P [z]p mod Q. Since the last term ✏� is calculated in plaintext,

only one party needs to add ✏� when computing the share.

Binary XOR Bitwise XOR operation is similar to the addition operation in arithmetic secret sharing. Let hi
denotes binary secret sharing operations, hzip = hxip � hyip.

Binary AND Bitwise AND operation is similar to the multiplication operation in arithmetic secret sharing.
AND operation require pre-generated Beaver’s triplet (hai , hbi , hci) where c = a ⌦ b. The parties similarly
compute h✏ip = hxip � haip and h�ip = hyip � hbip, and publicly broadcast their shares of ✏ and �.
hzip = hx⌦ yip = hcip � (✏⌦ hbip)� (haip ⌦ �)� (✏⌦ �).

6.4 Path planning efficiency analysis

Our proposed CipherNav has achieved the highest efficiency (or within 1% difference in percentage) across no
detour, detour required, and overall categories in Table 7.

Figure 8 visualizes several cases where the agents fail to reach the goal in the most efficiency path. Such cases
occur with very low probability (less than 1%), and the reason of occurrence is often arbitrary. Comparing
privacy preserving MPC models with non-privacy-preserving plaintext models in Table 7, the highest and lowest
efficiency values are less than 1% apart. In detour required case, the efficiency is close to 100% because the
correct path is a relatively longer path by definition. Hence, given the agent successfully reaches the goal, it is
highly unlikely that the agent chooses an even longer path. In the no detour category, the shortest path equals to
the correct path. Hence, it is more likely that multiple paths with longer path length exist, leading to slightly
lower efficiency across all baselines. Our proposed CipherNav model is approximately 3-4% more efficient
compared to the map only and first person baselines in the overall category, and 6-7% more efficient in the no
detour category.

6

¡
¡ *

&DPHUD�� &DPHUD��

&DPHUD�� &DPHUD��

&DPHUD��

&DPHUD��

&DPHUD��

&DPHUD��

&DPHUD�� &DPHUD��

&DPHUD�� &DPHUD��

&DPHUD��

&DPHUD��

&DPHUD��

&DPHUD��

6 ¡

*

)UHH�VSDFH ����:DOO 6WDUW�ORFDWLRQ *RDO�ORFDWLRQ +LGGHQ�REVWDFOH &RUUHFW�SDWK ,QFRUUHFW�SDWK¡6 *

Figure 8: We visualize several examples of our agent fail to reach the goal in the most efficient path.

Table 7: Efficiency of path found in plaintext and ciphertext models. The efficiency denotes percentage where
the agents reach the goal in shortest path given that the agents successfully reach the goal.

Efficiency

Experiment No Detour Detour Required Overall

Random 38.8% 7.2% 37.8 %
Map only 93.2% 100% 95.5 %
First Person 94.1% 100% 96.8 %
First Person (deterministic starting view) 93.7% 99.9% 96.6 %
2-party MPC w/ Camera Views 99.1% 99.1% 99.5 %
5-party MPC w/ Camera Views 100% 99.5% 99.2 %
Plaintext w/ Camera Views 99.5% 99.7% 99.4 %
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6.5 Privacy guarantees and limitations

Theoretical results have been rigorously established that prove multi-party computation (MPC) allows multiple
parties to jointly compute over private inputs without revealing any information other than what’s reasonably
deductible from the outputs themselves [27]. Our approach leverages this result and applies it to the navigation
problem.

Our proposed framework provides a full privacy guarantee against any third-party attacks, provided that the
parties do not voluntarily reveal their secret shares themselves. For a third party to attack the system, all parties
need to be dishonest [27, 8, 1]. The benefit of our system with MPC is that the secret owner is one of the n
parties, who have full incentive to hide their secret shares to prevent information leaks. The incentive alignment
allows our framework to satisfy all-but-one honest security requirement of MPC. Semi-honest security level
assumes that all parties are curious about sensitive information but not malicious. In other words, while full
privacy is guaranteed nevertheless, the agents and the security camera owners like the government are trusted to
follow the MPC computation protocol for the final navigation results to be accurate. Following the MPC protocol
is aligned with the agents’ incentives to have a better navigation experience and the government’s incentives
to build a better smart city. To provide rigorous guarantees of output accuracy, zero-knowledge proofs can be
added as follow-up work.

In multi-party computation, the network outputs naturally reveal some limited information on the inputs. One
possible privacy attack is for a user to repeatedly query the network multiple times. If the user were to perform
such an attack, the most they could infer is the location of an obstacle, but nothing other than the existence
of that obstacle (i.e. identities of the obstacle, category of the obstacle, or other scene features). By querying
the network to exhaust all goal locations, the user can obtain a set of possible trajectories. By looking at the
regions the trajectories never go to, the user could infer the location of possible obstacles. Consequently, the
upper bound on the revealed information is the potential obstacle locations but nothing else.

Table 8: A scene reconstruction network is trained to predict the existence of the obstacle in a camera view. The
experimental results are in good agreement with the theoretical results, where the prediction given encrypted
features is no different from a random guess.

Accuracy

Random chance 50%
Encrypted ciphertext feature (ours) 49.7%
Non-encrypted plaintext feature 93.6%

Although privacy is guaranteed by theoretical results, an additional experiment is conducted to show that
experimental results are in good alignment with the theoretical guarantees. In Table 8, a scene reconstruction
experiment is conducted to reveal the existence of obstacles in a camera view given the feature vector extracted
by the camera. The model used is a linear classifier with cross-entropy loss, although other models will yield
the same results. All features are normalized to the range -1 to 1 to avoid precsion issues with large integers.
From Table 8, the binary prediction based on encrypted ciphertext features has close to 50% accuracy, which is
indistinguishable from a random distribution.

14


